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Abstract
In this paper, we study synchronal and cyclic algorithms for finding a common fixed
point x∗ of a finite family of strictly pseudocontractive mappings, which solve the
variational inequality

〈
(γ f –μG)x∗, jq(x – x∗)

〉 ≤ 0, ∀x ∈
N⋂
i=1

F(Ti),

where f is a contraction mapping, G is an η-strongly accretive and L-Lipschitzian
operator, N ≥ 1 is a positive integer, γ ,μ > 0 are arbitrary fixed constants, and {Ti}Ni=1
are N-strict pseudocontractions. Furthermore, we prove strong convergence
theorems of such iterative algorithms in a real q-uniformly smooth Banach space. The
results presented extend, generalize and improve the corresponding results recently
announced by many authors.
MSC: 47H06; 47H09; 47H10; 47J05; 47J20; 47J25
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1 Introduction
Let E be a real Banach space, and let E∗ be the dual of E. For some real number q ( < q <
∞), the generalized duality mapping Jq : E → E∗ is defined by

Jq(x) =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖q,∥∥x∗∥∥ = ‖x‖q–}, ∀x ∈ E, (.)

where 〈·, ·〉 denotes the duality pairing between elements of E and those of E∗. In particular,
J = J is called the normalized duality mapping and Jq(x) = ‖x‖q–J(x) for x �= . If E is a
real Hilbert space, then J = I , where I is the identity mapping. It is well known that if E is
smooth, then Jq is single-valued, which is denoted by jq.
Let C be a nonempty closed convex subset of E, and let G : E → E be a nonlinear map.

Then the variational inequality problem with respect to C and G is to find a point x∗ ∈ C
such that

〈
Gx∗, jq

(
x – x∗)〉 ≥ , ∀x ∈ C and jq

(
x – x∗) ∈ Jq

(
x – x∗). (.)
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We denote by VI(G,C) the set of solutions of this variational inequality problem.
If E =H , a real Hilbert space, the variational inequality problem reduces to the following:

Find a point x∗ ∈ C such that

〈
Gx∗,x – x∗〉 ≥ , ∀x ∈ C. (.)

A mapping T : E → E is said to be a contraction if, for some α ∈ [, ),

‖Tx – Ty‖ ≤ α‖x – y‖, ∀x, y ∈ E. (.)

The map T is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ E. (.)

The map T is said to be L-Lipschitzian if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ E. (.)

A point x ∈ E is called a fixed point of the map T if Tx = x. We denote by F(T) the set of
all fixed points of the mapping T , that is,

F(T) = {x ∈ C : Tx = x}.

We assume that F(T) �= ∅ in the sequel. It is well known that F(T) above is closed and
convex (see, e.g., Goebel and Kirk []).
An operator F : E → E is said to be accretive if ∀x, y ∈ E, there exists jq(x – y) ∈ Jq(x – y)

such that

〈
Fx – Fy, jq(x – y)

〉 ≥ . (.)

For some positive real numbers η, λ, the mapping F is said to be η-strongly accretive if for
any x, y ∈ E, there exists jq(x – y) ∈ Jq(x – y) such that

〈
Fx – Fy, jq(x – y)

〉 ≥ η‖x – y‖q, (.)

and it is called λ-strictly pseudocontractive if

〈
Fx – Fy, jq(x – y)

〉 ≤ ‖x – y‖q – λ
∥∥x – y – (Fx – Fy)

∥∥q. (.)

It is clear that (.) is equivalent to the following:

〈
(I – F)x – (I – F)y, jq(x – y)

〉 ≥ λ
∥∥x – y – (Fx – Fy)

∥∥q, (.)

where I denotes the identity operator.
In Hilbert spaces, accretive operators are called monotone where inequality (.) holds

with jq replaced by the identity map of H .
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A bounded linear operator A on H is called strongly positive with coefficient γ if there
is a constant γ >  with the property

〈Ax,x〉 ≥ γ ‖x‖, ∀x ∈H .

Let K be a nonempty closed convex and bounded subset of a Banach space E, and let the
diameter of K be defined by d(K) := sup{‖x – y‖ : x, y ∈ K}. For each x ∈ K , let r(x,K) :=
sup{‖x – y‖ : y ∈ K}, and let r(K) := inf{r(x,K) : x ∈ K} denote the Chebyshev radius of K
relative to itself. The normal structure coefficient N(E) of E (see, e.g., []) is defined by
N(E) := inf{ d(K )

r(K ) : d(K) > }. A space E, such thatN(E) > , is said to have a uniform normal
structure.
It is known that all uniformly convex and uniformly smooth Banach spaces have a uni-

form normal structure (see, e.g., [, ]).
Let μ be a continuous linear functional on l∞ and (a,a, . . .) ∈ l∞. We write μn(an)

instead of μ((a,a, . . .)). We call μ a Banach limit if μ satisfies ‖μ‖ = μn() =  and
μn(an+) = μn(an) for all (a,a, . . .) ∈ l∞. If μ is a Banach limit, then

lim inf
n→∞ an ≤ μn(an) ≤ lim sup

n→∞
an

for all {an} ∈ l∞ (see, e.g., [, ]).
Let S = {x ∈ E : ‖x‖ = } denote the unit sphere of a real Banach space E.
The space E is said to have a Gâteaux differentiable norm if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x, y ∈ S. In this case, E is called smooth. E is said to be uniformly smooth
if the limit (.) exists and is attained uniformly in x, y ∈ S. E is said to have a uniformly
Gâteaux differentiable norm if, for any y ∈ S, the limit (.) exists uniformly for all x ∈ S.
The modulus of smoothness of E, with dimE ≥ , is a function ρE : [,∞) → [,∞)

defined by

ρE(τ ) = sup

{‖x + y‖ + ‖x – y‖


–  : ‖x‖ = ,‖y‖ ≤ τ

}
.

A Banach space E is said to be uniformly smooth if limt→+
ρE(t)
t = , and for q > , E is said

to be q-uniformly smooth if there exists a fixed constant c >  such that ρE(t) ≤ ctq, t > .
It is well known (see, e.g., []) that Hilbert spaces, Lp (or lp) spaces ( < p < ∞) and

Sobolev spaces, Wp
m ( < p < ∞) are all uniformly smooth. More precisely, Hilbert spaces

are -uniformly smooth, while

Lp (or lp) orWp
m spaces are

⎧⎨
⎩-uniformly smooth if  ≤ p < ∞,

p-uniformly smooth if  < p ≤ .

Also, it is well known (see, e.g., []) that q-uniformly smooth Banach spaces have a uni-
formly Gâteaux differentiable norm.
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The variational inequality problem was initially introduced and studied by Stampacchia
[] in . In the recent years, variational inequality problems have been extended to
study a large variety of problems arising in structural analysis, economics and optimiza-
tion. Thus, the problem of solving a variational inequality of the form (.) has been inten-
sively studied by numerous authors. Iterative methods for approximating fixed points of
nonexpansive mappings and their generalizations, which solve some variational inequal-
ity problems, have been studied by a number of authors (see, for example, [–] and the
references therein).
Let H be a real Hilbert space. In , Yamada [] proposed a hybrid steepest descent

method for solving variational inequality as follows: Let x ∈ H be chosen arbitrarily and
define a sequence {xn} by

xn+ = Txn –μλnF(Txn), n≥ , (.)

where T is a nonexpansive mapping on H , F is L-Lipschitzian and η-strongly monotone
with L > , η > ,  < μ < η/L. If {λn} is a sequence in (, ) satisfying the following
conditions:
(C) limn→∞ λn = ,
(C)

∑∞
n= λn = ∞,

(C) either
∑∞

n= |λn+ – λn| < ∞ or limn→∞ λn+
λn

= ,
then he proved that the sequence {xn} converges strongly to the unique solution of the
variational inequality

〈Fx̃,x – x̃〉 ≥ , ∀x ∈ F(T).

Besides, he also proposed the cyclic algorithm

xn+ = Tλnxn = (I –μλnF)T[n]xn,

where T[n] = Tn(modN); he also proved strong convergence theorems for the cyclic algo-
rithm.
In ,Marino andXu [] considered the following general iterativemethod: Starting

with an arbitrary initial point x ∈ H , define a sequence {xn} by

xn+ = αnγ f (xn) + (I – αnA)Txn, n≥ , (.)

where T is a nonexpansivemapping ofH , f is a contraction,A is a linear bounded strongly
positive operator, and {αn} is a sequence in (, ) satisfying the following conditions:
(M) limn→∞ αn = ;
(M)

∑∞
n= αn = ∞;

(M)
∑∞

n= |αn+ – αn| < ∞ or limn→∞ αn+
αn

= .
They proved that the sequence {xn} converges strongly to a fixed point x̃ ofT , which solves
the variational inequality

〈
(γ f –A)x̃,x – x̃

〉 ≤ , ∀x ∈ F(T).
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In , Tian [] combined the iterative method (.) with Yamada’s iterative method
(.) and considered the following general iterative method:

xn+ = αnγ f (xn) + (I –μαnF)Txn, n≥ , (.)

where T is a nonexpansive mapping on H , f is a contraction, F is k-Lipschitzian and
η-strongly monotone with k > , η > ,  < μ < η/k. He proved that if the sequence {αn}
of parameters satisfies conditions (M)-(M), then the sequence {xn} generated by (.)
converges strongly to a fixed point x̃ of T , which solves the variational inequality

〈
(γ f –μF)x̃,x – x̃

〉 ≤ , ∀x ∈ F(T).

Very recently, in , Tian and Di [] studied two algorithms, based on Tian’s []
general iterative algorithm, and proved the following theorems.

Theorem . (Synchronal algorithm) Let H be a real Hilbert space, and let Ti :H →H be
a ki-strictly pseudocontraction for some ki ∈ (, ) (i = , , . . . ,N ) such that

⋂N
i= F(Ti) �= ∅,

and f be a contraction with coefficient β ∈ (, ) and λi be a positive constant such that∑N
i= λi = . Let G : H → H be an η-strongly monotone and L-Lipschitzian operator with

L > , η > . Assume that  < μ < η/L,  < γ < μ(η – μL
 )/β = τ /β . Let x ∈ H be chosen

arbitrarily, and let {αn} and {βn} be sequences in (, ) satisfying the following conditions:
(N) limn→∞ αn = ,

∑∞
n= αn = ∞;

(N)
∑∞

n= |αn+ – αn| <∞,
∑∞

n= |βn+ – βn| < ∞;
(N)  <maxki ≤ βn < a < , ∀n≥ .

Let {xn} be a sequence defined by the composite process

⎧⎨
⎩Tβn = βnI + ( – βn)

∑N
i= λiTi,

xn+ = αnγ f (xn) + (I – αnμG)Tβnxn, n≥ .

Then {xn} converges strongly to a common fixed point of {Ti}Ni=,which solves the variational
inequality

〈
(γ f –μG)x∗,x – x∗〉 ≤ , ∀x ∈

N⋂
i=

F(Ti). (.)

Theorem . (Cyclic algorithm) Let H be a real Hilbert space, and let Ti :H →H be a ki-
strictly pseudocontraction for some ki ∈ (, ) (i = , , . . . ,N ) such that

⋂N
i= F(Ti) �= ∅, and f

be a contractionwith coefficient β ∈ (, ). Let G :H →H be an η-stronglymonotone and L-
Lipschitzian operator with L > , η > . Assume that  < μ < η/L,  < γ < μ(η – μL

 )/β =
τ /β . Let x ∈H be chosen arbitrarily, and let {αn} and {βn} be sequences in (, ) satisfying
the following conditions:

(N′) limn→∞ αn = ,
∑∞

n= αn = ∞;
(N′)

∑∞
n= |αn+ – αn| < ∞ or limn→∞ αn

αn+N
= ;

(N′) β[n] ∈ [k, ), ∀n≥ , where k =max{ki :  ≤ i≤ N}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/202
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Let {xn} be a sequence defined by the composite process

⎧⎨
⎩A[n] = β[n]I + ( – β[n])T[n],

xn+ = αnγ f (xn) + (I – αnμG)A[n+]xn, n≥ ,

where T[n] = Ti, with i = n(modN),  ≤ i ≤ N , namely T[n] is one of T,T, . . . ,TN cyclically.
Then {xn} converges strongly to a common fixed point of {Ti}Ni=,which solves the variational
inequality (.).

In this paper, we study the synchronal and cyclic algorithms for finding a common fixed
point x∗ of finite strictly pseudocontractive mappings, which solves the variational in-
equality

〈
(γ f –μG)x∗, jq

(
x – x∗)〉 ≤ , ∀x ∈

N⋂
i=

F(Ti), (.)

where f is a contractionmapping,G is an η-strongly accretive and L-Lipschitzian operator,
N ≥  is a positive integer, γ ,μ >  are arbitrary fixed constants, and {Ti}Ni= are N-strict
pseudocontractions defined on a closed convex subset C of a real q-uniformly smooth
Banach space E whose norm is uniformly Gâteaux differentiable.
Let T be defined by

T :=
N∑
i=

λiTi,

where λi >  such that
∑N

i= λi = . We will show that a sequence {xn} generated by the
following synchronal algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C chosen arbitrarily,

Tβn = βnI + ( – βn)
∑N

i= λiTi,

xn+ = αnγ f (xn) + (I – αnμG)Tβnxn, n≥ ,

(.)

converges strongly to a solution of problem (.).
Another approach to problem (.) is the cyclic algorithm. For each i = , . . . ,N , let Ai =

βiI + (–βi)Ti, where the constant βi satisfies  < ki < βi < . Beginning with x ∈ C, define
a sequence {xn} cyclically by

x = αγ f (x) + (I – αμG)(Ax),

x = αγ f (x) + (I – αμG)(Ax),

...

xN = αN–γ f (xN–) + (I – αN–μG)(ANxN–),

xN+ = αNγ f (xN ) + (I – αNμG)(AxN ),

...

http://www.fixedpointtheoryandapplications.com/content/2013/1/202
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Indeed, the algorithm can be written in a compact form as follows:

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C chosen arbitrarily,

A[n] = β[n]I + ( – β[n])T[n],

xn+ = αnγ f (xn) + (I – αnμG)A[n+]xn, n≥ ,

(.)

where T[n] = Ti, with i = n(modN),  ≤ i ≤ N , namely T[n] is one of T,T, . . . ,TN cyclically.
We will show that (.) is also strongly convergent to a solution of problem (.) if the
sequences {αn} and {βn} of parameters are appropriately chosen.
Motivated by the results of Tian and Di [], in this paper we aim to continue the study

of fixed point problems and prove new theorems for the solution of variational inequality
problems in the framework of a real Banach space, which is much more general than that
of Hilbert.
Throughout this research work, we will use the following notations:
. ⇀ for weak convergence and → for strong convergence.
. ωω(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.

2 Preliminaries
In the sequel we shall make use of the following lemmas.

Lemma . (Zhang and Guo []) Let C be a nonempty closed convex subset of a real Ba-
nach space E. Given an integer N ≥ , for each  ≤ i ≤ N , Ti : C → C is a λi-strict pseudo-
contraction for some λi ∈ [, ) such that

⋂N
i= F(Ti) �= ∅.Assume that {γi}Ni= is a sequence of

positive numbers such that
∑N

i= γi = . Then
∑N

i=γiTi is a λ-strict pseudocontraction with
λ :=min{λi :  ≤ i≤ N}, and

F

( N∑
i=

γiTi

)
=

N⋂
i=

F(Ti).

Lemma . (Zhou []) Let E be a uniformly smooth real Banach space, and let C be a
nonempty closed convex subset of E. Let T : C → C be a k-strict pseudocontraction. Then
(I – T) is demiclosed at zero. That is, if {xn} ⊂ C satisfies xn ⇀ x and xn – Txn → , as
n→ ∞, then Tx = x.

Lemma . (Petryshyn []) Let E be a real Banach space, and let Jq : E → E∗ be the
generalized duality mapping. Then, for any x, y ∈ E and jq(x + y) ∈ Jq(x + y),

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x + y)

〉
.

Lemma . (Lim and Xu []) Suppose that E is a Banach space with a uniform normal
structure, K is a nonempty bounded subset of E, and let T : K → K be a uniformly k-
Lipschitzian mapping with k <N(E)  . Suppose also that there exists a nonempty bounded
closed convex subset C of K with the following property (P):

x ∈ C implies ωω(x) ⊂ C, (P)

http://www.fixedpointtheoryandapplications.com/content/2013/1/202
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where ωω(x) is the ω-limit set of T at x, i.e., the set

{
y ∈ E : y = weak – lim

j
Tnjx for some nj → ∞

}
.

Then T has a fixed point in C.

Lemma . (Xu []) Let q > , and let E be a real q-uniformly smooth Banach space, then
there exists a constant dq >  such that for all x, y ∈ E and jq(x) ∈ Jq(x),

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x)

〉
+ dq‖y‖q.

Lemma . Let E be a real q-uniformly smooth Banach space with constant dq > , q > ,
and let C be a nonempty closed convex subset of E. Let F : C → C be an η-strongly accretive
and L-Lipschitzian operator with L > , η > . Assume that  < μ < ( qη

dqLq )


q– , τ = μ(η –
dqμq–Lq

q ) and t ∈ (,min{, 
τ
}). Then, for any x, y ∈ C, the following inequality holds:

∥∥(I –μtF)x – (I –μtF)y
∥∥ ≤ ( – tτ )‖x – y‖.

That is, (I –μtF) is a contraction with coefficient ( – tτ ).

Proof For any x, y ∈ C, we have, by Lemma ., (.) and (.),

∥∥(I –μtF)x – (I –μtF)y
∥∥q =

∥∥(x – y) –μt(Fx – Fy)
∥∥q

≤ ‖x – y‖q – qμt
〈
Fx – Fy, jq(x – y)

〉
+ dqμqtq‖Fx – Fy‖q

≤ ‖x – y‖q – qμtη‖x – y‖q + dqμqtqLq‖x – y‖q

≤ [
 – tμ

(
qη – dqμq–Lq

)]‖x – y‖q

=
[
 – qtμ

(
η –

dqμq–Lq

q

)]
‖x – y‖q

≤
[
 – tμ

(
η –

dqμq–Lq

q

)]q

‖x – y‖q

= ( – tτ )q‖x – y‖q.

From  < μ < ( qη
dqLq )


q– , q >  and t ∈ (,min{, 

τ
}), we have ( – tτ ) ∈ (, ). It then follows

that

∥∥(I –μtF)x – (I –μtF)y
∥∥ ≤ ( – tτ )‖x – y‖. �

Lemma . Let E be a real q-uniformly smooth Banach space with constant dq, q > ,
and let C be a nonempty closed convex subset of E. Suppose that T : C → C is a λ-strict
pseudocontraction such that F(T) �= ∅. For any α ∈ (, ), we define Tα : C → E by Tαx =
αx + ( – α)Tx for each x ∈ C. Then, as α ∈ [μ, ), μ ∈ [max{,  – ( λq

dq )


q– }, ), Tα is a non-
expansive mapping such that F(Tα) = F(T).

http://www.fixedpointtheoryandapplications.com/content/2013/1/202
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Proof For any x, y ∈ C, we have, by Lemma . and (.),

‖Tαx – Tαy‖q =
∥∥αx + ( – α)Tx – αy – ( – α)Ty

∥∥q

=
∥∥x – y – ( – α)

[
x – y – (Tx – Ty)

]∥∥q

≤ ‖x – y‖q – q( – α)
〈
(I – T)x – (I – T)y, jq(x – y)

〉
+ dq( – α)q

∥∥x – y – (Tx – Ty)
∥∥q

≤ ‖x – y‖q – λq( – α)
∥∥x – y – (Tx – Ty)

∥∥q

+ dq( – α)q
∥∥x – y – (Tx – Ty)

∥∥q

= ‖x – y‖q – ( – α)
[
λq – dq( – α)q–

]∥∥x – y – (Tx – Ty)
∥∥q

≤ ‖x – y‖q,

which shows that Tα is a nonexpansive mapping.
It is clear that x = Tαx ⇔ x = Tx . This proves our assertions. �

Lemma . (Xu []) Let {an} be a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, n≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence in R such that
(i) limn→∞ γn =  and

∑∞
n= γn = ∞;

(ii) lim supn→∞
δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . Let E be a real q-uniformly smooth Banach space with constant dq, q > ,
and let C be a nonempty closed convex subset of E. Suppose that Ti : C → C are ki-strict
pseudocontractions for ki ∈ (, ) (i = , , . . . ,N ). Let Tαi = αiI + ( – αi)Ti, ki < αi <  (i =
, , . . . ,N ). If

⋂N
i= F(Ti) �= ∅, then, as αi ∈ [μ, ), μ ∈ [max{,  – ( λq

dq )


q– }, ), we have

F(TαTα · · ·TαN ) =
N⋂
i=

F(Tαi ).

Proof We prove it by induction. ForN = , set Tα = αI +(–α)T, Tα = αI +(–α)T,
ki < αi < , i = , . Obviously,

F(Tα )∩ F(Tα )⊂ F(TαTα ).

Now we prove

F(TαTα ) ⊂ F(Tα )∩ F(Tα ).

For all y ∈ F(TαTα ), TαTαy = y, if Tαy = y, then Tαy = y, the conclusion holds. In
fact, we can claim that Tαy = y. From Lemma ., we know that Tα is nonexpansive and
F(Tα )∩ F(Tα ) = F(T)∩ F(T) �= ∅.

http://www.fixedpointtheoryandapplications.com/content/2013/1/202
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Take x ∈ F(Tα )∩ F(Tα ), then, by Lemma . and (.), we have

‖x – y‖q = ‖x – TαTαy‖q

=
∥∥x – [

α(Tαy) + ( – α)TTαy
]∥∥q

=
∥∥x – Tαy – ( – α)

[
x – Tαy – (x – TTαy)

]∥∥q

≤ ‖x – Tαy‖q – q( – α)
〈
x – Tαy – (x – TTαy), jq(x – Tαy)

〉
+ dq( – α)q

∥∥x – Tαy – (x – TTαy)
∥∥q

=
∥∥Tαx – Tαy

∥∥q – q( – α)
〈
(I – T)x – (I – T)Tαy, jq(x – Tαy)

〉
+ dq( – α)q

∥∥x – Tαy – (x – TTαy)
∥∥q

≤ ‖Tαx – Tαy‖q – λq( – α)
∥∥x – Tαy – (x – TTαy)

∥∥q

+ dq( – α)q
∥∥x – Tαy – (x – TTαy)

∥∥q

≤ ‖x – y‖q – λq( – α)‖TTαy – Tαy‖q

+ dq( – α)q‖TTαy – Tαy‖q

= ‖x – y‖q – ( – α)
[
λq – dq( – α)q–

]‖TTαy – Tαy‖q.

So, we get

‖TTαy – Tαy‖q ≤ .

Namely TTαy = Tαy, that is,

Tαy ∈ F(T) = F(Tα ), Tαy = TαTαy = y.

Suppose that the conclusion holds for N = k, we prove that

F(TαTα · · ·Tαk+ ) =
k+⋂
i=

F(Tαi ).

It suffices to verify

F(TαTα · · ·Tαk+ ) ⊂
k+⋂
i=

F(Tαi ).

For all y ∈ F(TαTα · · ·Tαk+ ), TαTα · · ·Tαk+y = y. Using Lemma . and (.) again, take
x ∈ ⋂k+

i= F(Tαi ), then

‖x – y‖q = ‖x – TαTα · · ·Tαk+y‖q

=
∥∥x – [

α(Tα · · ·Tαk+y) + ( – α)TTα · · ·Tαk+y
]∥∥q

=
∥∥x – Tα · · ·Tαk+y – ( – α)

[
x – Tα · · ·Tαk+y – (x – TTα · · ·Tαk+y)

]∥∥q

≤ ‖x – Tα · · ·Tαk+y‖q – q( – α)
〈
x – Tα · · ·Tαk+y – (x – TTα · · ·Tαk+y),
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jq(x – Tα · · ·Tαk+y)
〉

+ dq( – α)q
∥∥x – Tα · · ·Tαk+y – (x – TTα · · ·Tαk+y)

∥∥q

= ‖x – Tα · · ·Tαk+y‖q – q( – α)
〈
(I – T)x – (I – T)Tα · · ·Tαk+y,

jq(x – Tα · · ·Tαk+y)
〉

+ dq( – α)q
∥∥x – Tα · · ·Tαk+y – (x – TTα · · ·Tαk+y)

∥∥q

≤ ‖x – Tα · · ·Tαk+y‖q

– λq( – α)
∥∥x – Tα · · ·Tαk+y – (x – TTα · · ·Tαk+y)

∥∥q

+ dq( – α)q
∥∥x – Tα · · ·Tαk+y – (x – TTα · · ·Tαk+y)

∥∥q

≤ ‖x – y‖q – λq( – α)‖TTα · · ·Tαk+y – Tα · · ·Tαk+y‖q

+ dq( – α)q‖TTα · · ·Tαk+y – Tα · · ·Tαk+y‖q

= ‖x – y‖q – ( – α)
[
λq – dq( – α)q–

]‖TTα · · ·Tαk+y – Tα · · ·Tαk+y‖q.

So, we get

‖TTα · · ·Tαk+y – Tα · · ·Tαk+y‖q ≤ .

Thus, TTα · · ·Tαk+y = Tα · · ·Tαk+y, that is, Tα · · ·Tαk+y ∈ F(T) = F(Tα ). Namely,

Tα · · ·Tαk+y = TαTα · · ·Tαk+y = y. (.)

From (.) and inductive assumption, we get

y ∈ F(Tα · · ·Tαk+ ) =
k+⋂
i=

F(Tαi ),

that is,

Tαi y = y, i = , . . . ,k + .

Substituting it into (.), we obtain TαTαi y = y, i = , . . . ,k + , that is, Tαy = y, y ∈ F(Tα ),
and hence

y ∈
k+⋂
i=

F(Tαi ). �

Lemma. (Ali et al. []) Let E be a real q-uniformly smooth Banach space with constant
dq, q > . Let f : E → E be a contraction mapping with constant α ∈ (, ). Let T : E → E be
a nonexpansive mapping such that F(T) �= ∅, and let A : E → E be an η-strongly accretive
mapping which is also k-Lipschitzian. Letμ ∈ (,min{, ( qη

dqkq )


q– }) and τ := μ(η– μq–dqkq

q ).
For each t ∈ (, ) and γ ∈ (, τ

α
), the path {xt} defined by

xt = tγ f (xt) + (I – tμA)Txt

http://www.fixedpointtheoryandapplications.com/content/2013/1/202


Auwalu et al. Fixed Point Theory and Applications 2013, 2013:202 Page 12 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/202

converges strongly as t →  to a fixed point x∗ of T , which solves the variational inequality

〈
(μA – γ f )x∗, jq

(
x∗ – z

)〉 ≤ , ∀z ∈ F(T).

Lemma . (Chang et al. []) Let E be a real Banach space with a uniformly Gâteaux
differentiable norm. Then the generalized duality mapping Jq : E → E∗ is single-valued
and uniformly continuous on each bounded subset of E from the norm topology of E to the
weak∗ topology of E∗.

Lemma . (Zhou et al. []) Let α be a real number, and let a sequence {an} ∈ l∞ sat-
isfy the condition μn(an) ≤ α for all Banach limit μ. If lim supn→∞(an+N – an) ≤ , then
lim supn→∞ an ≤ α.

Lemma . (Mitrinović []) Suppose that q > . Then, for any arbitrary positive real
numbers x, y, the following inequality holds:

xy≤ 
q
xq +

(
q – 
q

)
x

q
q– .

3 Synchronal algorithm
Theorem . Let E a real q-uniformly smooth Banach space, and let C be a nonempty
closed convex subset of E. Let Ti : C → C be ki-strict pseudocontractions for ki ∈ (, ) (i =
, , . . . ,N ) such that

⋂N
i= F(Ti) �= ∅. Let f be a contraction with coefficient β ∈ (, ), and

let {λi}Ni= be a sequence of positive numbers such that
∑N

i= λi = . Let G : C → C be an
η-strongly accretive and L-Lipschitzian operator with L > , η > . Assume that  < μ <
(qη/dqLq)/q–,  < γ < μ(η – dqμq–Lq/q)/β = τ /β . Let {αn} and {βn} be sequences in (, )
satisfying the following conditions:
(K) limn→∞ αn = ,

∑∞
n= αn = ∞;

(K)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| <∞;
(K)  < k ≤ βn < a < , where k =min{ki :  ≤ i≤ N};
(K) αn,βn ∈ [μ, ), where μ ∈ [max{,  – ( λq

dq )


q– }, ).
Let {xn} be a sequence defined by algorithm (.), then {xn} converges strongly to a common
fixed point of {Ti}Ni=, which solves the variational inequality (.).

Proof Let T :=
∑N

i= λiTi, then by Lemma . we conclude that T is a k-strict pseudocon-
traction and F(T) =

⋂N
i= F(Ti). We can rewrite algorithm (.) as follows:

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C chosen arbitrarily,

Tβn = βnI + ( – βn)T ,

xn+ = αnγ f (xn) + (I – αnμG)Tβnxn, n≥ .

Furthermore, by Lemma . we have that Tβn is a nonexpansive mapping and F(Tβn ) =
F(T). From condition (K) we may assume, without loss of generality, that αn ∈ (,
min{, 

τ
}). Let p ∈ ⋂N

i= F(Ti), then the sequence {xn} satisfies

‖xn – p‖ ≤ max

{
‖x – p‖, ‖γ f (p) –μGp‖

τ – γβ

}
, ∀n≥ .
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We prove this by mathematical induction as follows.
Obviously, it is true for n = . Assume that it is true for n = k for some k ∈ N.
From (.) and Lemma ., we have

‖xk+ – p‖ =
∥∥αkγ f (xk) + (I – αkμG)Tβk xk – p

∥∥
=

∥∥αk
[
γ f (xk) –μGp

]
+ (I – αkμG)Tβk xk – (I – αkμG)p

∥∥
≤ ( – αkτ )‖xk – p‖ + αk

∥∥γ
[
f (xk) – f (p)

]
+ γ f (p) –μGp

∥∥
≤ ( – αkτ )‖xk – p‖ + αkγβ‖xk – p‖ + αk

∥∥γ f (p) –μGp
∥∥

=
[
 – αk(τ – γβ)

]‖xk – p‖ + αk(τ – γβ)
‖γ f (p) –μGp‖

τ – γβ

≤ max

{
‖xk – p‖, ‖γ f (p) –μGp‖

τ – γβ

}
.

Hence the proof. Thus, the sequence {xn} is bounded and so are {Txn}, {GTβnxn} and
{f (xn)}.
Observe that

xn+ – xn+ =
[
αn+γ f (xn+) + (I – αn+μG)Tβn+xn+

]
–

[
αnγ f (xn) + (I – αnμG)Tβnxn

]
=

[
αn+γ f (xn+) – αn+γ f (xn)

]
+

[
αn+γ f (xn) – αnγ f (xn)

]
+

[
(I – αn+μG)Tβn+xn+ – (I – αn+μG)Tβnxn

]
+

[
αnμGTβnxn – αn+μGTβnxn

]
= αn+γ

[
f (xn+) – f (xn)

]
+

[
(I – αn+μG)Tβn+xn+

– (I – αn+μG)Tβnxn
]
+ (αn+ – αn)γ f (xn)

+ (αn – αn+)μGTβnxn,

so that

‖xn+ – xn+‖ ≤ αn+γβ‖xn+ – xn‖ + ( – αn+τ )
∥∥Tβn+xn+ – Tβnxn

∥∥
+ |αn+ – αn|

(
γ
∥∥f (xn)∥∥ +μ

∥∥GTβnxn
∥∥)

≤ αn+γβ‖xn+ – xn‖ + ( – αn+τ )
∥∥Tβn+xn+ – Tβnxn

∥∥
+ |αn+ – αn|M, (.)

whereM is an appropriate constant such thatM ≥ supn≥{γ ‖f (xn)‖ +μ‖GTβnxn‖}.
On the other hand, we note that

∥∥Tβn+xn+ – Tβnxn
∥∥ ≤ ∥∥Tβn+xn+ – Tβn+xn

∥∥ +
∥∥Tβn+xn – Tβnxn

∥∥
≤ ‖xn+ – xn‖ +

∥∥[
βn+xn + ( – βn+)Txn

]
–

[
βnxn + ( – βn)Txn

]∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/202
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= ‖xn – xn‖ +
∥∥βn+(xn – Txn) – βn(xn – Txn)

∥∥
≤ ‖xn+ – xn‖ + |βn+ – βn|M, (.)

whereM is an appropriate constant such thatM ≥ supn≥{‖xn – Txn‖}.
Now, substituting (.) into (.) yields

‖xn+ – xn+‖ ≤ αn+γβ‖xn+ – xn‖ + ( – αn+τ )‖xn+ – xn‖ + |αn+ – αn|M

+ |βn+ – βn|M

≤ [
 – αn+(τ – γβ)

]‖xn+ – xn‖ +
(|αn+ – αn| + |βn+ – βn|

)
M,

whereM is an appropriate constant such thatM ≥ max{M,M}.
By Lemma . and conditions (K), (K), we have

‖xn+ – xn‖ →  as n→ ∞. (.)

From (.) and condition (K), we have

∥∥xn+ – Tβnxn
∥∥ =

∥∥αnγ f (xn) + (I – αnμG)Tβnxn – Tβnxn
∥∥

≤ αn
∥∥γ f (xn) +μGTβnxn

∥∥ →  as n→ ∞. (.)

On the other hand,

∥∥xn+ – Tβnxn
∥∥ =

∥∥xn+ – [
βnxn + ( – βn)Txn

]∥∥
=

∥∥(xn+ – xn) + ( – βn)(xn – Txn)
∥∥

≥ ( – βn)‖xn – Txn‖ – ‖xn+ – xn‖,

which implies, by condition (K), that

‖xn – Txn‖ ≤ 
 – βn

(‖xn+ – xn‖ +
∥∥xn+ – Tβnxn

∥∥)

≤ 
 – a

(‖xn+ – xn‖ +
∥∥xn+ – Tβnxn

∥∥)
.

Hence, from (.) and (.), we have

‖xn – Txn‖ →  as n→ ∞. (.)

From the boundedness of {xn}, without loss of generality, we may assume that xn ⇀ p.
Hence, by Lemma . and (.), we obtain Tp = p. So, we have

ωω(xn)⊂ F(T). (.)

We now prove that lim supn→∞ 〈(γ f –μG)x∗, jq(xn+ – x∗)〉 ≤ , where x∗ is obtained in
Lemma .. Put an := 〈(γ f –μG)x∗, jq(xn – x∗)〉, n≥ .
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Define a map φ : E →R by

φ(x) = μn‖xn – x‖q, ∀x ∈ E.

Then φ is continuous, convex, and φ(x) → ∞ as ‖x‖ → ∞. Since E is reflexive, there exists
y∗ ∈ C such that φ(y∗) =minz∈C φ(z). Hence the set

K∗ :=
{
y∗ ∈ C : φ

(
y∗) =min

z∈C φ(z)
}

�= ∅.

Therefore, applying Lemma ., we have K∗ ∩ F(Tβn ) �= ∅. Without loss of generality, as-
sume x∗ = y∗ ∈ K∗ ∩F(Tβn ). Let t ∈ (, ). Then it follows that φ(x∗) ≤ φ(x∗+ t(γ f –μG)x∗),
and using Lemma ., we obtain that

∥∥xn – x∗ – t(γ f –μG)x∗∥∥q ≤ ∥∥xn – x∗∥∥q – qt
〈
(γ f –μG)x∗, jq

(
xn – x∗ – t(γ f –μG)x∗)〉.

This implies that

μn
〈
(γ f –μG)x∗, jq

(
xn – x∗ – t(γ f –μG)x∗)〉 ≤ .

By Lemma ., jq is norm-to-weak∗ uniformly continuous on a bounded subset of E, so
we obtain, as t → , that

〈
(γ f –μG)x∗, jq

(
xn – x∗)〉 – 〈

(γ f –μG)x∗, jq
(
xn – x∗ – t(γ f –μG)x∗)〉 → .

Hence, for all ε > , there exists δε >  such that ∀t ∈ (, δε) and for all n≥ ,

〈
(γ f –μG)x∗, jq

(
xn – x∗)〉 – 〈

(γ f –μG)x∗, jq
(
xn – x∗ – t(γ f –μG)x∗)〉 < ε.

Consequently,

μn
〈
(γ f –μG)x∗, jq

(
xn – x∗)〉 ≤ μn

〈
(γ f –μG)x∗, jq

(
xn – x∗ – t(γ f –μG)x∗)〉 + ε ≤ ε.

Since ε is arbitrary, we have

μn
〈
(γ f –μG)x∗, jq

(
xn – x∗)〉 ≤ .

Thus, μn(an) ≤  for any Banach limit μ.
Furthermore, by (.), ‖xn+ – xn‖ →  as n→ ∞. We therefore conclude that

lim sup
n→∞

(an+ – an) = lim sup
n→∞

(〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉 – 〈

(γ f –μG)x∗, jq
(
xn – x∗)〉)

= lim sup
n→∞

(〈
(γ f –μG)x∗, jq

(
xn+ – x∗) – jq

(
xn – x∗)〉) = .

Hence, by Lemma . we obtain lim supn→∞ an ≤ , that is,

lim sup
n→∞

〈
(γ f –μG)x∗, jq

(
xn – x∗)〉 ≤ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/202
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From (.), Lemmas ., . and ., we have

∥∥xn+ – x∗∥∥q =
〈
xn+ – x∗, jq

(
xn+ – x∗)〉

=
〈
αn

[
γ f (xn) –μGx∗] + (I – αnμG)

(
Tβnxn – x∗), jq(xn+ – x∗)〉

= αn
〈
γ f (xn) –μGx∗, jq

(
xn+ – x∗)〉

+
〈
(I – αnμG)

(
Tβnxn – x∗), jq(xn+ – x∗)〉

= αn
〈
γ f (xn) – γ f

(
x∗), jq(xn+ – x∗)〉

+ αn
〈
γ f

(
x∗) –μGx∗, jq

(
xn+ – x∗)〉

+
〈
(I – αnμG)

(
Tβnxn – x∗), jq(xn+ – x∗)〉

≤ αnγ
∥∥f (xn) – f

(
x∗)∥∥∥∥xn+ – x∗∥∥q– + αn

〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉

+
∥∥(I – αnμG)Tβnxn – (I – αnμG)x∗∥∥∥∥xn+ – x∗∥∥q–

≤ ( – αnτ )
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q– + αnγβ

∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q–

+ αn
〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉

=
[
 – αn(τ – γβ)

]∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q–

+ αn
〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉

≤ [
 – αn(τ – γβ)

][ 
q
∥∥xn – x∗∥∥q +

(
q – 
q

)∥∥xn+ – x∗∥∥q
]

+ αn
〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉.

This implies that

∥∥xn+ – x∗∥∥q ≤  – αn(τ – γβ)
 + αn(q – )(τ – γβ)

∥∥xn – x∗∥∥q

+
qαn

 + αn(q – )(τ – γβ)
〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉

≤ [
 – αn(τ – γβ)

]∥∥xn – x∗∥∥q

+
qαn

 + αn(q – )(τ – γβ)
〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉

≤ ( – γn)
∥∥xn – x∗∥∥q + δn,

where γn := αn(τ – γβ) and δn := qαn
+αn(q–)(τ–γβ) 〈(γ f – μG)x∗, jq(xn+ – x∗)〉. From (K),

limn→∞ γn = ,
∑∞

n= γn = ∞. δn
γn

= q
[+αn(q–)(τ–γβ)](τ–γβ) 〈(γ f – μG)x∗, jq(xn+ – x∗)〉. So,

lim supn→∞
δn
γn

≤ . Hence, by Lemma ., we have that xn → x∗ as n → ∞. This com-
pletes the proof. �

4 Cyclic algorithm
Theorem . Let E be a real q-uniformly smooth Banach space, and let C be a nonempty
closed convex subset of E. Let Ti : C → C be ki-strict pseudocontractions for ki ∈ (, )
(i = , , . . . ,N ) such that

⋂N
i= F(Ti) �= ∅, let f be a contraction with coefficient β ∈ (, ).

Let G : C → C be an η-strongly accretive and L-Lipschitzian operator with L > , η > .
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Assume that  < μ < (qη/dqLq)/q–,  < γ < μ(η – dqμq–Lq/q)/β = τ /β . Let {αn} and {βn}
be sequences in (, ) satisfying the following conditions:

(K′) limn→∞ αn = ,
∑∞

n= αn = ∞;
(K′)

∑∞
n= |αn+ – αn| < ∞ or limn→∞ αn

αn+N
= ;

(K′) β[n] ∈ [k, ), ∀n≥ , where k =min{ki :  ≤ i≤ N};
(K′) αn,βn ∈ [μ, ), where μ ∈ [max{,  – ( λq

dq )


q– }, ).
Let {xn} be a sequence defined by algorithm (.), then {xn} converges strongly to a common
fixed point of {Ti}Ni=, which solves the variational inequality (.).

Proof From condition (K′) we may assume, without loss of generality, that αn ∈ (,
min{, 

τ
}). Let p ∈ ⋂N

i= F(Ti), then the sequence {xn} satisfies

‖xn – p‖ ≤ max

{
‖x – p‖, ‖γ f (p) –μGp‖

τ – γβ

}
, ∀n≥ .

We prove this by mathematical induction as follows.
Obviously, it is true for n = . Assume it is true for n = k for some k ∈ N.
From (.) and Lemma ., we have

‖xk+ – p‖ =
∥∥αkγ f (xk) + (I – αkμG)A[k+]xk – p

∥∥
=

∥∥αk
[
γ f (xk) –μGp

]
+ (I – αkμG)A[k+]xk – (I – αkμG)p

∥∥
≤ ( – αkτ )‖xk – p‖ + αk

∥∥γ
[
f (xk) – f (p)

]
+ γ f (p) –μGp

∥∥
≤ ( – αkτ )‖xk – p‖ + αkγβ‖xk – p‖ + αk

∥∥γ f (p) –μGp
∥∥

=
[
 – αk(τ – γβ)

]‖xk – p‖ + αk(τ – γβ)
‖γ f (p) –μGp‖

τ – γβ

≤ max

{
‖xk – p‖, ‖γ f (p) –μGp‖

τ – γβ

}
.

Hence the proof. Thus, the sequence {xn} is bounded and so are {T[n]xn}, {GA[n]xn}, {f (xn)},
and {A[n]xn}.
From (.) and Lemma ., we have

‖xn+N+ – xn+‖ =
∥∥[

αn+Nγ f (xn+N ) + (I – αn+NμG)A[n+]xn+N
]

–
[
αnγ f (xn) – (I – αnμG)A[n+]xn

]∥∥
=

∥∥αn+Nγ f (xn+N ) – αn+Nγ f (xn) + αn+Nγ f (xn)

– αnγ f (xn) + (I – αn+NμG)A[n+]xn+N

– (I – αn+NμG)A[n+]xn + (I – αn+NμG)A[n+]xn

– (I – αnμG)A[n+]xn
∥∥

=
∥∥αn+Nγ

[
f (xn+N ) – f (xn)

]
+ (αn+N – αn)γ f (xn)

+ (I – αn+NμG)A[n+]xn+N – (I – αn+NμG)A[n+]xn

+ (αn – αn+N )μGA[n+]xn
∥∥
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≤ αn+Nγβ‖xn+N – xn‖ + |αn+N – αn|γ
∥∥f (xn)∥∥

+ ( – αn+Nτ )‖xn+N – xn‖ + |αn+N – αn|μ‖GA[n+]xn‖
≤ [ – αn+N (τ – γβ)‖xn+N – xn‖ + |αn+N – αn|M,

whereM is an appropriate constant such thatM ≥ supn≥{μ‖GA[n+]xn‖+γ ‖f (xn)‖}. By
conditions (K′), (K′) and Lemma ., we have

‖xn+N – xn‖ →  as n→ ∞. (.)

From (.) and condition (K′), we have

‖xn+ –A[n+]xn‖ =
∥∥αnγ f (xn) + (I – αnμG)A[n+]xn –A[n+]xn

∥∥
= αn

∥∥γ f (xn) –μGA[n+]xn
∥∥ →  as n→ ∞. (.)

Recursively,

‖xn+N –A[n+N]xn+N–‖ →  as n→ ∞,

‖xn+N– –A[n+N–]xn+N–‖ →  as n → ∞.

By condition (K′) and Lemma ., we know that A[n+N] is nonexpansive, so we get

‖A[n+N]xn+N– –A[n+N]A[n+N–]xn+N–‖ →  as n → ∞.

Proceeding accordingly, we have

‖A[n+N]A[n+N–]xn+N– –A[n+N]A[n+N–]A[n+N–]xn+N–‖ →  as n→ ∞,

...

‖A[n+N] · · ·A[n+]xn+ –A[n+N] · · ·A[n+]xn‖ →  as n→ ∞.

Note that

‖xn+N –A[n+N] · · ·A[n+]xn‖ ≤ ‖xn+N –A[n+N]xn+N–‖
+ ‖A[n+N]xn+N– –A[n+N]A[n+N–]xn+N–‖
+ · · ·
+ ‖A[n+N] · · ·A[n+]xn+ –A[n+N] · · ·A[n+]xn‖.

From the above inequality, we obtain

‖xn+N –A[n+N] · · ·A[n+]xn‖ →  as n→ ∞.

Since

‖xn–A[n+N] · · ·A[n+]xn‖ ≤ ‖xn–xn+N‖+‖xn+N –A[n+N] · · ·A[n+]xn‖ →  as n→ ∞,
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we conclude that

‖xn –A[n+N] · · ·A[n+]xn‖ →  as n→ ∞. (.)

Take a subsequence {xnj} ⊂ {xn}, by (.) we get

‖xnj –A[nj+N] · · ·A[nj+]xnj‖ →  as j → ∞.

Notice that for each nj, A[nj+N]A[nj+N–] · · ·A[nj+] is some permutation of the mappings
AA · · ·AN . Since A,A, . . . ,AN are finite, all the finite permutations are N !, there must
be some permutation appearing infinitely many times.Without loss of generality, suppose
this permutation is AA · · ·AN , we can take a subsequence {xnjk } ⊂ {xnj} such that xnjk ⇀

q (k → ∞) and

‖xnjk –AA · · ·ANxnjk ‖ →  as k → ∞.

By Lemma ., we conclude that A,A, . . . ,AN are all nonexpansive. It is clear that
A[nj+N]A[nj+N–] · · ·A[nj+] is nonexpansive, so is AA · · ·AN . By Lemma ., we have
AA · · ·ANq = q. From Lemmas . and ., we obtain

q ∈ F(AA · · ·AN ) =
N⋂
i=

F(Ai) =
N⋂
i=

F(Ti),

that is,

ωω(xn)⊂
N⋂
i=

F(Ti). (.)

We now prove that lim supn→∞ 〈(γ f –μG)x∗, jq(xn+ – x∗)〉 ≤ , where x∗ is obtained in
Lemma .. Put an := 〈(γ f –μG)x∗, jq(xn – x∗)〉, n≥ .
Define a map φ : E →R by

φ(x) = μn‖xn – x‖q, ∀x ∈ E.

Then φ is continuous, convex, and φ(x) → ∞ as ‖x‖ → ∞. Since E is reflexive, there exists
y∗ ∈ C such that φ(y*) =minz∈C φ(z). Hence the set

K∗ :=
{
y∗ ∈ C : φ

(
y∗) =min

z∈C φ(z)
}

�= ∅.

Therefore, applying Lemma ., we have K∗ ∩ F(Tβn ) �= ∅. Without loss of generality, as-
sume x∗ = y∗ ∈ K∗ ∩F(Tβn ). Let t ∈ (, ). Then it follows that φ(x∗) ≤ φ(x∗+ t(γ f –μG)x∗),
and using Lemma ., we obtain that

∥∥xn – x∗ – t(γ f –μG)x∗∥∥q ≤ ∥∥xn – x∗∥∥q – qt
〈
(γ f –μG)x∗, jq

(
xn – x∗ – t(γ f –μG)x∗)〉.

This implies that

μn
〈
(γ f –μG)x∗, jq

(
xn – x∗ – t(γ f –μG)x∗)〉 ≤ .
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By Lemma ., jq is norm-to-weak∗ uniformly continuous on a bounded subset of E, so
we obtain, as t → , that

〈
(γ f –μG)x∗, jq

(
xn – x∗)〉 – 〈

(γ f –μG)x∗, jq
(
xn – x∗ – t(γ f –μG)x∗)〉 → .

Hence, for all ε > , there exists δε >  such that ∀t ∈ (, δε), and for all n≥ ,

〈
(γ f –μG)x∗, jq

(
xn – x∗)〉 – 〈

(γ f –μG)x∗, jq
(
xn – x∗ – t(γ f –μG)x∗)〉 < ε.

Consequently,

μn
〈
(γ f –μG)x∗, jq

(
xn – x∗)〉 ≤ μn

〈
(γ f –μG)x∗, jq

(
xn – x∗ – t(γ f –μG)x∗)〉 + ε ≤ ε.

Since ε is arbitrary, we have

μn
〈
(γ f –μG)x∗, jq

(
xn – x∗)〉 ≤ .

Thus, μn(an) ≤  for any Banach limit μ.
Furthermore, by (.) ‖xn+N – xn‖ →  as n→ ∞, we therefore conclude that

lim sup
n→∞

(an+N – an) = lim sup
n→∞

(〈
(γ f –μG)x∗, jq

(
xn+N – x∗)〉 – 〈

(γ f –μG)x∗, jq
(
xn – x∗)〉)

= lim sup
n→∞

(〈
(γ f –μG)x∗, jq

(
xn+N – x∗) – jq

(
xn – x∗)〉) = .

Hence, by Lemma . we obtain lim supn→∞ an ≤ , that is,

lim sup
n→∞

〈
(γ f –μG)x∗, jq

(
xn – x∗)〉 ≤ . (.)

From (.), Lemmas ., . and ., we have

∥∥xn+ – x∗∥∥q =
〈
xn+ – x∗, jq

(
xn+ – x∗)〉

=
〈
αn

[
γ f (xn) –μGx∗] + (I – αnμG)

(
A[n+]xn – x∗), jq(xn+ – x∗)〉

= αn
〈
γ f (xn) –μGx∗, jq

(
xn+ – x∗)〉

+
〈
(I – αnμG)

(
A[n+]xn – x∗), jq(xn+ – x∗)〉

= αn
〈
γ f (xn) – γ f

(
x∗), jq(xn+ – x∗)〉 + αn

〈
γ f

(
x∗) –μGx∗, jq

(
xn+ – x∗)〉

+
〈
(I – αnμG)

(
A[n+]xn – x∗), jq(xn+ – x∗)〉

≤ αnγ
∥∥f (xn) – f

(
x∗)∥∥∥∥xn+ – x∗∥∥q– + αn

〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉

+
∥∥(I – αnμG)A[n+]xn – (I – αnμG)x∗∥∥∥∥xn+ – x∗∥∥q–

≤ ( – αnτ )
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q– + αnγβ

∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q–

+ αn
〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉

=
[
 – αn(τ – γβ)

]∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q–
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+ αn
〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉

≤ [
 – αn(τ – γβ)

][ 
q
∥∥xn – x∗∥∥q +

(
q – 
q

)∥∥xn+ – x∗∥∥q
]

+ αn
〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉.

This implies that

∥∥xn+ – x∗∥∥q ≤  – αn(τ – γβ)
 + αn(q – )(τ – γβ)

∥∥xn – x∗∥∥q

+
qαn

 + αn(q – )(τ – γβ)
〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉

≤ [
 – αn(τ – γβ)

]∥∥xn – x∗∥∥q

+
qαn

 + αn(q – )(τ – γβ)
〈
(γ f –μG)x∗, jq

(
xn+ – x∗)〉

≤ ( – γn)
∥∥xn – x∗∥∥q + δn,

where γn := αn(τ – γβ) and δn := qαn
+αn(q–)(τ–γβ) 〈(γ f – μG)x∗, jq(xn+ – x∗)〉. From (K′),

limn→∞ γn = ,
∑∞

n= γn = ∞. δn
γn

= q
[+αn(q–)(τ–γβ)](τ–γβ) 〈(γ f – μG)x∗, jq(xn+ – x∗)〉. So,

lim supn→∞
δn
γn

≤ . Hence, by Lemma . we have that xn → x∗ as n → ∞. This completes
the proof. �

5 Conclusion
Let E = H be a real Hilbert space, q = , dq =  in Theorems . and ., then we get the
following result.

Corollary . (Tian and Di []) Let {xn} be a sequence generated by

⎧⎨
⎩Tβn = βnI + ( – βn)

∑N
i= λiTi,

xn+ = αnγ f (xn) + (I – αnμG)Tβnxn, n≥ .

Assume that {αn} and {βn} are sequences in (, ) satisfying the conditions
(K) limn→∞ αn = ,

∑∞
n= αn = ∞,

(K)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| <∞,
(K)  <maxki ≤ βn < a < , ∀n≥ ,

then {xn} converges strongly to a common fixed point of {Ti}Ni=,which solves the variational
inequality

〈
(γ f –μG)x∗,x – x∗〉 ≤ , ∀x ∈

N⋂
i=

F(Ti).

Corollary . (Tian and Di []) Let {xn} be a sequence generated by

⎧⎨
⎩A[n] = β[n]I + ( – β[n])T[n],

xn+ = αnγ f (xn) + (I – αnμG)A[n+]xn, n≥ ,
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where T[n] = Ti, with i = n(modN),  ≤ i ≤ N . Assume that {αn} and {βn} are sequences in
(, ) satisfying the conditions:

(K′) limn→∞ αn = ,
∑∞

n= αn = ∞;
(K′)

∑∞
n= |αn+ – αn| < ∞ or limn→∞ αn

αn+N
= ;

(K′) β[n] ∈ [k, ), ∀n≥ , where k =max{ki :  ≤ i≤ N}.
Then {xn} converges strongly to a common fixed point of {Ti}Ni=,which solves the variational
inequality

〈
(γ f –μG)x∗,x – x∗〉 ≤ , ∀x ∈

N⋂
i=

F(Ti).

Let E = H be a real Hilbert space; q = , dq = , n = , βn = , G = A, μ =  and T is a
nonexpansive mapping in Theorems . and ., then we get the following.

Corollary . (Tian []) Let {xn} be a sequence generated by x ∈H ,

xn+ = αnγ f (xn) + (I –μαnF)Txn, n≥ .

Assume that {αn} is a sequence in (, ) satisfying the conditions:
(C) limn→∞ αn = ,
(C)

∑∞
n= αn = ∞,

(C) either
∑∞

n= |αn+ – αn| <∞ or limn→∞ αn+
αn

= ,
then {xn} converges strongly to a common fixed point x̃ of T , which solves the variational
inequality

〈
(γ f –μF)x̃,x – x̃

〉 ≤ , ∀x ∈ F(T).

Let E = H be a real Hilbert space; q = , dq = , n = , βn = , G = A, μ =  and T is a
nonexpansive mapping in Theorems . and ., then we get the following.

Corollary . (Marino and Xu []) Let {xn} be a sequence generated by x ∈H ,

xn+ = αnγ f (xn) + (I – αnA)Txn, n≥ .

Assume that {αn} is a sequence in (, ) satisfying (C)-(C), then {xn} converges strongly to
a common fixed point x̃ of T , which solves the variational inequality

〈
(γ f –A)x̃,x – x̃

〉 ≤ , ∀x ∈ F(T).

Let E =H be a real Hilbert space; q = , dq = , n = , βn = , G = F , αn = λn, γ =  and T
is a nonexpansive mapping in Theorems . and ., then we get the following.

Corollary . (Yamada []) Let {xn} be a sequence generated by x ∈ H ,

xn+ = Txn –μλnF(Txn), n≥ .

Assume that {λn} is a sequence in (, ) satisfying the conditions:
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(i) limn→∞ λn = ,
(ii)

∑∞
n= λn = ∞,

(iii) either
∑∞

n= |λn+ – λn| < ∞ or limn→∞ λn+
λn

= , then {xn} converges strongly to a
common fixed point of T , which solves the variational inequality

〈Fx̃,x – x̃〉 ≥ , ∀x ∈ F(T).

Corollary . (Yamada []) Let {xn} be a sequence generated by x ∈H ,

xn+ = Tλnxn = (I –μλnF)T[n]xn.

Assume that {λn} is a sequence in (, ) satisfying (i)-(iii), then {xn} converges strongly to a
common fixed point of T , which solves the variational inequality

〈Fx̃,x – x̃〉 ≥ , ∀x ∈ F(T).
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