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Abstract
In this paper we introduce the notion of probabilistic G-contraction and establish
some fixed point theorems in such settings. Our results generalize/extend some
recent results of Jachymski and Sehgal and Bharucha-Reid. Consequently, we obtain
fixed point results for (ε ,δ)-chainable PM-spaces and for cyclic operators.
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1 Introduction
In recent years the Banach contraction principle has been widely used to study the exis-
tence of solutions for the nonlinear Volterra integral equations, nonlinear integrodiffer-
ential equations in Banach spaces and to prove the convergence of algorithms in compu-
tational mathematics. It has been extended in many different directions for single- and
multi-valued mappings. Recently, Nieto and Rodríguez-López [], Ran and Reurings [],
Petruşl and Rus [] established some new results for contractions in partially orderedmet-
ric spaces. The following is the main result due to Nieto and Rodríguez-López [, ], Ran
and Reurings [].

Theorem . Let (S,d) be a complete metric space endowed with the partial order ‘�’.
Assume that the mapping f : S → S is nondecreasing (or nonincreasing) with respect to the
partial order ‘�’ on S and there exists a real number α,  < α < , such that

d(fx, fy) ≤ αd(x, y) for all x, y ∈ S,x� y. (.)

Also suppose that either
(i) f is continuous; or
(ii) for every nondecreasing sequence {xn} in S such that xn → x in S, we have xn � x for

all n≥ .
If there exists x ∈ S with x � fx (or x � fx), then f has a fixed point. Furthermore, if
(S,�) is such that every pair of elements of S has an upper or lower bound, then f is a Picard
operator (PO).

Many authors undertook further investigations in this direction to obtain some general-
izations and extensions of the abovemain result (see, e.g., [–]). In this context, Jachymski
[] established a generalized and novel version of Theorem . by utilizing graph theoretic
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approach. From then on, investigations have been carried out to obtain better and gener-
alized versions by weakening contraction condition and analyzing connectivity of a graph
(see [–]).
Motivated by the work of Jachymski, we can pose a very natural question: Is it possible

to establish a probabilistic version of the result of Jachymski [] (see Corollary .)? In
this paper, we give an affirmative answer to this question. Our results are substantial gen-
eralizations and improvements of the corresponding results of Jachymski [] and Sehgal
[] and others (see, e.g., [, , ]). Subsequently, we apply our main results to the setting
of cyclical contractions and to that of (ε, δ)-contractions as well.

2 Preliminaries
In  Menger introduced the notion of probabilistic metric space (briefly, PM space),
and since then enormous developments in the theory of probabilistic metric space have
been made in many directions [–]. The fundamental idea of Menger was to replace
real numbers with distribution functions as values of a metric.
A mapping F : R → [, ] is called a distribution function if it is nondecreasing, left

continuous and inft∈R F(t) = , supt∈R F(t) = . In addition, if F() = , then F is called
a distance distribution function. Let D+ denote the set of all distance distribution func-
tions satisfying limt→∞ F(t) = . The spaceD+ is partially ordered with respect to the usual
pointwise ordering of functions, i.e., F ≤ G if and only if F(t)≤ G(t) for all t ∈R. The ele-
ment ε ∈D+ acts as the maximal element in the space and is defined by

ε(t) =

⎧⎨
⎩ if t ≤ ,

 if t > .
(.)

Definition . A mapping � : [, ] × [, ] → [, ] is called a triangular norm (briefly
t-norm) if the following conditions hold:

(i) � is associative and commutative,
(ii) �(a, ) = a for all a ∈ [, ],
(iii) �(a,b)≤ �(c,d) for all a,b, c,d ∈ [, ] with a ≤ c and b≤ d.

Typical examples of t-norms are �M(a,b) =min{a,b} and �P(a,b) = ab.

Definition . (Hadzić [], Hadzić and Pap []) A t-norm � is said to be of H-type if
the family of functions {�n(t)}n∈N is equicontinuous at t = , where �n : [, ] → [, ] is
recursively defined by

�(t) = �(t, t), and �n(t) = �
(
�n–(t), t

)
; t ∈ [, ], n = , , . . . .

A trivial example of a t-norm ofH-type is �M :=min, but there exist t-norms ofH-type
with � 	= �M (see, e.g., []).

Definition . A probabilistic metric space (briefly, PM-space) is an ordered pair (S,F ),
where S is a nonempty set and F : S × S → D+ if the following conditions are satisfied
(F (p,q) = Fp,q, ∀(p,q) ∈ S × S):
(PM) Fx,y(t) = ε(t) ⇐⇒ x = y and x, y ∈ S;
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(PM) Fx,y(t) = Fy,x(t) for all x, y ∈ S and t ∈ R;
(PM) if Fx,y(t) =  and Fy,z(s) = , then Fx,z(t + s) =  for all x, y, z ∈ S and for every

t, s≥ .

Definition . AMenger probabilisticmetric space (briefly,Menger PM-space) is a triple
(S,F ,�), where (S,F ) is a PM-space, � is a t-norm and instead of (PM) in Definition .
it satisfies the following triangle inequality:

(PM)′ Fx,z(t + s)≥ �(Fx,y(t),Fy,z(s)) for all x, y, z ∈ S and t, s≥ .

Remark . (Sehgal []) Let (S,d) be a metric space. Define Fxy(t) = ε(t – d(x, y)) for all
x, y ∈ S and t > . Then the triple (S,F ,�M) is aMenger PM-space induced by themetric d.
Furthermore, (S,F ,�M) is complete iff d is complete.

Schweizer et al. [] introduced the concept of neighborhood in PM-spaces. For ε > 
and δ ∈ (, ], the (ε, δ)-neighborhood of x ∈ S is denoted byNx(ε, δ) and is defined by

Nx(ε, δ) =
{
y ∈ S : Fx,y(ε) >  – δ

}
.

Furthermore, if (S,F ,�) is a Menger PM-space with sup<a< �(a,a) = , then the family
of neighborhoods {Nx(ε, δ) : x ∈ S, ε > , δ ∈ (, ]} determines a Hausdorff topology for S.

Definition . Let (S,F ,�) be a Menger PM-space.
() A sequence {xn} in S converges to an element x in S (we write xn → x or

limn→∞ xn = x) if for every ε >  and δ >  there exists a natural number N(ε, δ) such
that Fxn ,x(ε) >  – δ, whenever n≥ N .

() A sequence {xn} in S is a Cauchy sequence if for every ε >  and δ >  there exists a
natural number N(ε, δ) such that Fxn ,xm (ε) >  – δ, whenever n,m ≥ N .

() A Menger PM-space is complete if and only if every Cauchy sequence in S
converges to a point in S.

Now we recall some basic notions from graph theory which we need subsequently. Let
(S,d) be a metric space, let � be the diagonal of the Cartesian product S× S, and let G be
a directed graph such that the set V (G) of its vertices coincides with S and the set E(G)
of its edges contains all loops, i.e., E(G) ⊇ �. Assume that G has no parallel edges. Let
G = (V (G),E(G)) be a directed graph. By letter G̃we denote the undirected graph obtained
from G by ignoring the direction of edges and by G– we denote the graph obtained by
reversing the direction of edges. Equivalently, the graph G̃ can be treated as a directed
graph having E(G̃) := E(G) ∪ E(G–). If x and y are vertices in a graph G, then a path in
G from x to y of length l is a sequence (xi)li= of l +  vertices such that x = x, xl = y and
(xi–,xi) ∈ E(G) for i = , . . . , l. A graph G is called connected if there is a path between
any two vertices. G is weakly connected if G̃ is connected. For a graph G such that E(G) is
symmetric and x is a vertex inG, the subgraphGx consisting of all edges and vertices which
are contained in some path beginning at x is called the component of G containing x. In
this case V (Gx) = [x]G, where [x]G is the equivalence class of a relation R defined on V (G)
by the rule: yRz if there is a path in G from y to z. Clearly, Gx is connected. A mapping
f : S → S is called a Banach G-contraction [] if ∀x, y ∈ S; (x, y) ∈ E(G) �⇒ (fx, fy) ∈ E(G),
i.e., f is edge-preserving and ∃α ∈ (, ) ∀x, y ∈ S ((x, y) ∈ E(G) �⇒ d(fx, fy) ≤ αd(x, y)).
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3 Main results
We start with the following definition.

Definition . A mapping f : S → S is said to be a probabilistic G-contraction if f pre-
serves edges and there exists α ∈ (, ) such that

∀x, y ∈ S, (x, y) ∈ E(G) �⇒ Ffx,fy(αt)≥ Fx,y(t). (.)

Example . Let (S,d) be a metric space endowed with a graph G, and let the mapping
f : S → S be a Banach G-contraction. Then the induced Menger PM space (S,F ,�M) is a
probabilistic G-contraction.
To see this, let (x, y) ∈ E(G), then (fx, fy) ∈ E(G) and there exists α ∈ (, ) such that

d(fx, fy) ≤ αd(x, y). Now, for t > , we have

Ffx,fy(αt) = ε
(
αt – d(fx, fy)

)
≥ ε

(
αt – αd(x, y)

)
= Fx,y(t).

Thus f satisfies (.).

From Example . it is inferred that every Banach G-contraction is a probabilistic
G-contraction with the same contraction constant.

Proposition . Let f : S → S be a probabilistic G-contraction with contraction constant
α ∈ (, ). Then

(i) f is both a probabilistic G̃-contraction and a probabilistic G–-contraction with the
same contraction constant α.

(ii) [x]G̃ is f -invariant and f |[x]G̃ is a probabilistic G̃x -contraction provided that
x ∈ S is such that fx ∈ [x]G̃.

Proof
(i) It follows from the symmetry of Fx,y.
(ii) Let x ∈ [x]G̃. Then there is a path x = z, z, . . . , zl = x between x and x. Since f is a

probabilistic G-contraction, (fzi–, fzi) ∈ E(G) ∀i = , , . . . , l. Thus fx ∈ [fx]G̃ = [x]G̃.
Suppose (x, y) ∈ E(G̃x ). Then (fx, fy) ∈ E(G) since f is a probabilistic G-contraction. But
[x]G̃ is f invariant, so we conclude that (fx, fy) ∈ E(G̃x ). Condition (.) is satisfied auto-
matically, since G̃x is a subgraph of G. �

Lemma . Let (S,F ,�) be a Menger PM-space under a t-norm � satisfying supa<
�(a,a) = . Assume that the mapping f : S → S is a probabilistic G-contraction. Let
y ∈ [x]G̃, then Ff nx,f ny(t) →  as n → ∞ (t > ). Moreover, for z ∈ S, f nx → z (n → ∞) if
and only if f ny → z (n→ ∞).

Proof Let x ∈ S and y ∈ [x]G̃, then there exists a path (xi), i = , , , . . . , l, in G̃ from x
to y with x = x, xl = y and (xi–,xi) ∈ E(G̃). From Proposition ., f is a probabilistic
G̃-contraction. By induction, for t > , we have (f nxi–, f nxi) ∈ E(G̃) and Ff nxi–,f nxi (αt) ≥

http://www.fixedpointtheoryandapplications.com/content/2013/1/223
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Ff n–xi–,f n–yi (t) for all n ∈N and i = , . . . , l. Thus we obtain

Ff nxi–,f nxi (t) ≥ Ff n–xi–,f n–xi

(
t
α

)

≥ Ff n–xi–,f n–xi

(
t
α

)
· · ·
≥ Fxi–,xi

(
t

αn

)
→  (as n→ ∞).

Let t >  and δ >  be given. Since supa< �(a,a) = , then there exists λ(δ) ∈ (, ) such
that �( – λ,  – λ) >  – δ. Choose a natural number n′ such that for all n ≥ n′ we have
Ff nx,f nx (

t
 ) >  – λ and Ff nx,f nx (

t
 ) >  – λ. We get, for all n≥ n′,

Ff nx,f nx (t) ≥ �

(
Ff nx,f nx

(
t


)
,Ff nx,f nx

(
t


))
≥ �( – λ,  – λ) >  – δ,

so that Ff nx,f nx (t)→  as n→ ∞ (t > ). Continuing recursively, one can easily show that

Ff nx,f nxl (t) →  as n→ ∞ (t > ).

Let f nx → z ∈ S. Let t >  and δ >  be given. Since supa< �(a,a) = , then there exists
λ(δ) ∈ (, ) such that �( – λ,  – λ) >  – δ. Choose a natural number n such that for all
n≥ n we have Ff nx,f ny( t ) >  – λ and Fz,f nx( t ) >  – λ. So that for all n≥ n, we have

Fz,f ny(t) ≥ �

(
Fz,f nx

(
t


)
,Ff nx,f ny

(
t


))
≥ �( – λ,  – λ) >  – δ.

Hence, f ny → z as n→ ∞. �

Every t-norm can be extended in a unique way to an n-ary as follows:�
i=xi = ,�n

i=xi =
�(�n–

i= xi,xn) for n = , , . . . . Let (xi)li= be a path between two vertices x and y in a graphG.
Let us denote with Lx,y(t) = �l

i=Fxi–,xi (t) for all t. Clearly the function Lx,y is monotone
nondecreasing.

Definition . Let (S,F ,�) be a PM-space and f : S → S. Suppose that there exists a
sequence {f nx} in S such that f nx −→ x∗ and (f nx, f n+x) ∈ E(G) for n ∈N. We say that:

(i) G is a (Cf )-graph in S if there exist a subsequence {f nk x} of {f nx} and a natural
number N such that (f nk x,x∗) ∈ E(G) for k ≥ N ;

(ii) G is an (Hf )-graph in S if f nx ∈ [x∗]G̃ for n≥  and the sequence of functions
{Lf nx,x∗ (t)} converges to ε(t) uniformly as n→ ∞ (t > ).

Example . Let (S,F ,�) be a Menger PM-space induced by the metric d(x, y) = |x – y|
on S = { 

n : n ∈N} ∪ {} ∪N, and let I be an identity map on S.

http://www.fixedpointtheoryandapplications.com/content/2013/1/223
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Consider the graph G consisting of V (G) = S and

E(G) =
{(


n
,


n + 

)
,
(


n + 

,n
)
, (n, ),

(

n

, 
)
;n ∈N

}
.

We note that xn = 
n →  as n→ ∞. Also, it is easy to see thatG is a (CI)-graph. But since

�(a,b) =min{a,b}, then

Lxn ,(t) = �

(
�

(
ε

(
t –

∣∣∣∣ n –


n + 

∣∣∣∣
)
, ε

(
t –

∣∣∣∣ 
n + 

– n
∣∣∣∣
))

, ε(t – n)
)

= ε(t – n)� ε(t) as n→ ∞.

Thus G is not an (HI)-graph.

Example . Let (S,F ,�) be a Menger PM space induced by the metric d(x, y) = |x – y|
on S = { 

n : n ∈ N} ∪ {
√


n+ : n ∈ N} ∪ {}, and let I be an identity map on S. Consider the
graph G consisting of V (G) = S and

E(G) =
{(


n
,


n + 

)
,
(

n
,

√


n + 

)
,
( √


n + 

, 
)
;n ∈N

}
.

Since xn = 
n →  as n → ∞. Clearly, G is not a (CI)-graph. But Lxn ,(t) = ε(t –

√


n+ ) →
ε(t) as n→ ∞ (t > ). Thus G is an (HI)-graph.

From the above examples, we note that the notions of (Cf )-graph and (Hf )-graph are
independent even if f is an identity map.
The following lemma is essential to prove our fixed point results.

Lemma . (Miheţ []) Let (S,F ,�) be aMenger PM-space under a t-norm� ofH-type.
Let {xn} be a sequence in S, and let there exist α ∈ (, ) such that

Fxn ,xn+ (αt)≥ Fxn–,xn (t) for all n ∈ N, t > .

Then {xn} is a Cauchy sequence.

Theorem . Let (S,F ,�) be a complete Menger PM-space under a t-norm � ofH-type.
Assume that the mapping f : S → S is a probabilistic G-contraction and there exists x ∈ S
such that (x, fx) ∈ E(G), then the following assertions hold.

(i) If G is a (Cf )-graph, then f has a unique fixed point 	 ∈ [x]G̃ and for any y ∈ [x]G̃,
f ny→ 	.Moreover, if G is weakly connected, then f is a Picard operator.

(ii) If G is a weakly connected (Hf )-graph, then f is a Picard operator.

Proof Since f is a probabilistic G-contraction and there exists x ∈ S such that (x, fx) ∈
E(G). By induction (f nx, f n+x) ∈ E(G) for all n≥  and

Ff nx,f n+x (αt)≥ Ff n–x,f nx (t) for all n≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/223
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(i) Since the t-norm � is ofH-type, then from Lemma . it can be inferred that {f nx}
is a Cauchy sequence in S. From completeness of the Menger PM-space S, there exists
	 ∈ S such that

lim
n→∞ f nx = 	. (.)

Now we prove that 	 is a fixed point of f . Let G be a (Cf )-graph. Then there exists a sub-
sequence {f nk x} of {f nx} and N ∈ N such that (f nk x,	) ∈ E(G) for all k ≥ N . Note that
(x, fx, f x, . . . , f nx, . . . , f nN x,	) is a path in G and so in G̃ from x to 	, thus 	 ∈ [x]G̃.
Since f is a probabilistic G-contraction and (f nk x,	) ∈ E(G) for all k ≥ N . For t >  and
k ≥ N , we get

Ff nk+x,f 	(t) ≥ Ff nk+x,f 	(αt)

≥ Ff nk x,	(t)→  as k → ∞.

We obtain

lim
k→∞

f nk+x = f 	. (.)

Hence, we conclude that f 	 = 	. Now, let y ∈ [x]G̃, then from Lemma . we get

lim
n→∞ f ny = 	. (.)

Next to prove the uniqueness of a fixed point, suppose 	∗ ∈ [x]G̃ = [	]G̃ such that f 	∗ = 	∗.
Then from Lemma ., for t > , we have

F	,	∗ (t) = Ff n	,f n	∗ (t)→ , n→ ∞. (.)

Hence, 	∗ = 	. Moreover, if G is weakly connected, then f is a Picard operator as [x]G̃ = S.
(ii) Let G be a weakly connected (Hf )-graph. By using the same arguments as in the first

part of the proof, we obtain limn→∞ f nx = 	. For each n ∈ N let (zni ); i = , . . . ,Mn be a
path in G̃ from f nx to 	 with zn = f nx, znM = 	 and (zni–, zni ) ∈ E(G̃).

F	,f 	(t) ≥ F	,f 	(αt)

≥ �

(
F	,f n+x

(
αt


)
,Ff n+x,f 	

(
αt


))

≥ �

(
F	,f n+x

(
αt


)
,�Mn

i= Ffzni–,fzni

(
αt
Mn

))

≥ �

(
F	,f n+x

(
αt


)
,�Mn

i= Fzni–,zni

(
t

Mn

))

≥ �

(
F	,f n+x

(
αt


)
,Lf nx,	

(
t

M

))
, (.)

whereM =max{Mn : n ∈N}.
Since G is an (Hf )-graph and (f nx, f n+x) ∈ E(G) for n ∈ N with limn→∞ f nx = 	 ∈ S,

then the sequence of functions {Lf nx,	(t)} converges to ε(t) (t > ) uniformly. Let t > 

http://www.fixedpointtheoryandapplications.com/content/2013/1/223
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and δ >  be given. Since the family {�p(t)}p ∈ N is equicontinuous at point t = , there
exists λ(δ) ∈ (, ) such that �p( – λ) >  – δ for every p ∈N. Choose n ∈N such that for
all n ≥ n we have F	,f n+x (

αt
 ) >  – λ and Lf nx,	(

t
M ) >  – λ. So that in view of (.), for

all n≥ n, we have

F	,f 	(t) ≥ �( – λ,  – λ)

= �( – λ) >  – δ. (.)

Hence, we deduce f 	 = 	. Finally, let y ∈ S = [x]G̃ be arbitrary, then from Lemma .,
limn→∞ f ny = 	. �

Corollary . Let (S,F ,�) be a completeMenger PM-space under a t-norm� ofH-type.
Assume that S is endowed with a graph G which is either (Cf )-graph or (Hf )-graph. Then
the following statements are equivalent:

(i) G is weakly connected.
(ii) For every probabilistic G-contraction f on S, if there exists x ∈ S such that

(x, fx) ∈ E(G), then f is a Picard operator.

Proof (i) ⇒ (ii): It is immediate from Theorem ..
(ii) ⇒ (i): Suppose that G is not weakly connected. Then G̃ is disconnected, i.e., there

exists x∗ ∈ S such that [x∗]G̃ 	= ∅ and S \ [x∗]G̃ 	= ∅. Let y∗ ∈ S \ [x∗]G̃, we construct a self-
mapping f by

fx =

⎧⎨
⎩x∗ if x ∈ [x∗]G̃,

y∗ if x ∈ S \ [x∗]G̃.

Let (x, y) ∈ E(G), then [x]G̃ := [y]G̃, which implies fx = fy. Hence (fx, fy) ∈ E(G), since G
contains all loops. Thus the mapping f preserves edges. Also, for t >  and α ∈ (, ), we
have Ffx,fy(αt) = ≥ Fx,y(t); thus (.) is trivially satisfied. But x∗ and y∗ are two fixed points
of f contradicting the fact that f is a Picard operator. �

Remark. TakingG = (S,S×S), Theorem. improves and extends the result of Sehgal
[, Theorem ] to all Menger PM-spaces with t-norms ofH-type. Theorem . general-
izes claim  of [, Theorem .], and thus we have the following consequence.

Corollary . (Jachymski [, Theorem .]) Let (S,d) be a complete metric space en-
dowed with the graph G. Assume that the mapping f : S → S is a Banach G-contraction
and the following property is satisfied:

(P) For any sequence {xn} in S, if xn → x in S and (xn,xn+) ∈ E(G) for all n ≥ , then there
exists a subsequence {xnk } with (xnk ,x) ∈ E(G) for all k ≥ .

If there exists x ∈ S with (x, fx) ∈ E(G), then f |[x]G̃ is a Picard operator. Furthermore, if
G is weakly connected, then f is a Picard operator.

Proof Let (S,F ,�M) be the Menger PM-space induced by the metric d. Since the map-
ping f is a BanachG-contraction, then it is a probabilisticG-contraction (see Example .)

http://www.fixedpointtheoryandapplications.com/content/2013/1/223
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and property (P) invokes that G is a (Cf )-graph. Hence the conclusion follows from The-
orem .(i). �

Example . Let (X,F ,�M) be aMenger PM-space whereX = [,∞) and Fx,y(t) = t
t+|x–y|

for t > . Then (X,F ,�M) is complete. Define a self-mapping f on X by

fx =

⎧⎨
⎩

x
p if x = 

n and p≥  is a fixed integer,

 otherwise.
(.)

Further assume that X is endowed with a graph G consisting of V (G) := X and E(G) :=
� ∪ {( n , 

m ) : n,m ∈ N and n|m} ∪ {(x, ) : x 	= 
n }. It can be seen that f is a probabilistic

G-contraction with α = 
p and satisfies all the conditions of Theorem .(i).

Note that for x =  and y = 
 and for each α ∈ (, ), we can easily set  < t < 

(–α) such
that

αt
αt + |  – | <

t
t + | – 

 | ,

or

Ff ,f  (αt) < F,  (t) for  < t <


( – α)
.

Hence, one cannot invoke [, Theorem ].

Definition . Let (S,F ,�) be aMenger PM-space under a t-norm� ofH-type. Amap-
ping f : S → S is said to be: (i) continuous at point x ∈ S whenever xn → x in S implies
fxn → fx as n → ∞; (ii) orbitally continuous if for all x, y ∈ S and any sequence {kn}n∈N of
positive integers, f knx → y implies f (f knx) → fy as n → ∞; (iii) orbitally G-continuous if
for all x, y ∈ S and any sequence {kn}n∈N of positive integers, f knx → y and (f knx, f kn+x) ∈
E(G) ∀n ∈ N imply f (f knx) → fy (see []).

Theorem . Let (S,F ,�) be a completeMenger PM-space under a t-norm� ofH-type.
Assume that the mapping f : S → S is a probabilistic G-contraction such that f is orbitally
G-continuous, and let there exist x ∈ S such that (x, fx) ∈ E(G). Then f has a unique
fixed point 	 ∈ S and for every y ∈ [x]G̃, f ny→ 	.Moreover, if G is weakly connected, then
f is a Picard operator.

Proof Let (x, fx) ∈ E(G), by induction (f nx, f n+x) ∈ E(G) for all n ∈N. By using Lemma
., it follows that f nx → 	 ∈ S. Since f is orbitallyG-continuous, then f (f nx) → f 	. This
gives 	 = f 	. From Lemma . for any y ∈ [x]G̃, f ny → 	. �

Remark . We note that in Theorem . the assumption that f is orbitally G-
continuous can be replaced by orbital continuity or continuity of f .

Remark . Theorem . generalizes and extends claims  and  [, Theorem .]
and claim  [, Theorem .].
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As a consequence of Theorems . and ., we obtain the following corollary, which
is actually a probabilistic version of Theorem . and thus generalizes and extends the re-
sults of Nieto and Rodríguez-López [, Theorems . and .], Petruşel and Rus [, The-
orem .] and Ran and Reurings [, Theorem .].

Corollary . Let (S,�) be a partially ordered set, and let (S,F ,�) be a completeMenger
PM-space under a t-norm � ofH-type. Assume that the mapping f : S → S is nondecreas-
ing (nonincreasing) with respect to the order ‘�’ on S and there exists α ∈ (, ) such that

Ffx,fy(αt)≥ Fx,y(t) for all x, y ∈ S,x� y (t > ). (.)

Also suppose that either
(i) f is continuous, or
(ii) for every nondecreasing sequence {xn} in S such that xn → x in S, we have xn � x for

all n≥ .
If there exists x ∈ S with x � fx, then f has a fixed point. Furthermore, if (S,�) is such
that every pair of elements of S has an upper or lower bound, then f is a Picard operator .

Proof Consider a graph G consisting of V (G) = S and E(G) = {(x, y) ∈ S × S : x � y}. If
f is nondecreasing, then it preserves edges w.r.t. graph G and condition (.) becomes
equivalent to (.). Thus f is a probabilistic G-contraction. In case f is nonincreasing,
consider G with E(G) = {(x, y) ∈ S × S : x � y or x � y} and a vertex set coincides with S.
Actually, G := G̃ and from Proposition . if f is a probabilistic G-contraction, then
it is a probabilistic G contraction. Now if f is continuous, then the conclusion follows
from Theorem .. On the other hand, if (ii) holds, then G and G are (Cf )-graphs and
conclusions follow from the first part of Theorem .. �

By relaxingH-type condition on a t-norm, our next result deals with a compactMenger
PM-space using the following class of graphs as the fixed point property is closely related
to the connectivity of a graph.

Definition . Let (S,F ) be a PM-space endowed with a graphG and f : S → S. Assume
the sequence {f nx} in S with (f nx, f n+x) ∈ E(G) for n ∈ N and Ff nx,f n+x(t) →  (t > ), we
say that the graphG is (Ef )-graph if for any subsequence f nk x→ z ∈ S, there exists a natural
number N such that (f nk x, z) ∈ E(G) for all k ≥ N .

Theorem . Let (S,F ,�) be a compact Menger PM-space under a t-norm � satisfying
supa< �(a,a) = . Assume that the mapping f : S → S is a probabilistic G-contraction, and
let there exist x ∈ S such that (x, fx) ∈ E(G). If G is an (Ef )-graph, then f has a unique
fixed point 	 ∈ [x]G̃.

Proof Since (x, fx) ∈ E(G), then (f nx, f n+x) ∈ E(G) for n ∈N and

Ff nx,f n+x (t) ≥ Ff n–x,f nx

(
t
α

)
· · ·
≥ Fx,fx

(
t

αn

)
→  as n → ∞ (t > ).
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From compactness, let {f nk x} be a subsequence such that f nk x → 	 ∈ S. Let t >  and δ >
 be given. Since supa< �(a,a) = , then there exists λ(δ) ∈ (, ) such that �( –λ,  –λ) >
 – δ choose n′ ∈N such that for all k ≥ n′ we have Ff nk x,	(

t
 ) >  – λ and Ff nk x,f nk+x (

t
 ) >

 – λ. Then we obtain

Ff nk+x,	(t) ≥ �

(
Ff nk+x,f nk x

(
t


)
,Ff nk x,	

(
t


))
≥ �( – λ,  – λ) >  – δ.

Thus, f nk+x → 	.
Choose n ∈N such that for all k ≥ n we have Ff nk+x,	(

t
 ) > –λ and Ff nk x,	(

t
α ) > –λ.

Since G is an (Ef )-graph, there exists n ∈ N such that (f nk x,	) ∈ E(G) for all k ≥ n. Let
n =max{n,n}, then for k ≥ n we get

Ff 	,	(t) ≥ �

(
Ff nk+x,f 	

(
t


)
,Ff nk+x,	

(
t


))

≥ �

(
Ff nk x,	

(
t
α

)
,Ff nk+x,	

(
t


))
≥ �( – λ,  – λ) >  – δ.

Hence, f 	 = 	. Note that {x, fx, . . . , f nx, . . . , f nN x,	} is a path in G̃, so that 	 ∈ [x]G̃.
�

So far it remains to investigate whether Theorem . can be extended to a complete
PM-space?

Definition . [] Let (S,F ) be a PM-space, and let ε >  and  < δ <  be fixed real
numbers. A mapping f : S → S is said to be (ε, δ)-contraction if there exists a constant
α ∈ (, ) such that for x ∈ S and y ∈Nx(ε, δ) we have

Ffx,fy(αt)≥ Fx,y(t) for all t > . (.)

The PM space (S,F ) is said to be (ε, δ)-chainable if for each x, y ∈ S there exists a finite
sequence (xn)Nn= of elements in S with x = x and xN = y such that xi+ ∈ Nxi (ε, δ) for i =
, , . . . ,N – .

It is important to note that every (ε, δ)-contraction mapping is continuous. Let xn → x
in S, then there exists a natural number N(ε, δ) such that xn ∈Nx(ε, δ) for all n≥ N . Thus,
for t >  and for all n≥ N , we obtain

Ffxn ,fx(t) ≥ Ffxn ,fx(αt)

≥ Fxn ,x(t)→  as n→ ∞.

Hence, fxn → fx.

Theorem . Let (S,F ,�) be a complete (ε, δ)-chainable Menger PM-space under a
t-norm � of H-type. Let the mapping f : S → S be an (ε, δ)-contraction. Then f is a Pi-
card operator.
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Kamran et al. Fixed Point Theory and Applications 2013, 2013:223 Page 12 of 14
http://www.fixedpointtheoryandapplications.com/content/2013/1/223

Proof Consider the graph G consisting of E(G) = {(x, y) ∈ S × S : Fx,y(ε) >  – δ} and V (G)
coinciding with S. Let x, y ∈ S. Since the PM-space (S,F ) is (ε, δ)-chainable, there ex-
ists a finite sequence (xi)Ni= in S with x = x and xN = y such that Fxi ,xi+ (ε) >  – δ for
i = , , . . .N – . Hence, (xi,xi+) ∈ E(G) for i = , , . . . ,N – , which yields that G is con-
nected. Let (x, y) ∈ E(G), then y ∈ Nx(ε, δ). Since the mapping f is an (ε, δ)-contraction,
thus (.) is satisfied. Finally we have

Ffx,fy(ε) ≥ Ffx,fy(αε)

≥ Fx,y(ε) >  – δ.

Thus, (fx, fy) ∈ E(G). Hence, f is a probabilistic G-contraction and the conclusion follows
from Theorem .. �

Remark . Theorem . has an advantage over Theorem  of Sehgal and Bharucha-
Reid [] which is only restricted to continuous t-norms satisfying �(t, t) ≥ t. Moreover,
the proof of our result is rather simple and easy, which invokes the novelty of Theo-
rem ..

Definition . (Edelstein [, ]) The metric space (S,d) is ε-chainbale for some ε > 
if for every x, y ∈ S, there exists a finite sequence (xi)Nn= of elements in S with x = x, xN = y
and d(xi,xi+) < ε for i = , , . . . ,N – .

Remark . [] If (S,d) is an ε-chainable metric space, then the induced Menger PM-
space (S,F ,�M) is an (ε, δ)-chainable space.

Corollary . (Edelstein [, ]) Let (S,d) be a complete ε-chainable metric space. Let
f : S → S and let there exist α ∈ (, ) such that

∀x,y∈S
{
d(x, y) < ε �⇒ d(fx, fy) ≤ αd(x, y)

}
. (.)

Then f is a Picard operator.

Proof Since the metric space (S,d) is ε-chainable, then the induced Menger PM-space
(S,F ,�) is (ε, δ)-chainable for each  < δ < . We only need to show that the self-mapping
f on S is an (ε, δ)-contraction. Let x, y ∈ S be such that y ∈ Nx(ε, δ), i.e., Fx,y(ε) >  – δ or
ε(ε – d(x, y)) >  – δ. The definition of ε implies d(x, y) < ε and thus d(fx, fy) ≤ αd(x, y).
Now, for t > , we get

Ffx,fy(αt) = ε
(
αt – d(fx, fy)

)
≥ ε

(
t – d(x, y)

)
= Fx,y(t).

Hence the conclusion follows from Theorem .. �

Kirk et al. [] introduced the idea of cyclic contractions and established fixed point
results for such mappings.

http://www.fixedpointtheoryandapplications.com/content/2013/1/223
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Let S be a nonempty set, letm be a positive integer, let {Ai}mi= be nonempty closed subsets
of S, and let f :

⋃m
i=Ai → ⋃m

i=Ai be an operator. Then S :=
⋃m

i=Ai is known as a cyclic
representation of S w.r.t. f if

f (A)⊂ A, . . . , f (Am–) ⊂ Am, f (Am)⊂ A (.)

and the operator f is known as a cyclic operator [].
In the following, we present the probabilistic version of the main result of [], as a last

consequence of Theorem ..

Theorem . Let (S,F ,�) be a complete Menger PM-space under a t-norm � of H-
type. Let m be a positive integer, let {Ai}mi= be nonempty closed subsets of S, Y :=

⋃m
i=Ai

and f : Y → Y . Assume that
(i)

⋃m
i=Ai is a cyclic representation of Y w.r.t. f ;

(ii) ∃α ∈ (, ) such that d(fx, fy) ≤ αd(x, y) whenever x ∈ Ai, y ∈ Ai+, where Am+ = A.
Then f has a unique fixed point 	 ∈ ⋂m

i=Ai and f ny→ 	 for any y ∈ ⋃m
i=Ai.

Proof Since
⋃m

i=Ai is closed, then (Y ,F ,�) is complete. Let us consider a graph G con-
sisting of V (G) := Y and E(G) := � ∪ {(x, y) ∈ Y × Y : x ∈ Ai, y ∈ Ai+; i = , . . . ,m}. By (i) it
follows that f preserves edges. Now, let f nx → x∗ in Y such that (f nx, f n+x) ∈ E(G) for all
n ∈ N. Then by (.) it is inferred that the sequence {f nx} has infinitely many terms in
each Ai; i ∈ {, , . . . ,m}. So that one can easily identify a subsequence of {f nx} converging
to x∗ in each Ai; and since Ai’s are closed, then x∗ ∈ ⋂m

i=Ai. Thus, we can easily form a
subsequence {f nk x} in some Aj, j ∈ {, . . . ,m} such that (f nk x,x∗) ∈ E(G) for k ≥ . It elicits
that G is a weakly connected (Cf )-graph. Hence, by Theorem . conclusion follows. �
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