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Abstract
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1 Introduction
The theory of variational inequalities represents, in fact, a very natural generalization of
the theory of boundary value problems and allows us to consider new problems arising
from many fields of applied mathematics, such as mechanics, physics, engineering, the
theory of convex programming, and the theory of control. While the variational theory of
boundary value problems has its starting point in the method of orthogonal projection,
the theory of variational inequalities has its starting point in the projection on a convex
set.
Let C be a nonempty closed and convex subset of a real Hilbert space H . The classical

variational inequality problem is to find u ∈ C such that 〈v–u,Au〉 ≥  for all v ∈ C, where
A is a nonlinear mapping. The set of solutions of the variational inequality is denoted by
VI(C,A). The variational inequality problem has been extensively studied in the literature;
see [–] and the references therein. In the context of the variational inequality problem,
this implies that u ∈ VI(C,A) ⇔ u = PC(u – λAu), ∀λ > , where PC is a metric projection
of H into C.
LetA be amapping fromC toH , thenA is calledmonotone if and only if for each x, y ∈ C,

〈x – y,Ax –Ax〉 ≥ . (.)

An operator A is said to be strongly positive onH if there exists a constant γ >  such that

〈Ax,x〉 ≥ γ ‖x‖, ∀x ∈ H .
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Amapping A of C into itself is called L-Lipschitz continuous if there exits a positive num-
ber L such that

‖Ax –Ay‖ ≤ L‖x – y‖, ∀x, y ∈ C.

A mapping A of C into H is called α-inverse-strongly monotone if there exists a positive
real number α such that

〈x – y,Ax –Ay〉 ≥ α‖Ax –Ay‖

for all x, y ∈ C; see [–]. If A is an α-inverse strongly monotone mapping of C into H ,
then it is obvious that A is 

α
-Lipschitz continuous, that is, ‖Ax – Ay‖ ≤ 

α
‖x – y‖ for all

x, y ∈ C. Clearly, the class of monotone mappings includes the class of α-inverse strongly
monotone mappings.
A mapping A of C into H is called γ̄ -strongly monotone if there exists a positive real

number γ̄ such that

〈x – y,Ax –Ay〉 ≥ γ̄ ‖x – y‖

for all x, y ∈ C; see []. Clearly, the class of γ̄ -strongly monotone mappings includes the
class of strongly positive mappings.
Recall that a mapping T of C into H is called pseudo-contractive if for each x, y ∈ C, we

have

〈Tx – Ty,x – y〉 ≤ ‖x – y‖. (.)

T is said to be a k-strict pseudo-contractive mapping if there exists a constant  ≤ k ≤ 
such that

〈x – y,Tx – Ty〉 ≤ ‖x – y‖ – k
∥∥(I – T)x – (I – T)y

∥∥ for all x, y ∈D(T).

A mapping T of C into itself is called nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.
We denote by F(T) the set of fixed points of T . Clearly, the class of pseudo-contractive
mappings includes the class of nonexpansive and strict pseudo-contractive mappings.
For a sequence {αn} of real numbers in (, ) and arbitrary u ∈ C, let the sequence {xn}

in C be iteratively defined by x ∈ C and

xn+ := αn+u + ( – αn+)Txn, n≥ , (.)

whereT is a nonexpansivemapping ofC into itself. Halpern [] was first to study the con-
vergence of algorithm (.) in the framework of Hilbert spaces. Lions [] and Wittmann
[] improved the result of Halpern by proving strong convergence of {xn} to a fixed point
of T if the real sequence {αn} satisfies certain conditions. Reich [], Shioji and Taka-
hashi [], and Zegeye and Shahzad [] extended the result of Wittmann [] to the case
of a Banach space.
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In , Moudafi [] introduced a viscosity approximation method and proved that if
H is a real Hilbert space, for given x ∈ C, the sequence {xn} generated by the algorithm

xn+ := αnf (xn) + ( – αn)Txn, n≥ , (.)

where f : C → C is a contraction mapping and {αn} ⊂ (, ) satisfies certain conditions,
converges strongly to the unique solution x∗ in C of the variational inequality

〈
(I – f )x∗,x – x∗〉 ≥ , x ∈ C. (.)

Moudafi [] generalized Halpern’s theorems in the direction of viscosity approxima-
tions. In [], Zegeye et al. extended Moudafi’s result to the case of Lipschitz pseudo-
contractive mappings in Banach spaces more general that Hilbert spaces.
In , Marino and Xu [] introduced the following general iterative method:

xn+ := αnγ f (xn) + ( – αnA)Txn, n≥ . (.)

They proved that if the sequence {αn} of parameters satisfies appropriate conditions,
then the sequence {xn} generated by (.) converges strongly to the unique solution of the
variational inequality

〈
(A – γ f )x∗,x – x∗〉 ≥ , x ∈ C, (.)

which is the optimality condition for the minimization problem

min
x∈C



〈Ax,x〉 – h(x),

where h is a potential function for γ f (i.e., h′(x) = γ f (x) for x ∈H).
Recently, Zegeye and Shahzad [] introduced an iterative method and proved that if C

is a nonempty subset of a realHilbert spaceH ,T : C → C is a pseudo-contractivemapping
and T : C → H is a continuous monotone mapping such that F := F(T) ∩ VI(C,T) �= ∅.
For {rn} ⊂ (,∞) defined Trn ,Frn : H → C by the following: for x ∈ H and {rn} ⊂ (,∞),
define

Trnx :=
{
z ∈ C : 〈y – z,Tz〉 – 

rn

〈
y – z, ( + rn)z – x

〉 ≤ , y ∈ C
}
, (.)

Frnx :=
{
z ∈ C : 〈y – z,Tz〉 + 

rn
〈y – z, z – x〉 ≥ , y ∈ C

}
. (.)

Then the sequence {xn} generated by x ∈ C and

xn+ := αnf (xn) + ( – αn)TrnFrnxn, n ≥ , (.)

where f : C → C is a contraction mapping and {αn} ⊂ [, ] and {rn} satisfy certain condi-
tions, converges strongly to z ∈ F , where z = PFf (z).
In this paper, motivated and inspired by themethod ofMarino andXu [] and the work

of Zegeye and Shahzad [], we introduce a viscosity approximation method for finding a
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common fixed point of a set of fixed points of continuous pseudo-contractive mappings
more general than nonexpansive mappings and a solution set of the variational inequality
problem for continuousmonotonemappingsmore general than α-inverse stronglymono-
tone mappings in a real Hilbert space. Our result extend and unify most of the results that
have been proved for important classes of nonlinear operators.
LetC be a nonempty closed and convex subset of a real Hilbert spaceH . LetT,T : C →

H be a continuous pseudo-contractive mapping and a continuous monotone mapping,
respectively. For x ∈H and {rn} ⊂ (,∞), let Trn ,Frn :H → C be defined by (.) and (.).
We consider the three iterative methods given as follows:

x ∈H ,

xn+ := αnγ f (xn) + (I – αnA)TrnFrnxn, n≥ , (.)

y ∈ H ,

yn+ := αnγ f (TrnFrnyn) + (I – αnA)TrnFrnyn, n≥ , (.)

z ∈H ,

zn+ := TrnFrn
(
αnγ f (zn) + (I – αnA)zn

)
, n≥ , (.)

whereA is a γ̄ -stronglymonotone and L-Lipschitzian continuous operator and f :H →H
is a contraction mapping. We prove in Section  that if {αn} and {rn} of parameters satisfy
appropriate conditions, then the sequences {xn}, {yn} and {zn} converge strongly to z =
PF(I –A + γ f )(z).

2 Preliminaries
Let C be a closed and convex subset of a real Hilbert spaceH . For every x ∈H , there exists
a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ = ‖x – y‖, ∀y ∈ C. (.)

PC is called themetric projection ofH ontoC.We know thatPC is a nonexpansivemapping
of H onto C. In connection with metric projection, we have the following lemma.

Lemma . Let H be a real Hilbert space. The following identity holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

Lemma . Let C be a nonempty closed convex subset of a Hilbert space H . Let x ∈H and
y ∈ C. Then y = PCx if and only if

〈x – y, y – z〉 ≥ , ∀z ∈ C. (.)

Lemma . [] Let {an} be a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + σn, ∀n≥ ,

where
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(i) {γn} ⊂ [, ],
∑∞

n= γn = ∞ and
(ii) lim supn→∞

σn
γn

≤  or
∑∞

n= |σn| < ∞.
Then an →  as n → ∞.

Lemma . [] Let C be a nonempty closed and convex subset of a real Hilbert space H .
Let A : C → H be a continuous monotone mapping. Then, for r >  and x ∈ H , there exists
z ∈ C such that

〈y – z,Az〉 + 
r
〈y – z, z – x〉 ≥ , ∀y ∈ C. (.)

Moreover, by a similar argument as in the proof of Lemmas . and . in [], Zegeye []
obtained the following lemmas.

Lemma . [] Let C be a nonempty closed and convex subset of a real Hilbert space H .
Let A : C →H be a continuous monotone mapping. For r >  and x ∈H , define a mapping
Fr :H → C as follows:

Frx :=
{
z ∈ C : 〈y – z,Az〉 + 

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Then the following hold:
() Fr is single-valued;
() Fr is a firmly nonexpansive type mapping, i.e., for all x, y ∈ H ,

‖Frx – Fry‖ ≤ 〈Frx – Fry,x – y〉;

() F(Fr) = VI(C,A);
() VI(C,A) is closed and convex.

In the sequel, we shall make use of the following lemmas.

Lemma . [] Let C be a nonempty closed and convex subset of a real Hilbert space H .
Let T : C → H be a continuous pseudo-contractive mapping. Then, for r >  and x ∈ H ,
there exists z ∈ C such that

〈y – z,Tz〉 – 
r
〈
y – z, ( + r)z – x

〉 ≤ , ∀y ∈ C. (.)

Lemma . [] Let C be a nonempty closed and convex subset of a real Hilbert space H .
Let T : C → C be a continuous pseudo-contractive mapping. For r >  and x ∈ H , define a
mapping Tr :H → C as follows:

Trx :=
{
z ∈ C : 〈y – z,Tz〉 + 

r
〈
y – z, ( + r)z – x

〉 ≤ ,∀y ∈ C
}

for all x ∈ H . Then the following hold:
() Tr is single-valued;
() Tr is a firmly nonexpansive type mapping, i.e., for all x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;
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() F(Tr) = F(T);
() F(T) is closed and convex.

Lemma . [] Let  < α <  and let f be an α-contraction of a real Hilbert space H into
itself, and let A be a γ̄ -strongly monotone and L-Lipschitzian continuous operator of H into
itself with γ̄ >  and L > . Take μ, γ to be real numbers as follows:

 < μ <
γ̄
L

,  < γ <
γ̄ – Lμ


α

.

If {αn} ⊆ (, ), limn→∞ αn =  and τ = γ̄ – Lμ
 , then

∥∥(I – αnA)x – (I – αnA)y
∥∥ ≤ ( – αnτ )‖x – y‖, ∀x, y ∈ H .

3 Main results
Now, we prove our main theorems.

Theorem. LetH be a realHilbert space,T : C → C be a continuous pseudo-contractive
mapping and T : C → H be a continuous monotone mapping such that F := F(T) ∩
VI(C,T) �= ∅. Let  < α <  and let f be an α-contraction of H into itself, and let A be a
γ̄ -strongly monotone and L-Lipschitzian continuous operator of C into H with γ̄ >  and
L > . Take μ, γ to be real numbers as follows:

 < μ <
γ̄
L

,  < γ <
γ̄ – Lμ


α

.

For x ∈H , let {xn} be a sequence generated by (.), where {αn} ⊂ [, ] and {rn} ⊂ (,∞)
are such that limn→∞ αn = ,

∑∞
n= αn = ∞,

∑∞
n= |αn+ – αn| < ∞, lim infn→∞ rn >  and∑∞

n= |rn+ – rn| < ∞. Then the sequence {xn} converges strongly to z ∈ F, where z = PF(I –
A + γ f )(z).

Proof Since αn →  as n→ ∞, we may assume, without loss of generality, αn <  for all n.
For Q = PF, it implies that Q(I –A + γ f ) is a contraction of H into itself. Since H is a real
Hilbert space, there exists a unique element z ∈H such that z = PF(I –A + γ f )(z).
Let v ∈ F, and let un := Trnwn, where wn := Frnxn. Then we have from Lemma (.) and

(.) that

‖un – v‖ = ‖Trnwn – Trnv‖ ≤ ‖wn – v‖ = ‖Frnxn – Frnv‖ ≤ ‖xn – v‖. (.)

Moreover, from (.) and (.), we get that

‖xn+ – v‖ =
∥∥αnγ f (xn) + (I – αnA)un – v

∥∥
=

∥∥αn
(
γ f (xn) –A(v)

)
+ (I – αnA)un – (I – αnA)v

∥∥
≤ ( – αnτ )‖xn – v‖ + αnγα‖xn – v‖ + αn

∥∥γ f (v) –A(v)
∥∥

≤ (
 – αn(τ – γα)

)‖xn – v‖ + αn
∥∥γ f (v) –A(v)

∥∥
=

(
 – αn(τ – γα)

)‖xn – v‖ + αn(τ – γα)
‖γ f (v) –A(v)‖

τ – γα
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/233
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It follows from induction that

‖xn – v‖ ≤ max

{
‖x – v‖, ‖γ f (v) –A(v)‖

τ – γα

}
, n≥ . (.)

Thus {xn} is bounded, and hence so are {un}, {wn} and {f (xn)}. Next, to show that ‖xn+ –
xn‖ → , we have

‖xn+ – xn‖ =
∥∥αnγ f (xn) + (I – αnA)un –

(
αn–γ f (xn–) + (I – αn–A)un–

)∥∥
=

∥∥αnγ f (xn) – αnγ f (xn–) + αnγ f (xn–) – αn–γ f (xn–)

+ (I – αnA)un – (I – αnA)un– + (I – αnA)un– – (I – αn–A)un–
∥∥

≤ αnγα‖xn – xn–‖ + |αn – αn–|γ
∥∥f (xn–)∥∥

+ ( – αnτ )‖un – un–‖ + |αn – αn–|‖Aun–‖
≤ αnγα‖xn – xn–‖ + ( + γ )|αn – αn–|K + ( – αnτ )‖un – un–‖
≤ αnγα‖xn – xn–‖ + ( + γ )|αn – αn–|K + ( – αnτ )‖wn –wn–‖, (.)

where K = sup{‖f (xn)‖ + ‖Aun‖ : n ∈N} < ∞.
Moreover, since wn = Frnxn, wn+ = Frn+xn+, we get that

〈y –wn,Twn〉 + 
rn

〈y –wn,wn – xn〉 ≥  for all y ∈ C, (.)

〈y –wn+,Twn+〉 + 
rn+

〈y –wn+,wn+ – xn+〉 ≥  for all y ∈ C. (.)

Putting y = wn+ in (.) and y = wn in (.), we get that

〈wn+ –wn,Twn〉 + 
rn

〈wn+ –wn,wn – xn〉 ≥ , (.)

〈wn –wn+,Twn+〉 + 
rn+

〈wn –wn+,wn+ – xn+〉 ≥ . (.)

Adding (.) and (.), we have

〈wn+ –wn,Twn – Twn+〉 +
〈
wn+ –wn,

wn – xn
rn

–
wn+ – xn+

rn+

〉
≥ , (.)

which implies that

–〈wn+ –wn,Twn+ – Twn〉 +
〈
wn+ –wn,

wn – xn
rn

–
wn+ – xn+

rn+

〉
≥ . (.)

Now, using the fact that T is monotone, we get that
〈
wn+ –wn,

wn – xn
rn

–
wn+ – xn+

rn+

〉
≥ , (.)

and hence
〈
wn+ –wn,wn –wn+ +wn+ – xn –

rn
rn+

(wn+ – xn+)
〉
≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/233
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Without loss of generality, let us assume that there exists a real number b such that
rn > b >  for all n ∈N. Then we have

‖wn+ –wn‖ ≤
〈
wn+ –wn,xn+ – xn +

(
 –

rn
rn+

)
(wn+ – xn+)

〉

≤ ‖wn+ –wn‖
{
‖xn+ – xn‖ +

∣∣∣∣
(
 –

rn
rn+

)∣∣∣∣‖wn+ – xn+‖
}
, (.)

and hence from (.) we obtain that

‖wn+ –wn‖ ≤ ‖xn+ – xn‖ + 
rn+

|rn+ – rn|‖wn+ – xn+‖

≤ ‖xn+ – xn‖ + 
b
|rn+ – rn|L, (.)

where L = sup{‖wn – xn‖ : n ∈ N} < ∞.
Furthermore, from (.) and (.) we have that

‖xn+ – xn‖ ≤ αnγα‖xn – xn–‖ + ( + γ )|αn – αn–|K

+ ( – αnτ )
(

‖xn – xn–‖ + 
b
|rn – rn–|L

)
. (.)

Hence by Lemma ., we have

‖xn+ – xn‖ →  as n→ ∞. (.)

Consequently, from (.) and (.), we have that

‖wn+ –wn‖ →  as n→ ∞. (.)

Moreover, since un = Trnwn, un+ = Trn+wn+, we get that

〈y – un,Tun〉 – 
rn

〈
y – un, ( + rn)un –wn

〉 ≤  for all y ∈ C. (.)

and

〈y – un+,Tun+〉 – 
rn+

〈
y – un+, ( + rn+)un+ –wn+

〉 ≤  for all y ∈ C. (.)

Putting y = un+ in (.) and y = un in (.), we get that

〈un+ – un,Tun〉 – 
rn

〈
un+ – un, ( + rn)un –wn

〉 ≤  (.)

and

〈un – un+,Tun+〉 – 
rn+

〈
un – un+, ( + rn+)un+ –wn+

〉 ≤ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/233
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Adding (.) and (.), we have

〈un+ – un,Tun – Tun+〉

–
〈
un+ – un,

( + rn)un –wn

rn
–
( + rn+)un+ –wn+

rn+

〉
≤ , (.)

which implies that

〈
un+ – un, (un+ – Tun+) – (un – Tun)

〉

–
〈
un+ – un,

un –wn

rn
–
un+ –wn+

rn+

〉
≤ . (.)

Now, using the fact that T is pseudo-contractive, we get that

〈
un+ – un,

un –wn

rn
–
un+ –wn+

rn+

〉
≥ , (.)

and hence
〈
un+ – un,un – un+ + un+ –wn –

rn
rn+

(un+ –wn+)
〉
≥ . (.)

Thus, using the method in (.) and (.), we have that

‖un+ – un‖ ≤ ‖xn+ – xn‖ + 
rn+

|rn+ – rn|‖un+ –wn+‖

≤ ‖xn+ – xn‖ + 
b
|rn+ – rn|L, (.)

where L = sup{‖un –wn‖ : n ∈N} <∞.
Therefore, from (.) and the property of {rn}, we have that

‖un+ – un‖ →  as n→ ∞. (.)

Furthermore, since xn = αn–γ f (xn–) + (I – αn–A)un–, we have that

‖xn – un‖ ≤ ‖xn – un–‖ + ‖un– – un‖
=

∥∥αn–γ f (xn–) + (I – αn–A)un– – un–
∥∥ + ‖un– – un‖

= αn–
∥∥γ f (xn–) –Aun–

∥∥ + ‖un– – un‖. (.)

From αn → , we have ‖xn – un‖ → .
Now, for v ∈ F, using Lemma ., we get that

‖wn – v‖ = ‖Frnxn – Frnv‖

≤ 〈Frnxn – Frnv,xn – v〉
= 〈wn – v,xn – v〉

=


(‖wn – v‖ + ‖xn – v‖ – ‖xn –wn‖

)
, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/233
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and hence

‖wn – v‖ ≤ ‖xn – v‖ – ‖xn –wn‖. (.)

Therefore, we have

‖xn+ – v‖ =
∥∥αnγ f (xn) + (I – αnA)un – v

∥∥

=
∥∥αn

(
γ f (xn) –Av

)
+ (I – αnA)(un – v)

∥∥

≤ ( – αnτ )‖un – v‖ + αn
〈
γ f (xn) –Av,xn+ – v

〉
≤ ( – αnτ )‖wn – v‖ + αn

〈
γ f (xn) – γ f (v) + γ f (v) –Av,xn+ – v

〉
≤ ( – αnτ )‖wn – v‖ + αnγ

〈
f (xn) – f (v),xn+ – v

〉
+ αn

〈
γ f (v) –Av,xn+ – v

〉
≤ ( – αnτ )‖wn – v‖ + αnγα‖xn – v‖‖xn+ – v‖

+ αn
∥∥γ f (v) –Av

∥∥‖xn+ – v‖
≤ ( – αnτ )

(‖xn – v‖ – ‖xn –wn‖
)
+ αnγα‖xn – v‖‖xn+ – v‖

+ αn
∥∥γ f (v) –Av

∥∥‖xn+ – v‖
=

(
 – αnτ + (αnτ )

)‖xn – v‖ – ( – αnτ )‖xn –wn‖

+αnγα‖xn – v‖‖xn+ – v‖ + αn
∥∥γ f (v) –Av

∥∥‖xn+ – v‖. (.)

Hence

( – αnτ )‖xn –wn‖

≤ ‖xn – v‖ – ‖xn+ – v‖ + αnγ̄
‖xn – v‖

+ αnγα‖xn – v‖‖xn+ – v‖ + αn
∥∥γ f (v) –Av

∥∥‖xn+ – v‖
≤ ‖xn – xn+‖

{‖xn – v‖ + ‖xn+ – v‖} + αnτ
‖xn – v‖

+ αnγα‖xn – v‖‖xn+ – v‖ + αn
∥∥γ f (v) –Av

∥∥‖xn+ – v‖. (.)

So, we have

‖xn –wn‖ →  as n→ ∞. (.)

Since ‖un –wn‖ ≤ ‖un – xn‖ + ‖xn –wn‖, it follows that

‖un –wn‖ →  as n→ ∞.

Next, we show that

lim sup
n→∞

〈
(A – γ f )z, z – xn

〉 ≤ ,

where z = PF(I –A + γ f )(z).
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To show this equality, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
(A – γ f )z, z – xni

〉
= lim sup

n→∞
〈
(A – γ f )z, z – xn

〉
.

Since {xni} is bounded, there exists a subsequence {xnij } of {xni} and w ∈ H such that
xnij ⇀ w. Without loss of generality, we may assume that xni ⇀ w. Since {xni} ⊂ H and
H is closed and convex, we get that w ∈ H . Moreover, since xn – wn →  as n → ∞, we
have that wni ⇀ w.
Now, we show that w ∈ F. Note that from the definition of wn, we have

〈y –wni ,Twni〉 +
〈
y –wni ,

wni – xni
rni

〉
≥  for all y ∈ C. (.)

Put zt = tv + ( – t)w for all t ∈ (, ] and v ∈ H . Consequently, we get that zt ∈ H . From
(.) it follows that

〈zt –wni ,Tzt〉 ≥ 〈zt –wni ,Tzt〉 – 〈zt –wni ,Twni〉 –
〈
zt –wni ,

wni – xni
rni

〉

= 〈zt –wni ,Tzt – Twni〉 –
〈
zt –wni ,

wni – xni
rni

〉
.

From the fact that wni – xni →  as n→ ∞, we obtain that wni–xni
rni

→  as n→ ∞.
Since T is monotone, we have that 〈zt –wni ,Tzt – Twni〉 ≥ . Thus, it follows that

 ≤ lim
i→∞〈zt –wni ,Tzt〉 = 〈zt –w,Tzt〉,

and hence

〈z –w,Tzt〉 ≥  for all z ∈ C. (.)

Letting t →  and using the fact that T is continuous, we obtain that

〈z –w,Tw〉 ≥  for all v ∈ C. (.)

This implies that w ∈ VI(C,T).
Furthermore, from the definition of uni we have that

〈y – uni ,Tuni〉 –

rni

〈
y – uni , (rni + )uni – xni

〉 ≤  for all y ∈ C. (.)

Put zt = tv + ( – t)w for all t ∈ (, ] and v ∈ H . Consequently, we get that zt ∈ H . From
(.) and pseudo-contractivity of T, it follows that

〈uni – zt ,Tzt〉 ≥ 〈uni – zt ,Tzt〉 + 〈zt – uni ,Tuni〉 –

rni

〈
zt – uni , (rni + )uni –wni

〉

= –〈zt – uni ,Tzt – Tuni〉 –

rni

〈zt – uni ,uni –wni〉 – 〈zt – uni ,uni〉
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≥ –‖zt – uni‖ –

rni

〈zt – uni ,uni –wni〉 – 〈zt – uni ,uni〉

= –〈zt – uni , zt〉 –
〈
zt – uni ,

uni –wni
rni

〉
. (.)

Then, since wn –xn →  as n→ ∞, we obtain that wni–xni
rni

→  as i→ ∞. Thus, as i → ∞,
it follows that

〈w – zt ,Tzt〉 ≥ 〈w – zt , zt〉, (.)

and hence

–〈v –w,Tzt〉 ≥ –〈v –w, zt〉 for all v ∈ C. (.)

Letting t →  and using the fact that T is continuous, we obtain that

–〈v –w,Tw〉 ≥ –〈v –w,w〉 for all v ∈ C. (.)

Now, let v = Tw. Then we obtain that w = Tw and hence w ∈ F(T).
Therefore, w ∈ F(T)∩VI(C,T) and since z = PF(I –A + γ f )(z), by Lemma ., implies

that

lim sup
n→∞

〈
(γ f –A)(z),xn – z

〉
= lim sup

i→∞

〈
(I –A + γ f )(z),xni – z

〉

=
〈
(γ f –A)(z),w – z

〉 ≤ . (.)

Now, we show that xn → z as n→ ∞. From xn+ – z = αn(γ f (xn)–Az) + (I –αnA)(un – z),
we have that

‖xn+ – z‖ =
∥∥αn

(
γ f (xn) –Az

)
+ (I – αnA)(un – z)

∥∥

≤ ( – αnτ )‖un – z‖ + αn
〈
γ f (xn) –Az,xn+ – z

〉
≤ ( – αnτ )‖xn – z‖

+ αn
〈
γ f (xn) – γ f (z) + γ f (z) –Az,xn+ – z

〉
≤ ( – αnτ )‖xn – z‖ + αnγ

〈
f (xn) – f (z),xn+ – z

〉
+ αn

〈
γ f (z) –Az,xn+ – z

〉
≤ ( – αnτ )‖xn – z‖ + αnγα‖xn – z‖‖xn+ – z‖

+ αn
〈
γ f (z) –Az,xn+ – z

〉
≤ ( – αnτ )‖xn – z‖ + αnγα

{‖xn – z‖ + ‖xn+ – z‖}
+ αn

〈
γ f (z) –Az,xn+ – z

〉
=

(
( – αnτ ) + αnγα

)‖xn – z‖ + αnγα‖xn+ – z‖

+ αn
〈
γ f (z) –Az,xn+ – z

〉
. (.)
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This implies that

‖xn+ – z‖ ≤  – αnτ + (αnτ ) + αnγα

 – αnγα
‖xn – z‖

+
αn

 – αnγα

〈
γ f (z) –Az,xn+ – z

〉

=
[
 –

(τ – γα)αn

 – αnγα

]
‖xn – z‖ + (αnτ )

 – αnγα
‖xn – z‖

+
αn

 – αnγα

〈
γ f (z) –Az,xn+ – z

〉

≤
[
 –

(τ – γα)αn

 – αnγα

]
‖xn – z‖

+
(τ – γα)αn

 – αnγα

{
(αnτ )M
(γ̄ – γα)

+


τ – γα

〈
γ f (z) –Az,xn+ – z

〉}

= ( – δn)‖xn – z‖ + δnβn, (.)

whereM = sup{‖xn – z‖ : n ∈N}, δn = (τ–γ α)αn
–αnγ α

and βn = (αnτ )M
(τ–γ α) +


τ–γ α

〈γ f (z) –Az,xn+ –
z〉. We put ξn = δnβn. It is easy to see that δn → ,

∑∞
n= δn = ∞ and lim supn→∞

ξn
δn

≤  by
(.). Hence, by Lemma ., the sequence {xn} converges strongly to z. This completes
the proof. �

Theorem . Let H be a real Hilbert space, T : C → H be a continuous pseudo-
contractive mapping and T : C → H be a continuous monotone mapping such that F :=
F(T)∩VI(C,T) �= ∅. Let  < α <  and let f be an α-contraction of H into itself, and let A
be a γ̄ -strongly monotone and L-Lipschitzian continuous operator of H into itself H with
γ̄ >  and L > . Take μ, γ to be real numbers as follows:

 < μ <
γ̄
L

,  < γ <
γ̄ – Lμ


α

.

For y ∈H , let {yn} be a sequence generated by (.), where {αn} ⊂ [, ] and {rn} ⊂ (,∞)
are such that limn→∞ αn = ,

∑∞
n= αn = ∞,

∑∞
n= |αn+ – αn| < ∞, lim infn→∞ rn >  and∑∞

n= |rn+ – rn| < ∞. The sequence {yn} converges strongly to z ∈ F, where z = PF(I – A +
γ f )(z).

Proof Let {xn} be the sequence given by x = y and

xn+ = αnγ f (xn) + (I – αnA)TrnFrnxn, ∀n≥ .

From Theorem ., xn → z. We claim that yn → z. Indeed, we estimate

‖xn+ – yn+‖ ≤ ∥∥αnγ f (xn) – αnγ f (TrnFrnyn)
∥∥

+
∥∥(I – αnA)TrnFrnxn – (I – αnA)TrnFrnyn

∥∥
≤ αnγα‖TrnFrnyn – xn‖ + ( – αnτ )‖xn – yn‖
≤ αnγα‖TrnFrnyn – TrnFrnz‖ + αnγα‖TrnFrnz – xn‖ + ( – αnτ )‖xn – yn‖
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≤ αnγα‖yn – z‖ + αnγα‖z – xn‖ + ( – αnτ )‖xn – yn‖
≤ αnγα‖yn – xn‖ + αnγα‖xn – z‖ + αnγα‖z – xn‖ + ( – αnτ )‖xn – yn‖
=

(
 – αn(τ – γα)

)‖xn – yn‖ + αn(τ – γα)
γα

τ – γα
‖xn – z‖. (.)

It follows from
∑∞

n= αn = ∞, limn→∞ ‖xn – z‖ =  and Lemma . that ‖xn – yn‖ → .
Consequently, yn → z as required. �

Theorem . Let H be a real Hilbert space, T : C → H be a continuous pseudo-
contractive mapping and T : C → H be a continuous monotone mapping such that F :=
F(T)∩VI(C,T) �= ∅. Let  < α <  and let f be an α-contraction of H into itself, and let A
be a γ̄ -strongly monotone and L-Lipschitzian continuous operator of H into itself H with
γ̄ >  and L > . Take μ, γ to be real numbers as follows:

 < μ <
γ̄
L

,  < γ <
γ̄ – Lμ


α

.

For z ∈H , let {zn} be a sequence generated by (.), where {αn} ⊂ [, ] and {rn} ⊂ (,∞)
are such that limn→∞ αn = ,

∑∞
n= αn = ∞,

∑∞
n= |αn+ – αn| < ∞, lim infn→∞ rn >  and∑∞

n= |rn+ – rn| < ∞. The sequence {zn} converges strongly to z ∈ F, where z = PF(I – A +
γ f )(z).

Proof Define the sequences {yn} and {βn} by

yn = αnγ f (zn) + (I – αnA)zn and βn = αn+, ∀n≥ .

Taking p ∈ F, we have

‖zn+ – p‖ = ‖TrnFrnyn – TrnFrnp‖ ≤ ‖yn – p‖
=

∥∥αnγ f (zn) + (I – αnA)zn – (I – αnA)p – αnA(p)
∥∥

≤ ( – αnτ )‖zn – p‖ + αn
∥∥γ f (zn) –A(p)

∥∥
= ( – αnτ )‖zn – p‖ + αnτ

‖γ f (zn) –A(p)‖
τ

. (.)

It follows from induction that

‖zn+ – p‖ ≤ max

{
‖z – p‖, ‖γ f (z) –A(p)‖

τ

}
, n≥ . (.)

Thus both {zn} and {yn} are bounded. We observe that

yn+ = αn+γ f (zn+) + (I – αn+A)zn+ = βnγ f (TrnFrnyn) + (I – βnA)TrnFrnyn.

Thus Theorem . implies that {yn} converges to some point z. In this case, we also have

‖zn – z‖ ≤ ‖zn – yn‖ + ‖yn – z‖ = αn
∥∥γ f (zn) –A(zn)

∥∥ + ‖yn – z‖ → .
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Hence the sequence {zn} converges to some point z. This completes the proof. �

Setting γ = , A ≡ I , where I is the identity mapping in Theorem ., we have the fol-
lowing result.

Corollary . Let H be a real Hilbert space, T : C → C be a continuous pseudo-
contractive mapping and T : C → H be a continuous monotone mapping such that F :=
F(T) ∩ VI(C,T) �= ∅. Let f be a contraction of H into itself and let {xn} be a sequence
generated by x ∈H and

xn+ = αnf (xn) + ( – αn)FrnTrnxn, (.)

where {αn} ⊂ [, ] and {rn} ⊂ (,∞) are such that limn→∞ αn = ,
∑∞

n= αn = ∞,∑∞
n= |αn+ – αn| < ∞, lim infn→∞ rn >  and

∑∞
n= |rn+ – rn| < ∞. The sequence {xn} con-

verges strongly to z ∈ F, where z = PFf (z).

In Theorem ., γ = , A≡ I , f := u ∈H is a constant mapping, then we get z = PF(u). In
fact, we have the following corollary.

Corollary . Let H be a real Hilbert space, T : C → C be a continuous pseudo-
contractive mapping and T : C → H be a continuous monotone mapping such that F :=
F(T)∩VI(C,T) �= ∅. Let {xn} be a sequence generated by x,u ∈H and

xn+ = αnu + ( – αn)FrnTrnxn, (.)

where {αn} ⊂ [, ] and {rn} ⊂ (,∞) are such that limn→∞ αn = ,
∑∞

n= αn = ∞,∑∞
n= |αn+ – αn| < ∞, lim infn→∞ rn >  and

∑∞
n= |rn+ – rn| < ∞. The sequence {xn} con-

verges strongly to z ∈ F, where z = PF(u).

In Theorem ., γ =  and A,T ≡ I , where I is the identity mapping, then we have the
following corollary.

Corollary . Let H be a real Hilbert space and T : C → H be a continuous monotone
mapping such that VI(C,T) �= ∅. Let f be a contraction of H into itself, and let {xn} be a
sequence generated by x ∈ H and

xn+ = αnf (xn) + ( – αn)Trnxn, (.)

where {αn} ⊂ [, ] and {rn} ⊂ (,∞) are such that limn→∞ αn = ,
∑∞

n= αn = ∞,∑∞
n= |αn+ – αn| < ∞, lim infn→∞ rn >  and

∑∞
n= |rn+ – rn| < ∞. The sequence {xn} con-

verges strongly to z ∈ F(T), where z = PF(T)(z).

Remark . Our results extend and unify most of the results that have been proved for
these important classes of nonlinear operators. In particular, Theorem . extends The-
orem . of Iiduka and Takahashi [] and Zegeye et al. [], Corollary . of Su et al.
[] in the sense that our convergence is for the more general class of continuous pseudo-
contractive and continuous monotone mappings. Corollary . also extends Theorem .
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of Iiduka and Takahashi [] in the sense that our convergence is for themore general class
of continuous pseudo-contractive and continuous monotone mappings.
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