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Abstract
In this paper, we introduce a multi-valued cyclic generalized contraction by
extending the Mizoguchi and Takahashi’s contraction for non-self mappings. We also
establish a best proximity point for such type contraction mappings in the context of
metric spaces. Later, we characterize this result to investigate the existence of best
proximity point theorems in uniformly convex Banach spaces. We state some
illustrative examples to support our main theorems. Our results extend, improve and
enrich some celebrated results in the literature, such as Nadler’s fixed point theorem,
Mizoguchi and Takahashi’s fixed point theorem.
MSC: 41A65; 46B20; 47H09; 47H10
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1 Introduction
It is evident that the fixed point theory is one of the fundamental tools in nonlinear
functional analysis. The celebrated Banach contraction mapping principle [] is the most
known and crucial result in fixed point theory. It says that each contraction in a complete
metric space has a unique fixed point. This theorem not only guarantees the existence and
uniqueness of the fixed point but also shows how to evaluate this point. By virtue of this
fact, the Banach contraction mapping principle has been generalized in many ways over
the years (see e.g., [–]).
Investigation of the existence and uniqueness of a fixed point of non-selfmappings is one

of the interesting subjects in fixed point theory. In fact, given nonempty closed subsets
A and B of a complete metric space (X,d), a contraction non-self-mapping T : A → B
does not necessarily yield a fixed point Tx = x. In this case, it is very natural to investigate
whether there is an element x such that d(x,Tx) is minimum. A notion of best proximity
point appears at this point. A point x is called best proximity point of T : A→ B if

d(x,Tx) = d(A,B) = inf
{
d(x, y) : x ∈ A and y ∈ B

}
,

where (X,d) is a metric space, and A, B are subsets of X. A best proximity point represents
an optimal approximate solution to the equation Tx = x whenever a non-self-mapping T
has no fixed point. It is clear that a fixed point coincides with a best proximity point if
d(A,B) = . Since a best proximity point reduces to a fixed point if the underlyingmapping
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is assumed to be self-mappings, the best proximity point theorems are natural generaliza-
tions of the Banach’s contraction principle.
In , Fan [] introduced the notion of a best proximity and established a classical best

approximation theorem.More precisely, if T : A→ B is a continuous mapping, then there
exists an element x ∈ A such that d(x,Tx) = d(Tx,A), whereA is a nonempty compact con-
vex subset of a Hausdorff locally convex topological vector space B. Subsequently, many
researchers have studied the best proximity point results in many ways (see in [–] and
the references therein).
In the same year, Nadler [] gave a useful lemma about Hausdorffmetric. In paper [],

the author also characterized the celebrated Banach fixed point theorem in the context of
multi-valued mappings.

Lemma . (Nadler []) If A,B ∈ CB(X) and a ∈ A, then for each ε > , there exists b ∈ B
such that d(a,b)≤H(A,B) + ε.

Theorem . (Nadler []) Let (X,d) be a complete metric space and T : X → CB(X). If
there exists r ∈ [, ) such that

H(Tx,Ty) ≤ rd(x, y), (.)

for all x, y ∈ X, then T has at least one fixed point, that is, there exists z ∈ X such that
z ∈ Tz.

The theory of multi-valued mappings has applications in many areas such as in opti-
mization problem, control theory, differential equations, economics and many branches
in analysis. Due to this fact, a number of authors have focused on the topic and have pub-
lished some interesting fixed point theorems in this frame (see [–] and references
therein). Following this trend, in , Mizoguchi and Takahashi [] proved a generaliza-
tion (Theorem . below) of Theorem .; see Theorem  in Alesina et al. []. Theorem 
is a partial answer of Problem  in Reich []. See also [–].

Theorem . (Mizoguchi and Takahashi []) Let (X,d) be a complete metric space and
T : X → CB(X). Assume that

H(Tx,Ty) ≤ α
(
d(x, y)

)
d(x, y), (.)

for all x, y ∈ X, where α : [,∞)→ [, ) isMT -function (orR-function), i.e.,

lim sup
x→t+

α(x) < 

for all t ∈ [,∞). Then T has at least one fixed point, that is, there exists z ∈ X such that
z ∈ Tz.

Remark . In original statement of Mizoguchi and Takahashi [], the domain α is
(,∞). However both are equivalent, because d(x, y) =  implies that H(Tx,Ty) = .
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Remark . We obtain that if α : [,∞) → [, ) is a nondecreasing function or a nonin-
creasing function, then α is a MT -function. Therefore, the class of MT -functions is a
rich class, and so this class has been investigated heavily by many authors.

In , Eldred et al. [] claimed that Theorem . is equivalent to Theorem . in the
following sense:
If amappingT : X → CB(X) satisfies (.), then there exists a nonempty complete subset

M of X satisfying the following:
(i) M is T-invariant, that is, Tx ⊆M for all x ∈M,
(ii) T satisfies (.) for all x, y ∈M.
Very recently, Suzuki [] gave an example which says that Mizoguchi-Takahashi’s fixed

point theorem for multi-valued mappings is a real generalization of Nadler’s result. In his
remarkable paper, Suzuki also gave a very simple proof ofMizoguchi-Takahashi’s theorem.
On the other hand, Kirk-Srinavasan-Veeramani [] introduced the concept of a cyclic

contraction.
Let A and B be two nonempty subsets of a metric space (X,d), and let T : A∪B→ A∪B

be a mapping. Then T is called a cyclic map if T(A) ⊆ B and T(B)⊆ A. In addition, if T is
a contraction, then T is called cyclic contraction.
The authors [] give a characterization of Banach contraction mapping principle in

complete metric spaces. After this initial paper, a number of papers has appeared on the
topic in literature (see, e.g., [–]).
In this paper, we introduce the notion of a generalized multi-valued cyclic contraction

pair, which is an extension of Mizoguchi-Takahashi’s contraction mappings for non-self
version and establish a best proximity point of such mappings in metric spaces via prop-
erty UC∗ due to Sintunavarat and Kumam []. Further, by applying the main results, we
investigate best proximity point theorems in a uniformly convex Banach space. We also
give some illustrative examples, which support our main results. Our results generalize,
improve and enrich some well-known results in literature.

2 Preliminaries
In this section, we recall some basic definitions and elementary results in literature.
Throughout this paper, we denote by N the set of all positive integers, by R the set of
all real numbers and by R+ the set of all nonnegative real numbers. We denote by CB(X)
the class of all nonempty closed bounded subsets of a metric space (X,d). The Hausdorff
metric induced by d on CB(X) is given by

H(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
,

for every A,B ∈ CB(X), where d(a,B) = inf{d(a,b) : b ∈ B} is the distance from a to B ⊆ X.

Remark . The following properties of the Hausdorff metric induced by d are well
known:

(i) H is a metric on CB(X).
(ii) If A,B ∈ CB(X) and q >  is given, then for every a ∈ A, there exists b ∈ B such that

d(a,b)≤ qH(A,B).
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Definition . Let A and B be nonempty subsets of a metric space (X,d) and let T : A →
B be a multi-valuedmapping. A point x ∈ A is said to be a best proximity point of a multi-
valued mapping T if it satisfies the condition that

d(x,Tx) = d(A,B).

Wenotice that a best proximity point reduces to a fixed point for amulti-valuedmapping
if the underlying mapping is a self-mapping.
A Banach space X is said to be
(i) strictly convex if the following implication holds for all x, y ∈ X :

‖x‖ = ‖y‖ =  and x 
= y �⇒
∥∥∥∥x + y



∥∥∥∥ < ;

(ii) uniformly convex if for each ε with  < ε ≤ , there exists δ >  such that the
following implication holds for all x, y ∈ X :

‖x‖ ≤ , ‖y‖ ≤  and ‖x – y‖ ≥ ε �⇒
∥∥∥∥x + y



∥∥∥∥ <  – δ.

It is easy to see that a uniformly convex Banach space X is strictly convex, but the con-
verse is not true.

Definition. [] LetA andB be nonempty subsets of ametric space (X,d). The ordered
pair (A,B) is said to satisfy the property UC if the following holds:
If {xn} and {zn} are sequences in A, and {yn} is a sequence in B such that d(xn, yn) →

d(A,B) and d(zn, yn) → d(A,B), then d(xn, zn) → .

Example . [] The following are examples of a pair of nonempty subsets (A,B) satis-
fying the property UC.

(i) Every pair of nonempty subsets A, B of a metric space (X,d) such that d(A,B) = .
(ii) Every pair of nonempty subsets A, B of a uniformly convex Banach space X such

that A is convex.
(iii) Every pair of nonempty subsets A, B of a strictly convex Banach space, where A is

convex and relatively compact and the closure of B is weakly compact.

Definition . [] Let A and B be nonempty subsets of a metric space (X,d). The or-
dered pair (A,B) satisfies the property UC∗ if (A,B) has property UC, and the following
condition holds:
If {xn} and {zn} are sequences in A, and {yn} is a sequence in B satisfying
(i) d(zn, yn) → d(A,B).
(ii) For every ε > , there exists N ∈ N such that

d(xm, yn) ≤ d(A,B) + ε

for all m > n≥N ,
then d(xn, zn)→ .
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Example . The following are examples of a pair of nonempty subsets (A,B) satisfying
the property UC∗.

(i) Every pair of nonempty subsets A, B of a metric space (X,d) such that d(A,B) = .
(ii) Every pair of nonempty closed subsets A, B of uniformly convex Banach space X

such that A is convex (see Lemma . in []).

3 Best proximity point for multi-valuedmapping theorems
In this section, we investigate the existence and convergence of best proximity points for
generalized multi-valued cyclic contraction pairs and obtain some new results on fixed
point theorems for such mappings. We begin by introducing the notion of multi-valued
cyclic contraction.

Definition . Let A and B be nonempty subsets of a metric space X,T : A → B and S :
B → A. The ordered pair (T ,S) is said to be a generalized multi-valued cyclic contraction
if there exists a function α : [d(A,B),∞)→ [, ) with

lim sup
x→t+

α(x) < 

for each t ∈ [d(A,B),∞) such that

H(Tx,Sy)≤ α
(
d(x, y)

)
d(x, y) +

(
 – α

(
d(x, y)

))
d(A,B) (.)

for all x ∈ A and y ∈ B.

Note that if (T ,S) is a generalized multi-valued cyclic contraction, then (S,T) is also a
generalized multi-valued cyclic contraction. Here, we state the main results of this paper
on the existence of best proximity points for a generalized multi-valued cyclic contraction
pair, which satisfies the property UC∗ in metric spaces.

Theorem . Let A and B be nonempty closed subsets of a complete metric space X such
that (A,B) and (B,A) satisfy the property UC∗. Let T : A → CB(B) and S : B → CB(A). If
(T ,S) is a generalized multi-valued cyclic contraction pair, then T has a best proximity
point in A, or S has a best proximity point in B.

Proof We consider two cases separately.
Case . Suppose that d(A,B) = . Define the function β : [d(A,B),∞)→ [, ) by

β(t) =
α(t) + 



for t ∈ [d(A,B),∞) = [,∞). Then we obtain that

lim sup
s→t+

β(s) < 

for all t ∈ [,∞).
Now, we will construct the sequence {xn} in X. Let x ∈ A be an arbitrary point. Since

Tx ∈ CB(B), we can choose x ∈ Tx. If x = x, we have x ∈ Tx, and then x is a best

http://www.fixedpointtheoryandapplications.com/content/2013/1/242
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proximity point of T . Also, it follows from (.) with x = x and y = x that Tx = Sx. This
implies that x ∈ Sx. Therefore, x is a best proximity point of S, and we finish the proof.
Otherwise, if x 
= x, by Lemma ., there exists x ∈ Sx such that

d(x,x) ≤ H(Tx,Sx) +
[
 – α(d(x,x))



]
d(x,x)

≤ α
(
d(x,x)

)
d(x,x) +

(
 – α

(
d(x,x)

))
d(A,B)

+
[
 – α(d(x,x))



]
d(x,x)

=
[
 + α(d(x,x))



]
d(x,x)

= β
(
d(x,x)

)
d(x,x).

If x = x, we have x ∈ Sx, and then x is a best proximity point of S. Also, it follows
from (.) with x = x and y = x that Tx = Sx. This implies that x ∈ Tx. Therefore, x is
a best proximity point of T , and we finish the proof. Otherwise, if x 
= x, by Lemma .,
there exists x ∈ Tx such that

d(x,x) ≤ H(Sx,Tx) +
[
 – α(d(x,x))



]
d(x,x)

= H(Tx,Sx) +
[
 – α(d(x,x))



]
d(x,x)

≤ α
(
d(x,x)

)
d(x,x) +

(
 – α

(
d(x,x)

))
d(A,B)

+
[
 – α(d(x,x))



]
d(x,x)

=
[
 + α(d(x,x))



]
d(x,x)

= β
(
d(x,x)

)
d(x,x)

= β
(
d(x,x)

)
d(x,x).

By repeating this process, we can find xn such that

d(xn+,xn+) ≤ β
(
d(xn,xn+)

)
d(xn,xn+) < d(xn,xn+)

for all n ∈N.
Thus, for fixed x ∈ A, we can define a sequence {xn} in X satisfying

xn ∈ Sxn– ⊆ A and xn– ∈ Txn– ⊆ B

such that

d(xn+,xn+) ≤ β
(
d(xn,xn+)

)
d(xn,xn+) < d(xn,xn+)

for n ∈ N. Therefore, {d(xn,xn+)} is a strictly decreasing sequence in R+. So {d(xn,xn+)}
converges to some nonnegative real number ρ . Since lim sups→ρ+ β(s) <  and β(ρ) < ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/242
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there exist r ∈ [, ) and η >  such that β(s) ≤ r for all s ∈ [ρ,ρ + η]. We can take ν ∈ N

such that

ρ ≤ d(xn,xn+) ≤ ρ + η

for all n ∈N with n≥ ν . Then since

d(xn+,xn+) ≤ β
(
d(xn,xn+)

)
d(xn,xn+) ≤ rd(xn,xn+)

for n ∈N with n≥ ν , we have

∞∑
n=

d(xn,xn+) ≤
ν∑

n=

d(xn,xn+) +
∞∑
n=ν

d(xn,xn+) <∞,

that is, {xn} is a Cauchy sequence. Since X is complete, {xn} converges to some point z ∈ X.
Clearly, the subsequences {xn} and {xn–} converge to the same point z. Since A and B
are closed, we derive that z ∈ A∩ B. We consider that

d(Tz, z) = lim
n→∞d(Tz,xn)

≤ lim
n→∞H(Tz,Sxn–)

≤ lim
n→∞β

(
d(z,xn–)

)
d(z,xn–)

≤ lim
n→∞d(z,xn–)

= 

= d(A,B).

Hence we get d(z,Tz) = d(A,B). Analogously, we also obtain d(z,Sz) = d(A,B).
Case . We will show that T or S have best proximity points in A and B, respectively,

under the assumption of d(A,B) > . Suppose, to the contrary, that for all a ∈ A, d(a,Ta) >
d(A,B) and for all b′ ∈ B, d(Sb′,b′) > d(A,B).
Next, we define a function β : [d(A,B),∞)→ [, ) by

β(t) =
α(t) + 



for all t ∈ [d(A,B),∞). So we derive lim supx→t+ β(x) <  and α(t) < β(t) for all t ∈
[d(A,B),∞).
For each a ∈ A and b ∈ Ta, we have

d(A,B) < d(a,Ta) ≤ d(a,b).

Therefore,

[
β
(
d(a,b)

)
– α

(
d(a,b)

)]
d(A,B) <

[
β
(
d(a,b)

)
– α

(
d(a,b)

)]
d(a,b),

http://www.fixedpointtheoryandapplications.com/content/2013/1/242
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and then we get

α
(
d(a,b)

)
d(a,b) +

(
 – α

(
d(a,b)

))
d(A,B)

< β
(
d(a,b)

)
d(a,b) +

(
 – β

(
d(a,b)

))
d(A,B). (.)

Since (T ,S) is a generalized multi-valued cyclic contraction pair, by (.), we conclude

H(Ta,Sb) ≤ α
(
d(a,b)

)
d(a,b) +

(
 – α

(
d(a,b)

))
d(A,B)

< β
(
d(a,b)

)
d(a,b) +

(
 – β

(
d(a,b)

))
d(A,B) (.)

for all a ∈ A and b ∈ Ta.
Similarly, we obtain that for each b′ ∈ B and a′ ∈ Sb′, we have

H
(
Ta′,Sb′) < β

(
d
(
a′,b′))d(

a′,b′) + (
 – β

(
d
(
a′,b′)))d(A,B). (.)

Next, we will construct the sequence {xn} in A∪B. Let x be an arbitrary point in A and
x ∈ Tx ⊆ B. From (.), there exists x ∈ Sx ⊆ A such that

d(x,x) < β
(
d(x,x)

)
d(x,x) +

(
 – β

(
d(x,x)

))
d(A,B). (.)

Since x ∈ B and x ∈ Sx, from (.), we can find x ∈ Tx such that

d(x,x) < β
(
d(x,x)

)
d(x,x) +

(
 – β

(
d(x,x)

))
d(A,B). (.)

Analogously, we can define the sequence {xn} in A∪ B such that

xn– ∈ Txn–, xn ∈ Sxn–

and

d(xn,xn+) < β
(
d(xn–,xn)

)
d(xn–,xn) +

(
 – β

(
d(xn–,xn)

))
d(A,B) (.)

for all n ∈N. Since β(d(xn–,xn)) <  and d(A,B) < d(xn–,xn) for all n ∈N, we get

d(xn,xn+) < β
(
d(xn–,xn)

)
d(xn–,xn) +

(
 – β

(
d(xn–,xn)

))
d(xn–,xn)

= d(xn–,xn) (.)

for all n ∈ N. Therefore, {d(xn–,xn)} is a strictly decreasing sequence in R+ and bounded
below. So the sequence {d(xn–,xn)} converges to some nonnegative real number d. Since
lim supx→d+ β(x) <  and β(d) < , there exist d ∈ [, ) and ε >  such that β(s) ≤ d for
all s ∈ [d,d + ε]. Now, we can take N ∈N such that

d ≤ d(xn–,xn)≤ d + ε

http://www.fixedpointtheoryandapplications.com/content/2013/1/242
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for all n ≥N. From (.), we have

d(xn,xn+) < dd(xn–,xn) + ( – d)d(A,B) (.)

for all n ≥N. By the same consideration, we obtain

d(A,B) < d(xn,xn+) < dn–N
 d(xN ,xN+) +

(
 – dn–N


)
d(A,B) (.)

for all n ≥N. Since d ∈ [, ), we get

lim
n→∞d(xn,xn+) = d(A,B). (.)

From (.), we conclude that

lim
n→∞d(xn,xn+) = d(A,B), (.)

and

lim
n→∞d(xn+,xn+) = d(A,B). (.)

Since {xn} and {xn+} are two sequences in A, and {xn+} is sequence in B with (A,B)
satisfies the property UC∗, we derive that

lim
n→∞d(xn,xn+) = . (.)

Since (B,A) satisfies the property UC∗, and by (.), we find that

lim
n→∞d(xn–,xn+) = . (.)

Next, we show that for each ε > , there exists N ∈ N such that for all m > n ≥ N , we
have

d(xm,xn+) ≤ d(A,B) + ε. (.)

Suppose, to the contrary, that there exists ε >  such that for each k ≥ , there is mk >
nk ≥ k such that

d(xmk ,xnk+) > d(A,B) + ε. (.)

Further, corresponding to nk , we can choosemk in such a way that it is the smallest integer
with mk > nk ≥ k satisfying (.). Then we have

d(xmk ,xnk+) > d(A,B) + ε (.)

and

d(x(mk–),xnk+) ≤ d(A,B) + ε. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/242
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From (.), (.) and the triangle inequality, we have

d(A,B) + ε < d(xmk ,xnk+)

≤ d(xmk ,x(mk–)) + d(x(mk–),xnk+)

≤ d(xmk ,x(mk–)) + d(A,B) + ε. (.)

Using the fact that limk→∞ d(xmk ,x(mk–)) = . Letting k → ∞ in (.), we have

lim
k→∞

d(xmk ,xnk+) = d(A,B) + ε. (.)

From (.), (.) and (T ,S) is a generalized multi-valued cyclic contraction pair, we get

d(xmk ,xnk+) ≤ d(xmk ,xmk+) + d(xmk+,xnk+) + d(xnk+,xnk+)

< d(xmk ,xmk+) + d(xmk+,xnk+) + d(xnk+,xnk+)

≤ d(xmk ,xmk+) + d(xnk+,xnk+) + α
(
d(xmk ,xnk+)

)
d(xmk ,xnk+)

+
(
 – α

(
d(xmk ,xnk+)

))
d(A,B)

< d(xmk ,xmk+) + d(xnk+,xnk+) + β
(
d(xmk ,xnk+)

)
d(xmk ,xnk+)

+
(
 – β

(
d(xmk ,xnk+)

))
d(A,B)

≤ d(xmk ,xmk+) + d(xnk+,xnk+) + dd(xmk ,xnk+)

+ ( – d)d(A,B). (.)

Letting k → ∞ in (.) and using (.), (.) and (.), we have

d(A,B) + ε ≤ d
(
d(A,B) + ε

)
+ ( – d)d(A,B) = d(A,B) + dε,

which is a contradiction. Therefore, (.) holds.
Since (.) and (.) hold, by using property UC∗ of (A,B), we have d(xn,xm) → .

Therefore, {xn} is a Cauchy sequence. By the completeness of X and since A is closed, we
get

lim
n→∞xn = p (.)

for some p ∈ A = A. But

d(A,B) ≤ d(p,xn–)

≤ d(p,xn) + d(xn,xn–)

for all n ∈N. From (.) and (.),

lim
n→∞d(p,xn–) = d(A,B). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/242
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Since

d(A,B) < d(xn,Tp)

≤ H(Sxn–,Tp)

= H(Tp,Sxn–)

≤ α
(
d(p,xn–)

)
d(p,xn–) +

(
 – d(p,xn–)

)
d(A,B)

≤ d(p,xn–) (.)

for all n ∈N. By (.) and (.), we get

d(p,Tp) = d(A,B). (.)

In a similar mode, we can conclude that the sequence {xn–} is a Cauchy sequence in B.
Since X is complete, and since B is closed, we have

lim
n→∞xn– = q (.)

for some q ∈ B = B. Since

d(A,B) ≤ d(xn,q)

≤ d(xn,xn–) + d(xn–,q)

for all n ∈N. It follows from (.) and (.) that

lim
n→∞d(xn,q) = d(A,B). (.)

Since

d(A,B) < d(Sq,xn+)

≤ H(Sq,Txn)

= H(Txn,Sq)

≤ α
(
d(xn,q)

)
d(xn,q) +

(
 – d(xn,q)

)
d(A,B)

≤ d(xn,q) (.)

for all n ∈N, then by (.) and (.), we have

d(q,Sq) = d(A,B). (.)

From (.) and (.), we have a contradiction. Therefore, T has a best proximity point
in A or S has a best proximity point in B. This completes the proof. �

Remark . If d(A,B) = , then Theorem . yields existence of a fixed point in A ∩ B
of two multi-valued non-self mappings S and T . Moreover, if A = B = X and T = S, then
Theorem . reduces to Mizoguchi-Takahashi’s fixed point theorem [].

http://www.fixedpointtheoryandapplications.com/content/2013/1/242
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Note that every pair of nonempty closed subsets A, B of a uniformly convex Banach
space such that A is convex satisfies the property UC∗. Therefore, we obtain the following
corollary.

Corollary . Let A and B be nonempty closed convex subsets of a uniformly convex Ba-
nach space X,T : A → CB(B) and S : B → CB(A). If (T ,S) is a generalized multi-valued
cyclic contraction pair, then T has a best proximity point in A or S has a best proximity
point in B.

Next, we give some illustrative examples of Corollary ..

Example . Consider the uniformly convex Banach space X = R with Euclidean norm.
Let A = [, ] and B = [–,–]. Then A and B are nonempty closed and convex subsets of
X and d(A,B) = . Since A and B are convex, we have (A,B) and (B,A) satisfy the property
UC∗.
Let T : A→ CB(B) and S : B → CB(A) be defined as

Tx =
[
–x – 


,–
]

for all x ∈ A and

Sy =
[
,
–y + 


]

for all y ∈ B.
Let α : [d(A,B),∞)→ [, ) be defined by α(t) = 

 for all t ∈ [d(A,B),∞) = [,∞). Next,
we show that (T ,S) is a generalized multi-valued cyclic contraction pair with α(t) = 

 for
all t ∈ [,∞).
For each x ∈ A and y ∈ B, we have

H(Tx,Sy) = H
([

–x – 


,–
]
,
[
,
–y + 


])

≤
∣∣∣∣
(
–x – 


)
–

(
–y + 


)∣∣∣∣
=

∣∣∣∣–x + y – 


∣∣∣∣
≤ 


|x – y| + 

=


d(x, y) +



d(A,B)

= α
(
d(x, y)

)
d(x, y) +

(
 – α

(
d(x, y)

))
d(A,B).

Therefore, all assumptions of Corollary . are satisfied, and then T has a best proximity
point in A, that is, a point x = . Moreover, S also has a best proximity point in B, that is,
a point y = –.

http://www.fixedpointtheoryandapplications.com/content/2013/1/242
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Example . Consider the uniformly convex Banach space X =R
 with Euclidean norm.

Let

A :=
{
(,x) : x≥ 

}
and

B =
{
(, y) : y≥ 

}
.

Then A and B are nonempty closed and convex subsets of X and d(A,B) = . Since A and
B are convex, we have (A,B) and (B,A) satisfy the property UC∗.
Let T : A→ CB(B) and S : B → CB(A) be defined as

T(,x) = {} ×
[
,

x


]

and

S(, y) = {} ×
[
,

y


]

for all x, y≥ .
Let α : [d(A,B),∞) → [, ) define by α(t) = 

 for all t ∈ [d(A,B),∞) = [,∞). Next,
we show that (T ,S) is a generalized multi-valued cyclic contraction pair with mapping
α(t) = 

 for all t ∈ [,∞).
For each (,x) ∈ A and (, y) ∈ B, we have

H
(
T(,x),S(, y)

)
= H

(
{} ×

[
,

x


]
, {} ×

[
,

y


])

=

√
 +

( |x – y|


)

≤ 

(√

 + |x – y|) + 

=


d
(
(,x), (, y)

)
+


d(A,B)

= α
(
d
(
(,x), (, y)

))
d
(
(,x), (, y)

)
+

(
 – α

(
d
(
(,x), (, y)

)))
d(A,B).

Therefore, all assumptions of Corollary . are satisfied, and then T has a best proximity
point in A that is a point (, ). Furthermore, S also has a best proximity point in B that is
a point (, ).

Open problems
• In Theorem ., can we replace the property UC∗ by a more general property?
• In Theorem ., can we drop the property UC∗?
• Can we extend the result in this paper to another spaces?

http://www.fixedpointtheoryandapplications.com/content/2013/1/242
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37. Petruşel, G: Cyclic representations and periodic points. Stud. Univ. Babeş–Bolyai, Math. 50, 107-112 (2005)
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