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Abstract
In the present paper, we prove a common coupled fixed point theorem in the setting
of a generalized metric space in the sense of Mustafa and Sims. Our results improve
and extend the corresponding results of Shatanawi. We also present an application to
integral equations.
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1 Introduction and preliminaries
The study of fixed points of mappings satisfying certain contractive conditions has been
in the center of rigorous research activity. For a survey of common fixed point theory in
metric and cone metric spaces, we refer the reader to [–]. In , Bhaskar and Lak-
shmikantham [] initiated the study of a coupled fixed point in ordered metric spaces
and applied their results to prove the existence and uniqueness of solutions for a periodic
boundary value problem. For more works in coupled and coincidence point theorems, we
refer the reader to [–].
Some authors generalized the concept of metric spaces in different ways. Mustafa and

Sims [] introduced the notion of G-metric space, in which the real number is assigned
to every triplet of an arbitrary set as a generalization of the notion of metric spaces. Based
on the notion of G-metric spaces, many authors (for example, [–]) obtained some
fixed point and common fixed point theorems for mappings satisfying various contractive
conditions. Fixed point problems have also been considered in partially ordered G-metric
spaces [–].
The purpose of this paper is to obtain some common coupled coincidence point theo-

rems in G-metric spaces satisfying some contractive conditions.
The following definitions and results will be needed in the sequel.

Definition . [] Let X be a nonempty set, and let G : X × X × X → R+ be a function
satisfying the following axioms:
(G) G(x, y, z) =  if x = y = z;
(G)  <G(x,x, y) for all x, y ∈ X with x �= y;
(G) G(x,x, y)≤G(x, y, z) for all x, y, z ∈ X with z �= y;
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(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables);
(G) G(x, y, z) ≤G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality),

then the function G is called a generalized metric, or more specifically, a G-metric on X,
and the pair (X,G) is called a G-metric space.

Definition . [] Let (X,G) be a G-metric space, and let {xn} be a sequence of points
in X, a point x in X is said to be the limit of the sequence {xn} if limm,n→∞ G(x,xn,xm) = ,
and one says that the sequence {xn} is G-convergent to x.

Thus, if xn → x in a G-metric space (X,G), then for any ε > , there exists N ∈ N such
that G(x,xn,xm) < ε for all n,m ≥N .

Proposition . [] Let (X,G) be a G-metric space, then the following are equivalent:
() {xn} is G-convergent to x.
() G(xn,xn,x)→  as n→ ∞.
() G(xn,x,x)→  as n→ ∞.
() G(xn,xm,x)→  as n,m → ∞.

Definition . [] Let (X,G) be a G-metric space. A sequence {xn} is called G-Cauchy
sequence if for each ε > , there exists a positive integer N ∈ N such that G(xn,xm,xl) < ε

for all n,m, l ≥N ; i.e., if G(xn,xm,xl) →  as n,m, l → ∞.

Definition . [] A G-metric space (X,G) is said to be G-complete if every G-Cauchy
sequence in (X,G) is G-convergent in X.

Proposition . [] Let (X,G) be a G-metric space, then the following are equivalent:
() The sequence {xn} is G-Cauchy.
() For every ε > , there exists k ∈N such that G(xn,xm,xm) < ε for all n,m ≥ k.

Proposition . [] Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly
continuous in all three of its variables.

Definition . [] Let (X,G) and (X′,G′) be G-metric space, and let f : (X,G) → (X ′,G′)
be a function. Then f is said to be G-continuous at a point a ∈ X if and only if for every
ε > , there is δ >  such that x, y ∈ X and G(a,x, y) < δ implies that G′(f (a), f (x), f (y)) < ε.
A function f is G-continuous at X if and only if it is G-continuous at all a ∈ X.

Proposition . [] Let (X,G) and (X′,G′) be G-metric spaces, then a function f : X → X ′

is G-continuous at a point x ∈ X if and only if it is G-sequentially continuous at x; that is,
whenever (xn) is G-convergent to x, (f (xn)) is G-convergent to f (x).

Proposition . [] Let (X,G) be a G-metric space. Then for any x, y, z, a in X, it follows
that

(i) if G(x, y, z) = , then x = y = z;
(ii) G(x, y, z) ≤G(x,x, y) +G(x,x, z);
(iii) G(x, y, y) ≤ G(y,x,x);
(iv) G(x, y, z) ≤G(x,a, z) +G(a, y, z);
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(v) G(x, y, z) ≤ 
 (G(x, y,a) +G(x,a, z) +G(a, y, z));

(vi) G(x, y, z) ≤G(x,a,a) +G(y,a,a) +G(z,a,a).

Definition . [] An element (x, y) ∈ X×X is called a coupled fixed point of amapping
F : X ×X → X if F(x, y) = x and F(y,x) = y.

Definition . [] An element (x, y) ∈ X × X is called a coupled coincidence point of
the mappings F : X ×X → X and g : X → X if F(x, y) = gx and F(y,x) = gy.

Definition . [] LetX be a nonempty set. Then we say that themappings F : X×X →
X and g : X → X are commutative if gF(x, y) = F(gx, gy).

2 Main results
We start our work by proving the following crucial lemma.

Lemma . Let (X,G) be a G-metric space. Let F,F,F : X × X → X and g : X → X be
four mappings such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ aG(gx, gu, gw) + aG(gy, gv, gz) + aG(gx, gu, gu)

+ aG(gy, gv, gv) + aG(gu, gw, gw) + aG(gv, gz, gz)

+ aG(gw, gx, gx) + aG(gz, gy, gy) (.)

for all x, y,u, v,w, z ∈ X,where ai ≥ , i = , , . . . ,  and a +a +a +a +a +a < . Suppose
that (x, y) is a common coupled coincidence point of the mappings pair (F, g), (F, g) and
(F, g). Then

F(x, y) = F(x, y) = F(x, y) = gx = gy = F(y,x) = F(y,x) = F(y,x).

Proof Since (x, y) is a common coupled coincidence point of the mappings pair (F, g),
(F, g) and (F, g), we have gx = F(x, y) = F(x, y) = F(x, y) and gy = F(y,x) = F(y,x) =
F(y,x). Assume that gx �= gy. Then by (.), we get

G(gx, gy, gy) = G
(
F(x, y),F(y,x),F(y,x)

)
≤ aG(gx, gy, gy) + aG(gy, gx, gx) + aG(gx, gy, gy) + aG(gy, gx, gx)

+ aG(gy, gy, gy) + aG(gx, gx, gx) + aG(gy, gx, gx) + aG(gx, gy, gy)

= (a + a + a)G(gx, gy, gy) + (a + a + a)G(gy, gx, gx).

Also by (.), we have

G(gy, gx, gx) = G
(
F(y,x),F(x, y),F(x, y)

)
≤ aG(gy, gx, gx) + aG(gx, gy, gy) + aG(gy, gx, gx) + aG(gx, gy, gy)

+ aG(gx, gx, gx) + aG(gy, gy, gy) + aG(gx, gy, gy) + aG(gy, gx, gx)

= (a + a + a)G(gy, gx, gx) + (a + a + a)G(gx, gy, gy).
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Therefore,

G(gx, gy, gy) +G(gy, gx, gx)

≤ (a + a + a + a + a + a)
[
G(gx, gy, gy) +G(gy, gx, gx)

]
.

Since  ≤ a + a + a + a + a + a < , we get

G(gx, gy, gy) +G(gy, gx, gx) <G(gx, gy, gy) +G(gy, gx, gx),

which is a contradiction. So, gx = gy, and hence,

F(x, y) = F(x, y) = F(x, y) = gx = gy = F(y,x) = F(y,x) = F(y,x). �

Theorem . Let (X,G) be a G-metric space. Let F,F,F : X ×X → X and g : X → X be
four mappings such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ aG(gx, gu, gw) + aG(gy, gv, gz) + aG(gx, gu, gu)

+ aG(gy, gv, gv) + aG(gu, gw, gw) + aG(gv, gz, gz)

+ aG(gw, gx, gx) + aG(gz, gy, gy) (.)

for all x, y,u, v,w, z ∈ X, where ai ≥ , i = , , . . . ,  and a + a + a + a + a + a + a +
a < . Suppose that F, F, F and g satisfy the following conditions:

(i) F(X ×X)⊆ gX , F(X ×X)⊆ gX , F(X ×X) ⊆ gX ;
(ii) gX is G-complete;
(iii) g is G-continuous and commutes with F, F, F.

Then there exist unique x ∈ X such that

gx = F(x,x) = F(x,x) = F(x,x) = x.

Proof Let x, y ∈ X. Since F(X × X) ⊆ gX, F(X × X) ⊆ gX, F(X × X) ⊆ gX, we can
choose x,x,x, y, y, y ∈ X such that gx = F(x, y), gy = F(y,x), gx = F(x, y),
gy = F(y,x), gx = F(x, y) and gy = F(y,x). Combining this process, we can con-
struct two sequences {xn} and {yn} in X such that

gxn = F(xn–, yn–), gyn = F(yn–,xn–), n = , , , . . . ,

gxn+ = F(xn, yn), gyn+ = F(yn,xn), n = , , , , . . . ,

gxn+ = F(xn+, yn+), gyn+ = F(yn+,xn+), n = , , , , . . . .

If gxn = gxn+, then gx = F(x, y), where x = xn, y = yn. If gxn+ = gxn+, then gx =
F(x, y), where x = xn+, y = yn+. If gxn+ = gxn+, then gx = F(x, y), where x = xn+,
y = yn+. On the other hand, if gyn = gyn+, then gy = F(y,x), where y = yn, x = xn. If
gyn+ = gyn+, then gy = F(y,x), where y = yn+, x = xn+. If gyn+ = gyn+, then gy =
F(y,x), where y = yn+, x = xn+. Without loss of generality, we can assume that gxn �=
gxn+ and gyn �= gyn+, for all n = , , , . . . .
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By (.) and (G), we have

G(gxn, gxn+, gxn+) = G
(
F(xn–, yn–),F(xn, yn),F(xn+, yn+)

)
= G

(
F(xn, yn),F(xn+, yn+),F(xn–, yn–)

)
≤ aG(gxn, gxn+, gxn–) + aG(gyn, gyn+, gyn–)

+ aG(gxn, gxn+, gxn+) + aG(gyn, gyn+, gyn+)

+ aG(gxn+, gxn–, gxn–) + aG(gyn+, gyn–, gyn–)

+ aG(gxn–, gxn, gxn) + aG(gyn–, gyn, gyn)

≤ (a + a + a + a)G(gxn–, gxn, gxn+)

+ (a + a + a + a)G(gyn–, gyn, gyn+). (.)

Similarly, we have

G(gyn, gyn+, gyn+) ≤ (a + a + a + a)G(gyn–, gyn, gyn+)

+ (a + a + a + a)G(gxn–, gxn, gxn+). (.)

By combining (.) and (.), we get

G(gxn, gxn+, gxn+) +G(gyn, gyn+, gyn+)

≤
( ∑

i=

ai

)[
G(gxn–, gxn, gxn+) +G(gyn–, gyn, gyn+)

]
. (.)

In the same way, we can show that

G(gxn–, gxn, gxn+) +G(gyn–, gyn, gyn+)

≤
( ∑

i=

ai

)[
G(gxn–, gxn–, gxn) +G(gyn–, gyn–, gyn)

]
(.)

and

G(gxn–, gxn–, gxn) +G(gyn–, gyn–, gyn)

≤
( ∑

i=

ai

)[
G(gxn–, gxn–, gxn–) +G(gyn–, gyn–, gyn–)

]
. (.)

It follows from (.), (.) and (.) that for all n ∈N, we have

G(gxn, gxn+, gxn+) +G(gyn, gyn+, gyn+)

≤
( ∑

i=

ai

)[
G(gxn–, gxn, gxn+) +G(gyn–, gyn, gyn+)

]

= k
[
G(gxn–, gxn, gxn+) +G(gyn–, gyn, gyn+)

]
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≤ k
[
G(gxn–, gxn–, gxn) +G(gyn–, gyn–, gyn)

]
...

≤ kn
[
G(gx, gx, gx) +G(gy, gy, gy)

]
. (.)

Where k =
∑

i= ai ∈ [, ). From (G), we have G(gxn, gxn+, gxn+) ≤ G(gxn, gxn+, gxn+)
and G(gyn, gyn+, gyn+) ≤G(gyn, gyn+, gyn+). Hence, by the (G) and (.), we get

G(gxn, gxn+, gxn+) +G(gyn, gyn+, gyn+)

≤G(gxn, gxn+, gxn+) +G(gyn, gyn+, gyn+)

≤ kn
[
G(gx, gx, gx) +G(gy, gy, gy)

]
. (.)

Therefore, for all n,m ∈N, n <m, by (G) and (.), we have

G(gxn, gxm, gxm) +G(gyn, gym, gym)

≤ [
G(gxn, gxn+, gxn+) +G(gyn, gyn+, gyn+)

]
+

[
G(gxn+, gxn+, gxn+) +G(gyn+, gyn+, gyn+)

]
+ · · · + [

G(gxm–, gxm, gxm) +G(gym–, gym, gym)
]

≤ (
kn + kn+ + · · · + km–)[G(gx, gx, gx) +G(gy, gy, gy)

]
≤ kn

 – k
[
G(gx, gx, gx) +G(gy, gy, gy)

] →  as n,m → ∞. (.)

Which implies that

G(gxn, gxm, gxm) →  and G(gyn, gym, gym) →  as n,m → ∞.

Thus, {gxn} and {gyn} are allG-Cauchy in gX. Since gX isG-complete, we get that {gxn} and
{gyn} are G-convergent to some x ∈ gX and y ∈ gX, respectively. Since g is G-continuous,
we have {ggxn} is G-convergent to gx and {ggyn} is G-convergent to gy. That is,

ggxn → gx and ggyn → gy as n→ ∞. (.)

Also, since g commutes with F, F and F, respectively, we have

ggxn = gF(xn–, yn–) = F(gxn–, gyn–),

ggyn = gF(yn–,xn–) = F(gyn–, gxn–),

ggxn+ = gF(xn, yn) = F(gxn, gyn),

ggyn+ = gF(yn,xn) = F(gyn, gxn),

ggxn+ = gF(xn+, yn+) = F(gxn+, gyn+),

ggyn+ = gF(yn+,xn+) = F(gyn+, gxn+).

http://www.fixedpointtheoryandapplications.com/content/2013/1/266
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Thus, from condition (.), we have

G
(
ggxn, ggxn+,F(x, y)

)
=G

(
F(gxn, gyn),F(x, y),F(gxn–, gyn–)

)
≤ aG(ggxn, gx, ggxn–) + aG(ggyn, gy, ggyn–) + aG(ggxn, gx, gx)

+ aG(ggyn, gy, gy) + aG(gx, ggxn–, ggxn–) + aG(gy, ggyn–, ggyn–)

+ aG(ggxn–, ggxn, ggxn) + aG(ggyn–, ggyn, ggyn).

Letting n → ∞, using (.) and the fact that G is continuous on its variables, we get that

G
(
gx, gx,F(x, y)

)
= .

Hence, gx = F(x, y). Similarly, wemay show that gy = F(y,x). Also for the same reason, we
may show that gx = F(x, y), gy = F(y,x), gx = F(x, y) and gy = F(y,x). Therefore, (x, y) is
a common coupled coincidence point of the pair (F, g), (F, g) and (F, g). By Lemma .,
we obtain

gx = F(x, y) = F(x, y) = F(x, y) = F(y,x) = F(y,x) = F(y,x) = gy. (.)

Since the sequences {gxn–}, {gxn} and {gxn+} are all a subsequence of {gxn}, then they
are all G-convergent to x. Similarly, we may show that {gyn–}, {gyn} and {gyn+} are all
G-convergent to y. From (.), we have

G(gxn, gx, gx) = G
(
F(x, y),F(x, y),F(xn–, yn–)

)
≤ aG(gx, gx, gxn–) + aG(gy, gy, gyn–) + aG(gx, gx, gx)

+ aG(gy, gy, gy) + aG(gx, gxn–, gxn–) + aG(gy, gyn–, gyn–)

+ aG(gxn–, gx, gx) + aG(gyn–, gy, gy).

Letting n → ∞, and using the fact that G is continuous on its variables, we get that

G(x, gx, gx)≤ (a + a)G(gx, gx,x) + (a + a)G(gy, gy, y) + aG(gx,x,x) + aG(gy, y, y).

Similarly, we may show that

G(y, gy, gy) ≤ (a + a)G(gy, gy, y) + (a + a)G(gx, gx,x) + aG(gy, y, y) + aG(gx,x,x).

Thus, using the Proposition .(iii), we have

G(x, gx, gx) +G(y, gy, gy) ≤ (a + a + a + a)
[
G(gx, gx,x) +G(gy, gy, y)

]
+ (a + a)

[
G(gx,x,x) +G(gy, y, y)

]
≤ (a + a + a + a + a + a)

[
G(gx, gx,x) +G(gy, gy, y)

]
.
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Since  ≤ a + a + a + a + a + a + a + a < , so the last inequality happens only if
G(x, gx, gx) =  and G(y, gy, gy) = . Hence, x = gx and y = gy. From (.), we have x = gx =
gy = y, thus, we get

gx = F(x,x) = F(x,x) = F(x,x) = x.

To prove the uniqueness, let z ∈ X with z �= x such that

z = gz = F(z, z) = F(z, z) = F(z, z).

Again using condition (.) and Proposition .(iii), we have

G(z, z,x) = G
(
F(z, z),F(z, z),F(x,x)

)
≤ aG(gz, gz, gx) + aG(gz, gz, gx) + aG(gz, gz, gz) + aG(gz, gz, gz)

+ aG(gz, gx, gx) + aG(gz, gx, gx) + aG(gx, gz, gz) + aG(gx, gz, gz)

≤ (a + a + a + a + a + a)G(z, z,x).

Since  ≤ a + a + a + a + a + a + a + a < , we get G(z, z,x) <G(z, z,x), which is a
contradiction. Thus, F, F, F and g have a unique common fixed point. �

Remark . Theorem . extends and improves Theorem . of Shatanawi [].

The following corollary can be obtained from Theorem . immediately.

Corollary . Let (X,G) be a G-metric space. Let F,F,F : X ×X → X and g : X → X be
mappings such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ aG(gx, gu, gw) + aG(gy, gv, gz) (.)

for all x, y,u, v,w, z ∈ X, where ai ≥ , i = ,  and a + a < . Suppose that F, F, F and g
satisfy the following conditions:
() F(X ×X)⊆ gX , F(X ×X)⊆ gX , F(X ×X)⊆ gX ;
() gX is G-complete;
() g is G-continuous and commutes with F, F, F.

Then there exist unique x ∈ X such that

gx = F(x,x) = F(x,x) = F(x,x) = x.

Remark . If F(x, y) = F(x, y) = F(x, y) and a = a = k, then Corollary . is reduced to
Theorem . of Shatanawi [].

Now, we give an example to support Corollary ..

Example . Let X = [, ]. Define G : X ×X ×X →R
+ by

G(x, y, z) = |x – y| + |y – z| + |z – x|

http://www.fixedpointtheoryandapplications.com/content/2013/1/266
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for all x, y, z ∈ X. Then (X,G) is a complete G-metric space. Define a map

F,F,F : X ×X → X

by

F(x, y) = F(x, y) = F(x, y) =
x + y


for all x, y ∈ X. Also, define g : X → X by gx = x
 for x ∈ X. Then F(X × X) ⊆ gX. Through

calculation, we have

G
(
F(x, y),F(u, v),F(w, z)

)
≤G

(
x + y


,
u + v


,
w + z


)

=


(|x – u + y – v| + |u –w + v – z| + |w – x + z – y|)

≤ 

(|x – u| + |y – v| + |u –w| + |v – z| + |w – x| + |z – y|)

=



(
G(gx, gu, gw) +G(gy, gv, gz)

)
.

Then the mappings F, F, F and g are satisfying condition (.) of Corollary . with
a = a = 

 . So that all the conditions of Corollary . are satisfied. By Corollary ., F,
F, F and g have a unique common fixed point. Moreover,  is the unique common fixed
point for all of the mappings F, F, F and g .

If a = a = , then Theorem . is reduced to the following.

Corollary . Let (X,G) be a G-metric space. Let F,F,F : X ×X → X and g : X → X be
four mappings such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ cG(gx, gu, gu) + cG(gy, gv, gv)

+ cG(gu, gw, gw) + cG(gv, gz, gz)

+ cG(gw, gx, gx) + cG(gz, gy, gy) (.)

for all x, y,u, v,w, z ∈ X, where ci ≥ , i = , , . . . ,  and c + c + c + c + c + c < .
Suppose that F, F, F and g satisfy the following conditions:

(i) F(X ×X)⊆ gX , F(X ×X)⊆ gX , F(X ×X) ⊆ gX ;
(ii) gX is G-complete;
(iii) g is G-continuous and commutes with F, F, F.

Then there exist unique x ∈ X such that

gx = F(x,x) = F(x,x) = F(x,x) = x.

If we take F(x, y) = F(x, y) = F(x, y) in Corollary ., then the following corollary is
obtained.
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Corollary . Let (X,G) be a G-metric space. Let F : X × X → X and g : X → X be four
mappings such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ cG(gx, gu, gu) + cG(gy, gv, gv)

+ cG(gu, gw, gw) + cG(gv, gz, gz)

+ cG(gw, gx, gx) + cG(gz, gy, gy) (.)

for all x, y,u, v,w, z ∈ X, where ci ≥ , i = , , . . . ,  and c + c + c + c + c + c < .
Suppose that F and g satisfy the following conditions:

(i) F(X ×X) ⊆ gX ;
(ii) gX is G-complete;
(iii) g is G-continuous and commutes with F .

Then there exist unique x ∈ X such that

gx = F(x,x) = x.

Now, we give an example to support Corollary ..

Example . Let X = [, ]. Define G : X ×X ×X →R
+ by

G(x, y, z) = |x – y| + |y – z| + |z – x|

for all x, y, z ∈ X. Then (X,G) is a complete G-metric space. Define a map F : X × X → X
by

F(x, y) =
xy


for all x, y ∈ X. Also, define g : X → X by gx = x for x ∈ X. Then F(X × X) ⊆ gX. Through
calculation, we have

G
(
F(x, y),F(u, v),F(w, z)

)
=


(|xy – uv| + |uv –wz| + |wz – xy|)

≤ 

(|y||x – u| + |u||y – v| + |v||u –w| + |w||v – z| + |z||w – x| + |x||z – y|)

≤ 

(|x – u| + |y – v| + |u –w| + |v – z| + |w – x| + |z – y|)

=



(
G(gx, gu, gu) +G(gy, gv, gv) +G(gu, gw, gw) +G(gv, gz, gz)

+G(gw, gx, gx) + cG(gz, gy, gy)
)
.

Then the mappings F, F, F and g are satisfying condition (.) of Corollary . with
c = c = c = c = c = c = 

 . So that all the conditions of Corollary . are satisfied.
By Corollary ., F and g have a unique common fixed point. Moreover,  is the unique
common fixed point for all of the mappings F and g .
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If we take F(x, y) = F(x, y) = F(x, y) in Theorem ., then the following corollary is ob-
tained.

Corollary . Let (X,G) be a G-metric space. Let F : X × X → X and g : X → X be map-
pings such that

G
(
F(x, y),F(u, v),F(w, z)

)
≤ aG(gx, gu, gw) + aG(gy, gv, gz) + aG(gx, gu, gu)

+ aG(gy, gv, gv) + aG(gu, gw, gw) + aG(gv, gz, gz)

+ aG(gw, gx, gx) + aG(gz, gy, gy) (.)

for all x, y,u, v,w, z ∈ X, where ai ≥ , i = , , . . . ,  and a + a + a + a + a + a + a +
a < . Suppose that F and g satisfy the following conditions:
() F(X ×X) ⊆ gX ;
() gX is G-complete;
() g is G-continuous and commutes with F .

Then there exist unique x ∈ X such that gx = F(x,x) = x.

Now, we introduce an example to support Corollary ..

Example . Let X = [–, ]. Define G : X ×X ×X →R
+ by

G(x, y, z) = |x – y| + |y – z| + |z – x|

for all x, y, z ∈ X. Then (X,G) is a complete G-metric space. Define a map

F : X ×X → X

by

F(x, y) =



x +



y – 

for all x, y ∈ X. Also, define g : X → X by gx = x for x ∈ X.
Clearly, we can get F(X × X) = [–,–

 ] ⊆ gX, and g is G-continuous and commutes
with F .
By the definition of the mappings of F and g , for all x, y, z,u, v,w ∈ [–, ], we have

G
(
F(x, y),F(u, v),F(w, z)

)
≤G

(



x +



y – ,



u +



v – ,



w +



z – 
)

=



(∣∣x – u + y – v
∣∣ + ∣∣u –w + v – z

∣∣ + ∣∣w – x + z – y
∣∣)

≤ 


(∣∣x – u
∣∣ + ∣∣y – v

∣∣ + ∣∣u –w∣∣ + ∣∣v – z
∣∣ + ∣∣w – x

∣∣ + ∣∣z – y
∣∣)

≤ 


(
|x – u| + |y – v| + |u –w| + |v – z| + |w – x| + |z – y|)

http://www.fixedpointtheoryandapplications.com/content/2013/1/266
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=



G(gx, gu, gu) +



G(gy, gv, gv) +



G(gu, gw, gw)

+



G(gv, gz, gz) +



G(gw, gx, gx) +



G(gz, gy, gy).

Then themappings F and g are satisfying condition (.) of Corollary .with a = a = ,
a = a = a = a = a = a = 

 . So that all the conditions of Corollary . are satisfied. By
Corollary ., F and g have a unique common fixed point. Here x = – 

√
 is the unique

common fixed point of mappings F and g ; that is, F(x,x) = gx = x.

3 Application to integral equations
Throughout this section, we assume that X = C[, ] is the set of all continuous functions
defined on [, ]. Define G : X ×X ×X →R

+ by

G(x, y, z) = sup
t∈[,]

∣∣x(t) – y(t)
∣∣ + sup

t∈[,]

∣∣y(t) – z(t)
∣∣ + sup

t∈[,]

∣∣z(t) – x(t)
∣∣

for all x, y, z ∈ X. Then (X,G) is a G-complete metric space.
Consider the following integral equations:

Fi(x, y)(t) =
∫ 


k(t, s)

(
fi
(
s,x(s)

)
+ gi

(
s, y(s)

))
ds, t ∈ [, ] (i = , , ). (.)

Next, we will analyze (.) under the following conditions:
(i) k : [, ]× [, ]→R

+ is continuous.
(ii) fi, gi : [, ]×R →R (i = , , ) are continuous functions.
(iii) There exist constants λi,μi >  (i = , , ) such that

⎧⎪⎪⎨
⎪⎪⎩

|f(t,x) – f(t, y)| ≤ λ|x – y|,
|f(t,x) – f(t, y)| ≤ λ|x – y|,
|f(t,x) – f(t, y)| ≤ λ|x – y|

and

⎧⎪⎪⎨
⎪⎪⎩

|g(t,x) – g(t, y)| ≤ μ|x – y|,
|g(t,x) – g(t, y)| ≤ μ|x – y|,
|g(t,x) – g(t, y)| ≤ μ|x – y|

for all t ∈ [, ] and x, y ∈ R.
(iv) ‖k‖∞(max{λ,μ} + max{λ,μ} +max{λ,μ}) < , where

‖k‖∞ = sup
{
k(t, s) : t, s ∈ [, ]

}
.

The aim of this section is to give an existence theorem for a solution of the above integral
equations by using the obtained result given by Theorem ..

Theorem . Under conditions (i)-(iv), integral equation (.) has a unique common so-
lution in C[, ].

Proof First, we consider Fi : X×X → X (i = , , ). By virtue of our assumptions, Fi is well
defined (this means that for x, y ∈ X then Fi(x, y) ∈ X (i = , , )). Then we can get

G
(
F(x, y),F(u, v),F(w, z)

)
= sup

t∈[,]

∣∣F(x, y) – F(u, v)
∣∣ + sup

t∈[,]

∣∣F(u, v) – F(w, z)
∣∣ + sup

t∈[,]

∣∣F(w, z) – F(x, y)
∣∣

http://www.fixedpointtheoryandapplications.com/content/2013/1/266
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= sup
t∈[,]

∣∣∣∣
∫ 


k(t, s)

(
f
(
s,x(s)

)
+ g

(
s, y(s)

))
ds –

∫ 


k(t, s)

(
f

(
s,u(s)

)
+ g

(
s, v(s)

))
ds

∣∣∣∣
+ sup

t∈[,]

∣∣∣∣
∫ 


k(t, s)

(
f

(
s,u(s)

)
+ g

(
s, v(s)

))
ds –

∫ 


k(t, s)

(
f

(
s,w(s)

)
+ g

(
s, z(s)

))
ds

∣∣∣∣
+ sup

t∈[,]

∣∣∣∣
∫ 


k(t, s)

(
f

(
s,w(s)

)
+ g

(
s, z(s)

))
ds –

∫ 


k(t, s)

(
f
(
s,x(s)

)
+ g

(
s, y(s)

))
ds

∣∣∣∣
= sup

t∈[,]

∣∣∣∣
∫ 


k(t, s)

((
f
(
s,x(s)

)
– f

(
s,u(s)

))
+

(
g

(
s, y(s)

)
– g

(
s, v(s)

)))
ds

∣∣∣∣
+ sup

t∈[,]

∣∣∣∣
∫ 


k(t, s)

((
f

(
s,u(s)

)
– f

(
s,w(s)

))
+

(
g

(
s, v(s)

)
– g

(
s, z(s)

)))
ds

∣∣∣∣
+ sup

t∈[,]

∣∣∣∣
∫ 


k(t, s)

((
f

(
s,w(s)

)
– f

(
s,x(s)

))
+

(
g

(
s, z(s)

)
– g

(
s, y(s)

)))
ds

∣∣∣∣
≤ sup

t∈[,]

∫ 


k(t, s)

(∣∣f(s,x(s)) – f
(
s,u(s)

)∣∣ + ∣∣g(s, y(s)) – g
(
s, v(s)

)∣∣)ds
+ sup

t∈[,]

∫ 


k(t, s)

(∣∣f(s,u(s)) – f
(
s,w(s)

)∣∣ + ∣∣g(s, v(s)) – g
(
s, z(s)

)∣∣)ds
+ sup

t∈[,]

∫ 


k(t, s)

(∣∣f(s,w(s)) – f
(
s,x(s)

)∣∣ + ∣∣g(s, z(s)) – g
(
s, y(s)

)∣∣)ds. (.)

By conditions (iii),

⎧⎪⎪⎨
⎪⎪⎩

|f(s,x(s)) – f(s,u(s))| ≤ λ|x(s) – u(s)|,
|f(s,u(s)) – f(s,w(s))| ≤ λ|u(s) –w(s)|,
|f(s,w(s)) – f(s,x(s))| ≤ λ|w(s) – x(s)|

and

⎧⎪⎪⎨
⎪⎪⎩

|g(s, y(s)) – g(s, v(s))| ≤ μ|y(s) – v(s)|,
|g(s, v(s)) – g(s, z(s))| ≤ μ|v(s) – z(s)|,
|g(s, z(s)) – g(s, y(s))| ≤ μ|z(s) – y(s)|.

Taking these inequalities into (.), we obtain

G
(
F(x, y),F(u, v),F(w, z)

)
≤ sup

t∈[,]

∫ 


k(t, s)

(
λ

∣∣x(s) – u(s)
∣∣ +μ

∣∣y(s) – v(s)
∣∣)ds

+ sup
t∈[,]

∫ 


k(t, s)

(
λ

∣∣u(s) –w(s)
∣∣ +μ

∣∣v(s) – z(s)
∣∣)

+ sup
t∈[,]

∫ 


k(t, s)

(
λ

∣∣w(s) – x(s)
∣∣ +μ

∣∣z(s) – y(s)
∣∣)

≤max{λ,μ} sup
t∈[,]

∫ 


k(t, s)

(∣∣x(s) – u(s)
∣∣+∣∣y(s) – v(s)

∣∣)ds
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+max{λ,μ} sup
t∈[,]

∫ 


k(t, s)

(∣∣u(s) –w(s)
∣∣ + ∣∣v(s) – z(s)

∣∣)ds
+max{λ,μ} sup

t∈[,]

∫ 


k(t, s)

(∣∣w(s) – x(s)
∣∣ + ∣∣z(s) – y(s)

∣∣)ds. (.)

Using the Cauchy-Schwartz inequality in (.), we get

∫ 


k(t, s)

(∣∣x(s) – u(s)
∣∣ + ∣∣y(s) – v(s)

∣∣)ds
≤

(∫ 


k(t, s)ds

) 

(∫ 



(∣∣x(s) – u(s)
∣∣ + ∣∣y(s) – v(s)

∣∣) ds) 


≤ ‖k‖∞
(
sup
t∈[,]

∣∣x(t) – u(t)
∣∣ + sup

t∈[,]

∣∣y(t) – v(t)
∣∣). (.)

Similarly, we can obtain the following estimate

∫ 


k(t, s)

(∣∣u(s) –w(s)
∣∣ + ∣∣v(s) – z(s)

∣∣)ds
≤ ‖k‖∞

(
sup
t∈[,]

∣∣u(t) –w(t)
∣∣ + sup

t∈[,]

∣∣v(t) – z(t)
∣∣), (.)

∫ 


k(t, s)

(∣∣w(s) – x(s)
∣∣ + ∣∣z(s) – y(s)

∣∣)ds
≤ ‖k‖∞

(
sup
t∈[,]

∣∣w(t) – x(t)
∣∣ + sup

t∈[,]

∣∣z(t) – y(t)
∣∣). (.)

Substituting (.), (.) and (.) into (.), we obtain that

G
(
F(x, y),F(u, v),F(w, z)

)
≤max{λ,μ}‖k‖∞

(
sup
t∈[,]

∣∣x(t) – u(t)
∣∣ + sup

t∈[,]

∣∣y(t) – v(t)
∣∣)

+max{λ,μ}‖k‖∞
(
sup
t∈[,]

∣∣u(t) –w(t)
∣∣ + sup

t∈[,]

∣∣v(t) – z(t)
∣∣)

+max{λ,μ}‖k‖∞
(
sup
t∈[,]

∣∣w(t) – x(t)
∣∣ + sup

t∈[,]

∣∣z(t) – y(t)
∣∣)

=


max{λ,μ}‖k‖∞ ·  sup

t∈[,]

∣∣x(t) – u(t)
∣∣

+


max{λ,μ}‖k‖∞ ·  sup

t∈[,]

∣∣y(t) – v(t)
∣∣

+


max{λ,μ}‖k‖∞ ·  sup

t∈[,]

∣∣u(t) –w(t)
∣∣

+


max{λ,μ}‖k‖∞ ·  sup

t∈[,]

∣∣v(t) – z(t)
∣∣

+


max{λ,μ}‖k‖∞ ·  sup

t∈[,]

∣∣w(t) – x(t)
∣∣

+


max{λ,μ}‖k‖∞ ·  sup

t∈[,]

∣∣z(t) – y(t)
∣∣
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=


max{λ,μ}‖k‖∞G(x,u,u) +



max{λ,μ}‖k‖∞G(y, v, v)

+


max{λ,μ}‖k‖∞G(u,w,w) +



max{λ,μ}‖k‖∞G(v, z, z)

+


max{λ,μ}‖k‖∞G(w,x,x) +



max{λ,μ}‖k‖∞G(z, y, y). (.)

Taking gx = x for all x ∈ X, and

a = a = , a = a =


max{λ,μ}‖k‖∞,

a = a =


max{λ,μ}‖k‖∞, a = a =



max{λ,μ}‖k‖∞,

then inequality (.) becomes

G
(
F(x, y),F(u, v),F(w, z)

) ≤ aG(gx, gu, gw) + aG(gy, gv, gz) + aG(gx, gu, gu)

+ aG(gy, gv, gv) + aG(gu, gw, gw) + aG(gv, gz, gz)

+ aG(gw, gx, gx) + aG(gz, gy, gy). (.)

By condition (iv), we know that

a + a + a + a + (a + a) + a + a

= ‖k‖∞
(
max{λ,μ} + max{λ,μ} +max{λ,μ}

)
< .

This proves that the operator Fi (i = , , ) and g = I satisfy contractive condition (.)
appearing in Theorem . with g = I . Therefore, F, F, F have a unique common coupled
fixed point, that is, F(x,x) = F(x,x) = F(x,x) = x, and so, (x,x) is the unique solution of
equation (.). �
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