RESEARCH

Open Access

Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction

Wasfi Shatanawi¹ and Ariana Pitea^{2*}

*Correspondence: arianapitea@yahoo.com ²Faculty of Applied Sciences, University Politehnica of Bucharest, 313 Splaiul Independenţei, Bucharest, 060042, Romania Full list of author information is available at the end of the article

Abstract

In this paper we utilize the notion of Ω -distance in the sense of Saadati *et al.* (Math. Comput. Model. 52:797-801, 2010) to construct and prove some fixed and coupled fixed point theorems in a complete *G*-metric space for a nonlinear contraction. Also, we provide an example to support our results. **MSC:** 47H10; 54H25

Keywords: coupled fixed point; Ω -distance

1 Introduction

The concept of *G*-metric space was introduced by Mustafa and Sims [1]. After that, many authors constructed fixed point theorems in G-metric spaces. In [2] and [3], common fixed points results for mappings which satisfy the generalized (φ, ψ)-weak contraction are obtained. In [4], the author proves a common fixed point theorem for two self-mappings verifying a contractive condition of integral type in *G*-metric spaces. In [5, 6] and [7], tripled coincidence point results for a mixed monotone mapping in G-metric spaces are established; also see [8]. Some common fixed point results for two self-mappings, one of them being a generalized weakly *G*-contraction of type *A* and *B* with respect to the other mapping, are stated in [9]. Fixed point theorems for mappings with a contractive iterate at a point are formulated in [10] and in [11]. Papers [12] and [13] refer to common fixed point theorems for single-valued and multi-valued mappings which satisfy contractive conditions on G-metric spaces. In [14] and [15], theorems from G-metric spaces are used to obtain several results on complete D-metric spaces. Various contractive conditions on G-metric spaces which lead to fixed point results are stated in [16]. Paper [17] deals with the existence of fixed point results in G-metric spaces. In [18], common fixed point theorems with ϕ -maps on G-cone metric spaces are established. In [19], a general fixed point theorem for mappings satisfying an ϕ -implicit relation is proved. Paper [20] states fixed point theorems for mappings satisfying ϕ -maps in G-metric spaces. Mohamed Jleli and Bessem Samet [21] in their nice paper pointed out that the quasi-metric spaces play a major role to construct some known fixed point theorems in a G-metric space. For other recent results in G-metric spaces, please see [22–24].

The coupled fixed point is one of the most interesting subjects in metric spaces. The notion of coupled fixed point was introduced by Bhaskar and Lakshmikantham [25], and the notion of coincidence coupled fixed point was introduced by Lakshmikantham and Ćirić [26]. In recent years many authors established many nice coupled and coincidence

©2013 Shatanawi and Pitea; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. coupled fixed point theorems in metric spaces, partial metric spaces and *G*-metric spaces. For some works on this subject, we refer the reader to [27-38].

2 Preliminaries

It is fundamental to recall the definition of *G*-metric spaces.

Definition 2.1 ([1]) Let *X* be a nonempty set. $G: X \times X \times X \to X$ is called *G-metric* if the following axioms are fulfilled:

- (1) G(x, y, z) = 0 if x = y = z (the coincidence);
- (2) G(x, x, y) > 0 for all $x, y \in X, x \neq y$;
- (3) $G(x, x, z) \leq G(x, y, z)$ for each triple (x, y, z) from $X \times X \times X$ with $z \neq y$;
- (4) $G(x, y, z) = G(p\{x, y, z\})$ for each permutation of $\{x, y, z\}$ (the symmetry);
- (5) $G(x, y, z) \le G(x, a, a) + G(a, y, z)$ for each x, y, z and a in X (the rectangle inequality).

Definition 2.2 ([1]) Consider *X* to be a *G*-metric space and (x_n) to be a sequence in *G*.

- (1) (x_n) is called a *G*-*Cauchy sequence* if for each $\varepsilon > 0$, there is a positive integer n_0 so that for all $m, n, l \ge n_0$, $G(x_n, x_m, x_l) < \varepsilon$.
- (2) (x_n) is said to be *G*-convergent to $x \in X$ if for each $\varepsilon > 0$, there is a positive integer n_0 such that $G(x_m, x_n, x) < \varepsilon$ for each $m, n \ge n_0$.

Now, we recall the definitions of coupled and coincidence coupled fixed points.

Definition 2.3 ([25]) Consider *X* to be a nonempty set. The pair $(x, y) \in X \times X$ is called a *coupled fixed point* of the mapping $F : X \times X \to X$ if

 $F(x, y) = x, \qquad F(y, x) = y.$

Definition 2.4 ([26]) Let *X* be a nonempty set. The element $(x, y) \in X \times X$ is a *coupled coincidence point* of mappings $F : X \times X \to X$ and $g : X \to X$ if

$$F(x, y) = gx, \qquad F(y, x) = gy.$$

In 2010, Saadati *et al.* [39] utilized the notion of *G*-metric spaces to introduce the concept of Ω -distance. Moreover, Saadati *et al.* [40] constructed some fixed point theorem in *G*-metric spaces by using the notion of Ω -distance.

Definition 2.5 ([39]) Consider (X, G) to be a *G*-metric space and $\Omega : X \times X \times X \rightarrow [0, +\infty)$. Ω is called an Ω -*distance* on *X* if it satisfies the three conditions as follows:

- (1) $\Omega(x, y, z) \leq \Omega(x, a, a) + \Omega(a, y, z)$ for all x, y, z, a from X.
- (2) For each *x*, *y* from *X*, $\Omega(x, y, \cdot)$, $\Omega(x, \cdot, y) : X \to [0, +\infty)$ are lower semi-continuous.
- (3) For each $\varepsilon > 0$, there is $\delta > 0$, so that $\Omega(x, a, a) \le \delta$ and $\Omega(a, y, z) \le \delta$ imply $G(x, y, z) \le \varepsilon$.

The following lemma is very useful in this paper.

Lemma 2.1 ([39, 40]) Let X be a metric space endowed with metric G, and let Ω be an Ω -distance on X. (x_n) , (y_n) are sequences in X, (α_n) and (β_n) are sequences in $[0, +\infty)$, with $\lim_{n\to+\infty} \alpha_n = \lim_{n\to+\infty} \beta_n = 0$. If x, y, z and $a \in X$, then

- (1) If $\Omega(y, x_n, x_n) \leq \alpha_n$ and $\Omega(x_n, y, z) \leq \beta_n$, for $n \in \mathbb{N}$, then $G(y, y, z) < \varepsilon$, and, by consequence, y = z.
- (2) Inequalities $\Omega(y_n, x_n, x_n) \le \alpha_n$ and $\Omega(x_n, y_m, z) \le \beta_n$, for m > n, imply $G(y_n, y_m, z) \to 0$, hence $y_n \to z$.
- (3) If $\Omega(x_n, x_m, x_l) \le \alpha_n$ for $l, m, n \in \mathbb{N}$ with $n \le m \le l$, then (x_n) is a G-Cauchy sequence.
- (4) If $\Omega(x_n, a, a) \leq \alpha_n$, $n \in \mathbb{N}$, then (x_n) is a *G*-Cauchy sequence.

The following two sets are very useful to build our nonlinear contraction in this paper:

- $\Phi = \{\varphi : [0, +\infty) \to [0, +\infty) | \varphi \text{ is continuous, increasing, } \varphi(t) = 0 \text{ if and only if } t = 0 \},\$
- $\Psi = \{\psi : [0, +\infty) \to [0, +\infty) | \psi \text{ is lower semi-continuous,} \}$

$$\psi(t) = 0$$
 if and only if $t = 0$.

For some works on fixed point theorems based on the above sets, see, for example, [1, 7, 14–20, 23, 33–39, 41–44].

In the present paper, we utilize the concept of Ω -distance and the sets Φ , Ψ to establish some fixed and coupled fixed point theorems. Also, we introduce an example as an application of our results.

3 Main results

In the first part of the section, we introduce and prove the following fixed point theorem.

Theorem 3.1 Let (X, G) be a *G*-metric space and Ω be an Ω -distance on *X*. Consider $\varphi \in \Phi, \psi \in \Psi$ and $T: X \to X$ such that

$$\varphi\Omega(Tx, Ty, Tz) \le \varphi\Omega(x, y, z) - \psi\Omega(x, y, z) \tag{1}$$

holds for each $(x, y, z) \in X \times X \times X$. Suppose that if $u \neq Tu$, then

$$\inf \{ \Omega(x, Tx, u) : x \in X \} > 0.$$

Then T has a unique fixed point.

Proof Let $x_0 \in X$ and $x_{n+1} = Tx_n$ for each $n \in \mathbb{N}$. If there is $n \in \mathbb{N}$ for which $x_{n+1} = x_n$, then x_n is a fixed point of *T*.

In the following, we assume $x_{n+1} \neq x_n$ for each $n \in \mathbb{N}$. First we shall prove that $\lim_{n \to +\infty} \Omega(x_n, x_{n+1}, x_{n+1}) = 0$. For $n \in \mathbb{N}$, $n \ge 1$, we have

$$\varphi \Omega(x_n, x_{n+1}, x_{n+1}) = \varphi \Omega(Tx_{n-1}, Tx_n, Tx_n)$$

$$\leq \varphi \Omega(x_{n-1}, x_n, x_n) - \psi \Omega(x_{n-1}, x_n, x_n)$$

$$\leq \varphi \Omega(x_{n-1}, x_n, x_n).$$
(2)

 φ is a nondecreasing function, hence $\Omega(x_n, x_{n+1}, x_{n+1}) \leq \Omega(x_{n-1}, x_n, x_n), n \geq 1$. It follows that $(\Omega(x_n, x_{n+1}, x_{n+1}))$ is a nondecreasing sequence, therefore there exists $\lim_{n \to +\infty} \Omega(x_n, x_{n+1}, x_{n+1}) = r \geq 0$.

Taking $n \to +\infty$ in inequality (2) and using the continuity of φ and the lower semicontinuity of ψ , we get

$$\varphi r \leq \varphi r - \liminf_{n \to +\infty} \psi \Omega(x_{n-1}, x_n, x_n) \leq \varphi r - \psi r,$$

imposing $\psi r = 0$, that is, r = 0.

Analogously, it can be proved that $\lim_{n\to+\infty} \Omega(x_{n+1}, x_n, x_n) = 0$ and also that

$$\lim_{n\to+\infty}\Omega(x_n,x_n,x_{n+1})=0.$$

The next step is to prove that $\lim_{m,n\to+\infty} \Omega(x_n, x_m, x_m) = 0$, m > n.

By *reductio ad absurdum*, suppose the contrary. Hence, there exist $\varepsilon > 0$ and two sequences (n_k) and (m_k) such that

$$\Omega(x_{n_k}, x_{m_k}, x_{m_k}) \ge \varepsilon, \qquad \Omega(x_{n_k}, x_{m_k-1}, x_{m_k-1}) < \varepsilon, \quad m_k > n_k.$$

As $\lim_{n\to+\infty} \Omega(x_n, x_{n+1}, x_{n+1}) = 0$, it follows

$$\varepsilon \leq \Omega(x_{n_k}, x_{m_k}, x_{m_k}) \leq \Omega(x_{n_k}, x_{m_k-1}, x_{m_k-1}) + \Omega(x_{m_k-1}, x_{m_k}, x_{m_k})$$
$$< \varepsilon + \Omega(x_{m_k-1}, x_{m_k}, x_{m_k}) \to \varepsilon \quad \text{as } k \to +\infty.$$

Therefore, $\lim_{k\to+\infty} \Omega(x_{n_k}, x_{m_k}, x_{m_k}) = \varepsilon$.

On the other hand,

$$\varepsilon \leq \Omega(x_{n_k}, x_{m_k}, x_{m_k}) \leq \Omega(x_{n_k}, x_{n_{k+1}}, x_{n_{k+1}}) + \Omega(x_{n_{k+1}}, x_{m_k}, x_{m_k})$$

$$\leq \Omega(x_{n_k}, x_{n_{k+1}}, x_{n_{k+1}}) + \Omega(x_{n_{k+1}}, x_{m_{k+1}}, x_{m_{k+1}}) + \Omega(x_{m_{k+1}}, x_{m_k}, x_{m_k}).$$
(3)

The contraction condition (1) yields

$$\varphi \Omega(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}) \le \varphi \Omega(x_{n_k}, x_{m_k}, x_{m_k}) - \psi \Omega(x_{n_k}, x_{m_k}, x_{m_k})$$

 $\le \varphi \Omega(x_{n_k}, x_{m_k}, x_{m_k}),$

so $\Omega(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}) \le \Omega(x_{n_k}, x_{m_k}, x_{m_k})$, and relation (3) becomes

$$\varepsilon \leq \Omega(x_{n_k}, x_{n_k+1}, x_{n_k+1}) + \Omega(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}) + \Omega(x_{m_k+1}, x_{m_k}, x_{m_k})$$
$$\leq \Omega(x_{n_k}, x_{n_k+1}, x_{n_k+1}) + \Omega(x_{n_k}, x_{m_k}, x_{m_k}) + \Omega(x_{m_k+1}, x_{m_k}, x_{m_k}).$$

Letting $k \to +\infty$, we get $\lim_{k\to+\infty} \Omega(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}) = \varepsilon$.

Having in mind the continuity of φ and the lower semi-continuity of ψ , we obtain

$$\varphi\varepsilon \leq \varphi\varepsilon - \liminf_{k \to +\infty} \Omega(x_{n_k}, x_{m_k}, x_{m_k}) \leq \varphi\varepsilon - \psi\varepsilon,$$

which is impossible, since $\varepsilon > 0$.

$$\Omega(x_n, x_m, x_l) \le \Omega(x_n, x_m, x_m) + \Omega(x_m, x_m, x_l) \to 0$$

as $l, m, n \to +\infty$, we conclude that $\lim_{l,m,n\to+\infty} \Omega(x_n, x_m, x_l) = 0$. By Lemma 2.1, (x_n) is a *G*-Cauchy sequence in the *G*-complete space (X, G), so it converges to $u \in X$.

Suppose $u \neq Tu$. Consider $\varepsilon > 0$. As (x_n) is a Cauchy sequence, there is $n_0 \in \mathbb{N}$ such that

$$\Omega(x_n, x_m, x_l) < \varepsilon, \quad \forall n, m, l \ge n_0.$$

Thus

$$\liminf_{l\to+\infty} \Omega(x_n, x_m, x_l) \leq \liminf_{l\to+\infty} \varepsilon = \varepsilon, \quad \forall n, m \geq n_0.$$

From the lower semi-continuity of Ω in its third variables, we have

$$\Omega(x_n, x_m, u) \le \liminf_{l \to +\infty} \Omega(x_n, x_m, x_l) \le \varepsilon, \quad \forall n, m \ge n_0.$$
(4)

Considering m = n + 1 in inequality (4), we get

$$\Omega(x_n, x_{n+1}, u) \leq \varepsilon.$$

On the other hand, we have

$$0 < \inf \{ \Omega(x, Tx, u) : x \in X \}$$

$$\leq \inf \{ \Omega(x_n, x_{n+1}, u) : n \ge n_0 \} < \varepsilon,$$

which contradicts the hypotheses.

Therefore, u = Tu and hence u is a fixed point of T. We shall deal now with the uniqueness of the fixed point of T. Suppose that there are u and v in X fixed points of the mapping T. It follows that

$$\varphi\Omega(v, u, u) = \varphi\Omega(Tv, Tu, Tu) \le \varphi\Omega(v, u, u) - \psi\Omega(v, u, u),$$

which is possible only for $\psi \Omega(v, u, u) = 0$, that is, $\Omega(v, u, u) = 0$.

Similarly, it can be proved that $\Omega(u, v, u) = 0$.

According to the definition of an Ω -distance, $\Omega(v, u, u) = 0$ and $\Omega(u, v, u) = 0$ imply u = v. Hence, *T* has a unique fixed point.

Haghi *et al.* [45] in their interesting paper showed that some common fixed point theorems can be obtained from the known fixed point theorems; for other interesting article by Haghi *et al.*, please see [46]. By using the same method of Haghi *et al.* [45], we get the following result. **Theorem 3.2** Let (X, G) be a *G*-metric space and Ω be an Ω -distance on *X*. Consider $\varphi \in \Phi, \psi \in \Psi$ and $T, S : X \to X$ such that

 $\varphi \Omega(Tx, Ty, Tz) \le \varphi \Omega(Sx, Sy, Sz) - \psi \Omega(Sx, Sy, Sz)$

holds for each $(x, y, z) \in X \times X \times X$.

- Suppose the following hypotheses:
- (1) $TX \subseteq SX$.
- (2) If $Su \neq Tu$, then

 $\inf \{ \Omega(Sx, Tx, Su) : x \in X \} > 0.$

Then T and S have a unique common fixed point.

As consequent results of Theorem 3.1 and Theorem 3.2, we have the following.

Corollary 3.1 Let (X, G) be a *G*-metric space and Ω be an Ω -distance on *X*. Consider $\psi \in \Psi$ and $T: X \to X$ such that

 $\Omega(Tx, Ty, Tz) \leq \Omega(x, y, z) - \psi \Omega(x, y, z)$

holds for each $(x, y, z) \in X \times X \times X$. Suppose that if $u \neq Tu$, then

 $\inf \left\{ \Omega(x, Tx, u) : x \in X \right\} > 0.$

Then T has a unique fixed point.

Corollary 3.2 Let (X, G) be a *G*-metric space and Ω be an Ω -distance on *X*. Consider $\psi \in \Psi$ and $T, S : X \to X$ such that

 $\Omega(Tx, Ty, Tz) \le \Omega(Sx, Sy, Sz) - \psi \Omega(Sx, Sy, Sz)$

holds for each $(x, y, z) \in X \times X \times X$. Suppose the following hypotheses: (1) $TX \subseteq SX$.

(2) If $Su \neq Tu$, then

 $\inf \{ \Omega(Sx, Tx, Su) : x \in X \} > 0.$

Then T and S have a unique common fixed point.

In the second part of the section, we introduce and prove the following coincidence coupled fixed point theorem.

Theorem 3.3 Consider (X,G) to be a G-metric space endowed with an Ω -distance called Ω . Let $F: X \times X \to X$ and $g: X \to X$ be two mappings with the properties

 $F(X \times X) \subseteq gX$, and gX is a complete subspace of X with respect to the topology induced by G.

Suppose that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$\varphi\left(\Omega\left(F(x,y),F\left(x^{*},y^{*}\right),F\left(z,z^{*}\right)\right)+\Omega\left(F(y,x),F\left(y^{*},x^{*}\right),F\left(z^{*},z\right)\right)\right)$$

$$\leq\varphi\left(\Omega\left(gx,gx^{*},gz\right)+\Omega\left(gy,gy^{*},gz^{*}\right)\right)-\psi\left(\Omega\left(gx,gx^{*},gz\right)+\Omega\left(gy,gy^{*},gz^{*}\right)\right)$$
(5)

for each $(x, y), (x^*, y^*), (z, z^*) \in X \times X$.

Additionally, suppose that if $F(u, v) \neq gu$ or $F(v, u) \neq gv$, then

 $\inf \left\{ \Omega \big(gx, F(x, y), gu \big) + \Omega \big(gy, F(y, x), gv \big) : x, y \in X \right\} > 0.$

Then F and g have a unique coupled coincidence point (u, v), with F(u, v) = gu = gv = F(v, u).

Proof Let $(x_0, y_0) \in X \times X$. Having in mind that $F(X \times X) \subseteq gX$, for each $n \in \mathbb{N}$, there is a pair $(x_{n+1}, y_{n+1}) \in X \times X$ such that

$$gx_{n+1} = F(x_n, y_n), \qquad gy_{n+1} = F(y_n, x_n).$$

First, we prove that

$$\lim_{n \to +\infty} \Omega(gx_n, gx_{n+1}, gx_{n+1}) = 0 \quad \text{and} \quad \lim_{n \to +\infty} \Omega(gy_n, gy_{n+1}, gy_{n+1}) = 0.$$

Using inequality (5), we get

$$\begin{split} \varphi \Big(\Omega(gx_{n}, gx_{n+1}, gx_{n+1}) + \Omega(gy_{n}, gy_{n+1}, gy_{n+1}) \Big) \\ &= \varphi \Big(\Omega \Big(F(x_{n-1}, y_{n-1}), F(x_{n}, y_{n}), F(x_{n}, y_{n}) \Big) \\ &+ \Omega \Big(F(y_{n-1}, x_{n-1}), F(y_{n}, x_{n}), F(y_{n}, x_{n}) \Big) \Big) \\ &\leq \varphi \Big(\Omega(gx_{n-1}, gx_{n}, gx_{n}) + \Omega(gy_{n-1}, gy_{n}, gy_{n}) \Big) \\ &- \psi \Big(\Omega(gx_{n-1}, gx_{n}, gx_{n}) + \Omega(gy_{n-1}, gy_{n}, gy_{n}) \Big) \\ &\leq \varphi \Big(\Omega(gx_{n-1}, gx_{n}, gx_{n}) + \Omega(gy_{n-1}, gy_{n}, gy_{n}) \Big) \end{split}$$
(6)

Since φ is a nondecreasing function, we obtain

 $\Omega(gx_n, gx_{n+1}, gx_{n+1}) + \Omega(gy_n, gy_{n+1}, gy_{n+1})$ $\leq \Omega(gx_{n-1}, gx_n, gx_n) + \Omega(gy_{n-1}, gy_n, gy_n), \quad n \in \mathbb{N}, n \ge 1,$

that is, $(\Omega(gx_n, gx_{n+1}, gx_{n+1}) + \Omega(gy_n, gy_{n+1}, gy_{n+1}))$ is a nondecreasing sequence. Denote by $r \ge 0$ its limit.

Letting $n \to +\infty$ in relation (6), the continuity of φ and the lower semi-continuity of ψ imply

$$\varphi r \leq \varphi r - \liminf_{n \to +\infty} \psi \left(\Omega(gx_n, gx_{n+1}, gx_{n+1}) + \Omega(gy_n, gy_{n+1}, gy_{n+1}) \right) \leq \varphi r - \psi r,$$

which forces $\varphi r = 0$, that is, r = 0.

Since Ω takes nonnegative values,

$$\lim_{n \to +\infty} \Omega(gx_n, gx_{n+1}, gx_{n+1}) = 0 \quad \text{and} \quad \lim_{n \to +\infty} \Omega(gy_n, gy_{n+1}, gy_{n+1}) = 0.$$

A similar procedure leads us to

$$\begin{split} &\lim_{n \to +\infty} \Omega(gx_{n+1}, gx_n, gx_n) = 0, \qquad \lim_{n \to +\infty} \Omega(gy_{n+1}, gy_n, gy_n) = 0; \\ &\lim_{n \to +\infty} \Omega(gx_n, gx_n, gx_{n+1}) = 0, \qquad \lim_{n \to +\infty} \Omega(gy_n, gy_n, gy_{n+1}) = 0. \end{split}$$

Now, our purpose is to show that

$$\lim_{m,n\to+\infty} \Omega(gx_n,gx_m,gx_m)=0 \quad \text{and} \quad \lim_{m,n\to+\infty} \Omega(gx_n,gx_m,gx_m)=0, \quad m>n.$$

Supposing the contrary, there exist $\varepsilon > 0$ and two subsequences (n_k) and (m_k) for which

$$\begin{split} \Omega(gx_{n_k},gx_{m_k},gx_{m_k}) &+ \Omega(gy_{n_k},gy_{m_k},gy_{m_k}) \geq \varepsilon, \\ \Omega(gx_{n_k},gx_{m_k-1},gx_{m_k-1}) &+ \Omega(gy_{n_k},gy_{m_k-1},gy_{m_k-1}) < \varepsilon, \quad m_k > n_k. \end{split}$$

We obtain

$$\begin{split} \varepsilon &\leq \Omega(gx_{n_{k}},gx_{m_{k}},gx_{m_{k}}) + \Omega(gy_{n_{k}},gy_{m_{k}},gy_{m_{k}}) \\ &\leq \Omega(gx_{n_{k}},gx_{m_{k}-1},gx_{m_{k}-1}) + \Omega(gy_{n_{k}},gy_{m_{k}-1},gy_{m_{k}-1}) \\ &+ \Omega(gx_{m_{k}-1},gx_{m_{k}},gx_{m_{k}}) + \Omega(gy_{m_{k}-1},gy_{m_{k}},gy_{m_{k}}) \\ &< \varepsilon + \Omega(gx_{m_{k}-1},gx_{m_{k}},gx_{m_{k}}) + \Omega(gy_{m_{k}-1},gy_{m_{k}},gy_{m_{k}}). \end{split}$$

As $k \to +\infty$ and $\lim_{n\to+\infty} (\Omega(gx_n, gx_{n+1}, gx_{n+1}) + \Omega(gy_n, gy_{n+1}, gy_{n+1})) = 0$, we get

$$\lim_{k\to+\infty} \left(\Omega(gx_{n_k}, gx_{m_k}, gx_{m_k}) + \Omega(gy_{n_k}, gy_{m_k}, gy_{m_k}) \right) = 0.$$

Also, using the properties of Ω , we have

$$\varepsilon \leq \Omega(gx_{n_k}, gx_{m_k}, gx_{m_k}) + \Omega(gy_{n_k}, gy_{m_k}, gy_{m_k})$$

$$\leq \Omega(gx_{n_k}, gx_{n_{k+1}}, gx_{n_{k+1}}) + \Omega(gx_{n_{k+1}}, gx_{m_k}, gx_{m_k})$$

$$+ \Omega(gy_{n_k}, gy_{n_{k+1}}, gy_{n_{k+1}}) + \Omega(gy_{n_{k+1}}, gy_{m_k}, gy_{m_k})$$

$$\leq \Omega(gx_{n_k}, gx_{n_{k+1}}, gx_{n_{k+1}}) + \Omega(gx_{n_{k+1}}, gx_{m_{k+1}}, gx_{m_{k+1}})$$

$$+ \Omega(gx_{m_{k+1}}, gx_{m_k}, gx_{m_k}) + \Omega(gy_{n_k}, gy_{n_{k+1}}, gy_{n_{k+1}})$$

$$+ \Omega(gy_{n_{k+1}}, gy_{m_{k+1}}, gy_{m_{k+1}}) + \Omega(gy_{m_{k+1}}, gy_{m_k}, gy_{m_k}).$$
(7)

Taking advantage of the contraction condition, it follows

$$\varphi \left(\Omega(gx_{n_k+1}, gx_{m_k+1}, gx_{m_k+1}) + \Omega(gy_{n_k+1}, gy_{m_k+1}, gy_{m_k+1}) \right)$$

$$\leq \varphi \left(\Omega(gx_{n_k}, gx_{m_k}, gx_{m_k}) + \Omega(gy_{n_k}, gy_{m_k}, gy_{m_k}) \right)$$

$$-\psi\left(\Omega(gx_{n_k},gx_{m_k},gx_{m_k})+\Omega(gy_{n_k},gy_{m_k},gy_{m_k})\right)$$

$$\leq\varphi\left(\Omega(gx_{n_k},gx_{m_k},gx_{m_k})+\Omega(gy_{n_k},gy_{m_k},gy_{m_k})\right).$$

Hence

$$\Omega(gx_{n_{k}+1}, gx_{m_{k}+1}, gx_{m_{k}+1}) + \Omega(gy_{n_{k}+1}, gy_{m_{k}+1}, gy_{m_{k}+1})$$

$$\leq \Omega(gx_{n_{k}}, gx_{m_{k}}, gx_{m_{k}}) + \Omega(gy_{n_{k}}, gy_{m_{k}}, gy_{m_{k}}),$$

and relation (7) becomes

$$\varepsilon \leq \Omega(gx_{n_k}, gx_{n_{k+1}}, gx_{n_{k+1}}) + \Omega(gx_{n_{k+1}}, gx_{m_{k+1}}, gx_{m_{k+1}})$$

+ $\Omega(gx_{m_{k+1}}, gx_{m_k}, gx_{m_k}) + \Omega(gy_{n_k}, gy_{n_{k+1}}, gy_{n_{k+1}})$
+ $\Omega(gy_{n_{k+1}}, gy_{m_{k+1}}, gy_{m_{k+1}}) + \Omega(gy_{m_{k+1}}, gy_{m_k}, gy_{m_k})$
 $\leq \Omega(gx_{n_k}, gx_{n_{k+1}}, gx_{n_{k+1}}) + \Omega(gx_{n_k}, gx_{m_k}, gx_{m_k})$
+ $\Omega(gx_{m_{k+1}}, gx_{m_k}, gx_{m_k}) + \Omega(gy_{n_k}, gy_{n_{k+1}}, gy_{n_{k+1}})$
+ $\Omega(gy_{n_k}, gy_{m_k}, gy_{m_k}) + \Omega(gy_{m_{k+1}}, gy_{m_k}, gy_{m_k}).$

For $k \to +\infty$, $\lim_{k\to+\infty} (\Omega(gx_{n_k+1}, gx_{m_k+1}, gx_{m_k+1}) + \Omega(gy_{n_k+1}, gy_{m_k+1}, gy_{m_k+1})) = \varepsilon$. The properties of φ , ψ lead us to

$$\varphi \varepsilon = \lim_{k \to +\infty} \varphi \left(\Omega(gx_{n_k+1}, gx_{m_k+1}, gx_{m_k+1}) + \Omega(gy_{n_k+1}, gy_{m_k+1}, gy_{m_k+1}) \right)$$

$$\leq \varphi \varepsilon - \liminf_{k \to +\infty} \psi \left(\Omega(gx_{n_k}, gx_{m_k}, gx_{m_k}) + \Omega(gy_{n_k}, gy_{m_k}, gy_{m_k}) \right) \leq \varphi \varepsilon - \psi \varepsilon.$$

Since $\varepsilon > 0$, we obtain a contradiction. Therefore, $\lim_{m,n\to+\infty} \Omega(gx_n, gx_m, gx_m) = 0$ and $\lim_{m,n\to+\infty} \Omega(gy_n, gy_m, gy_m) = 0$, m > n.

Analogously, it can be proved that $\lim_{m,n\to+\infty} \Omega(gx_n, gx_n, gx_m) = 0$ and also

 $\lim_{m,n\to+\infty}\Omega(gy_n,gy_n,gy_m)=0, \quad m>n.$

Consider l > m > n. Then

$$\Omega(gx_n, gx_m, gx_l) \le \Omega(gx_n, gx_m, gx_m) + \Omega(gx_m, gx_m, gx_l) \to 0 \quad \text{as } n, m, l \to +\infty.$$

By Lemma 2.1, we get $\lim_{n,m,l\to+\infty} \Omega(gx_n, gx_m, gx_l) = 0$, l > m > n. Hence, (gx_n) is a *G*-Cauchy sequence in gX, which is complete. Similarly, (gy_n) converges in gX. Let $gu = \lim_{n\to+\infty} gx_n$ and $gv = \lim_{n\to+\infty} gy_n$, $u, v \in X$.

Let us show now that (u, v) is a coupled coincidence point of F and g. In that respect, consider $\varepsilon > 0$. Since (gx_n) is a Cauchy sequence, then there exists $n_0 \in \mathbb{N}$ such that for each $n, m, l \ge n_0$, $\Omega(gx_n, gx_m, gx_l) < \varepsilon$. The properties of lower semi-continuity of Ω imply

$$\Omega(gx_n, gx_m, gu) \le \liminf_{p \to +\infty} \Omega(gx_n, gx_m, gx_p) \le \varepsilon,$$
(8)

$$\Omega(gy_n, gy_m, gv) \le \liminf_{p \to +\infty} \Omega(gy_n, gy_m, gy_p) \le \varepsilon.$$
(9)

Considering m = n + 1 in (8) and (9), we obtain

$$\Omega(gx_n, F(x_n, y_n), gu) + \Omega(gy_n, F(y_n, x_n), gv) \leq 2\varepsilon.$$

On the other hand, we get

$$0 < \inf \{ \Omega(gx, F(x, y), gu) + \Omega(gy, F(y, x), gv) : x, y \in X \}$$

$$\leq \inf \{ \Omega(gx_n, F(x_n, y_n), gu) + \Omega(gy_n, F(y_n, x_n), gv) : n \geq n_0 \} \leq 2\varepsilon,$$

which is a contradiction.

Therefore, F(u, v) = gu and F(v, u) = gv.

In the following, we refer to the uniqueness of the coupled coincidence point of *F* and *g*. Consider (u, v) and (u^*, v^*) to be two coupled coincidence points of *F* and *g*. By using the contraction condition, we obtain

$$\begin{split} \varphi \big(\Omega \big(gu^*, gu, gu \big) + \Omega \big(gv^*, gv, gv \big) \big) \\ &= \varphi \big(\Omega \big(F \big(u^*, v^* \big), F(u, v), F(u, v) \big) + \Omega \big(F \big(v^*, u^* \big), F(v, u), F(v, u) \big) \big) \\ &\leq \varphi \big(\Omega \big(gu^*, gu, gu \big) + \Omega \big(gv^*, gv, gv \big) \big) - \psi \big(\Omega \big(gu^*, gu, gu \big) + \Omega \big(gv^*, gv, gv \big) \big) \\ &\leq \varphi \big(\Omega \big(gu^*, gu, gu \big) + \Omega \big(gv^*, gv, gv \big) \big), \end{split}$$

which leads us to $\psi(\Omega(gu^*, gu, gu) + \Omega(gv^*, gv, gv)) = 0$, or $\Omega(gu^*, gu, gu) = \Omega(gv^*, gv, gv) = 0$.

In a similar manner, we prove that $\Omega(gu, gu^*, gu) = \Omega(gv, gv^*, gv) = 0$. Lemma 2.1 implies that $gu = gu^*$ and $gv = gv^*$.

Having in mind that gu = F(u, v) and gv = F(v, u), we get

$$\begin{split} \varphi \big(\Omega(gu, gv, gv) + \Omega(gv, gu, gv) \big) \\ &= \varphi \big(\Omega \big(F(u, v), F(v, u), F(v, u) \big) + \Omega \big(F(v, u), F(u, v), F(u, v) \big) \big) \\ &\leq \varphi \big(\Omega(gu, gv, gv) + \Omega(gv, gu, gv) \big) - \psi \big(\Omega(gu, gv, gv) + \Omega(gv, gu, gv) \big), \end{split}$$

hence $\psi(\Omega(gu, gv, gv) + \Omega(gv, gu, gv)) = 0$, or $\Omega(gu, gv, gv) = 0$ and $\Omega(gv, gu, gv) = 0$. Applying Lemma 2.1, it follows that gu = gv.

Taking $g = Id_X$, the identity mapping, in Theorem 3.3 we obtain a theorem of coupled fixed points.

Corollary 3.3 Consider (X, G) to be a complete G-metric space endowed with an Ω -distance called Ω . Let $F: X \times X \to X$ be a mapping.

Suppose that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$\begin{split} \varphi\big(\Omega\big(F(x,y),F\big(x^*,y^*\big),F\big(z,z^*\big)\big) &+ \Omega\big(F(y,x),F\big(y^*,x^*\big),F\big(z^*,z\big)\big)\big) \\ &\leq \varphi\big(\Omega\big(x,x^*,z\big) + \Omega\big(y,y^*,z^*\big)\big) - \psi\big(\Omega\big(x,x^*,z\big) + \Omega\big(y,y^*,z^*\big)\big) \end{split}$$

holds for each $(x, y), (x^*, y^*), (z, z^*) \in X \times X$.

Additionally, suppose that if $F(u, v) \neq u$ or $F(v, u) \neq v$, then

 $\inf \left\{ \Omega(x, F(x, y), u) + \Omega(y, F(y, x), v) : x, y \in X \right\} > 0.$

Then F and g have a unique coupled coincidence point (u, v), with F(u, v) = u = v = F(v, u).

Taking $\varphi = i_{[0,+\infty)}$, the identity function, in Theorem 3.3 and Corollary 3.3, we get the following results.

Corollary 3.4 Consider (X,G) to be a *G*-metric space endowed with an Ω -distance called Ω . Let $F: X \times X \to X$ and $g: X \to X$ be two mappings with the properties $F(X \times X) \subseteq gX$, and gX is a complete subspace of X with respect to the topology induced by G. Suppose that there exists $\psi \in \Psi$ such that

$$\Omega(F(x,y),F(x^*,y^*),F(z,z^*)) + \Omega(F(y,x),F(y^*,x^*),F(z^*,z))$$

$$\leq \Omega(gx,gx^*,gz) + \Omega(gy,gy^*,gz^*) - \psi(\Omega(gx,gx^*,gz) + \Omega(gy,gy^*,gz^*))$$

holds for each (x, y), (x^*, y^*) , $(z, z^*) \in X \times X$.

Additionally, suppose that if $F(u, v) \neq gu$ or $F(v, u) \neq gv$, then

 $\inf \left\{ \Omega \big(gx, F(x,y), gu \big) + \Omega \big(gy, F(y,x), gv \big) : x, y \in X \right\} > 0.$

Then F and g have a unique coupled coincidence point (u, v), with F(u, v) = gu = gv = F(v, u).

Corollary 3.5 Consider (X, G) to be a complete G-metric space endowed with an Ω -distance called Ω . Let $F: X \times X \to X$ be a mapping.

Suppose that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$\Omega(F(x,y),F(x^*,y^*),F(z,z^*)) + \Omega(F(y,x),F(y^*,x^*),F(z^*,z))$$

$$\leq \Omega(x,x^*,z) + \Omega(y,y^*,z^*) - \psi(\Omega(x,x^*,z) + \Omega(y,y^*,z^*))$$

holds for each $(x, y), (x^*, y^*), (z, z^*) \in X \times X$. Additionally, suppose that if $F(u, v) \neq u$ or $F(v, u) \neq v$, then

 $\inf\{\Omega(x, F(x, y), u) + \Omega(y, F(y, x), v) : x, y \in X\} > 0.$

Then *F* and *g* have a unique coupled coincidence point (u, v), with F(u, v) = u = v = F(v, u).

Corollary 3.6 Consider (X, G) to be a *G*-metric space endowed with an Ω -distance called Ω . Let $F: X \times X \to X$ and $g: X \to X$ be two mappings with the properties $F(X \times X) \subseteq gX$, and gX is a complete subspace of X with respect to the topology induced by G.

Suppose that there exists $k \in [0,1)$ such that

$$\Omega(F(x,y),F(x^*,y^*),F(z,z^*)) + \Omega(F(y,x),F(y^*,x^*),F(z^*,z))$$

$$\leq k(\Omega(gx,gx^*,gz) + \Omega(gy,gy^*,gz^*))$$

holds for each $(x, y), (x^*, y^*), (z, z^*) \in X \times X$.

Additionally, suppose that if $F(u, v) \neq gu$ or $F(v, u) \neq gv$, then

$$\inf \left\{ \Omega(gx, F(x, y), gu) + \Omega(gy, F(y, x), gv) : x, y \in X \right\} > 0.$$

Then F and g have a unique coupled coincidence point (u, v), with F(u, v) = gu = gv = F(v, u).

Proof The proof follows from Corollary 3.4 by defining $\psi : [0, +\infty) \to [0, +\infty)$ via $\psi(t) = (1-k)t$.

Corollary 3.7 Consider (X, G) to be a complete *G*-metric space endowed with an Ω -distance called Ω . Let $F: X \times X \to X$ be a mapping.

Suppose that there exists $k \in [0,1)$ such that

$$\Omega(F(x,y),F(x^*,y^*),F(z,z^*)) + \Omega(F(y,x),F(y^*,x^*),F(z^*,z))$$

$$\leq k(\Omega(x,x^*,z) + \Omega(y,y^*,z^*))$$

holds for each $(x, y), (x^*, y^*), (z, z^*) \in X \times X$. Additionally, suppose that if $F(u, v) \neq u$ or $F(v, u) \neq v$, then

$$\inf \left\{ \Omega \big(x, F(x,y), u \big) + \Omega \big(y, F(y,x), v \big) : x, y \in X \right\} > 0.$$

Then *F* and *g* have a unique coupled coincidence point (u, v), with F(u, v) = u = v = F(v, u).

Proof The proof follows from Corollary 3.5 by defining $\psi : [0, +\infty) \to [0, +\infty)$ via $\psi(t) = (1-k)t$.

The following example supports our results.

Example 3.1 Take $X = \{0, 1, 2, 3, ...\}$. Define $G: X \times X \times X \rightarrow [0, +\infty)$ by the formula

$$G(x, y, z) = \begin{cases} 0 & \text{if } x = y = z; \\ x + y + z & \text{if } x \neq y, \text{ or } x \neq z, \text{ or } y \neq z. \end{cases}$$

Define

$$\Omega: X \times X \times X \to X, \qquad \Omega(x, y, z) = x + 2 \max\{y, z\}$$

and

$$T: X \to X, \qquad Tx = \begin{cases} 0 & \text{if } x = 0, 1; \\ x - 1 & \text{if } x \ge 2. \end{cases}$$

Also, define $\varphi : [0, +\infty) \to [0, +\infty)$ via $\varphi(t) = t^2$ and $\psi : [0, +\infty) \to [0, +\infty)$ via $\psi(t) = t$. Then:

- (1) (X, G) is a complete *G*-metric space.
- (2) $\varphi \in \Phi$ and $\psi \in \Psi$.

- (3) Ω is an Ω -distance function.
- (4) If $u \neq Tu$, then

$$\inf \left\{ \Omega(x, Tx, u) : x \in X \right\} > 0.$$

(5) The following inequality:

 $\varphi \Omega(Tx, Ty, Tz) \le \varphi \Omega(x, y, z) - \psi \Omega(x, y, z)$

holds for all $x, y, z \in X$.

Proof The proofs of (1) and (2) are clear. To prove part (3), consider $x, y, z, a \in X$. Since

 $x + 2\max\{y, z\} \le x + 2a + a + 2\max\{y, z\},\$

we get

 $\Omega(x, y, z) \le \Omega(x, a, a) + \Omega(a, y, z).$

This finishes the proof of the first item of the definition of Ω -distance.

To prove the second item of the definition of Ω -distance, let $x, y \in X$ and (z_n) be any sequence in X converging to z with respect to the topology induced by G in X. Thus $z_n = z$ for all $n \in \mathbb{N}$ except finitely many terms. Therefore

 $x + 2\max\{y, z_n\} \rightarrow x + 2\max\{y, x\}$ as $n \rightarrow +\infty$.

So, $\Omega(x, y, z_n) \to \Omega(x, y, z)$ and hence $\Omega(x, y, \cdot) : X \to [0, +\infty)$ is lower semi-continuous. Similarly, we can show that $\Omega(x, \cdot, z) : X \to [0, +\infty)$ is lower semi-continuous.

To prove the last item of the definition of Ω -distance, consider $\varepsilon > 0$. Take $\delta = \frac{\varepsilon}{2}$. Given $x, y, z \in X$ such that $\Omega(x, a, a) \le \delta$ and $\Omega(a, y, z) \le \delta$, by the definition of a *G*-metric space, we have

$$G(x, y, z) \leq G(x, a, a) + G(a, y, z)$$
$$\leq x + 2a + a + y + z$$
$$\leq x + 2a + a + 2 \max\{y, z\}$$
$$= \Omega(x, a, a) + \Omega(a, y, z)$$
$$< \varepsilon.$$

This completes the proof of an Ω -distance.

To prove part (4), given $u \in X$ such that $u \neq Tu$, then $u \neq 0$. Note that

$$\inf \{ \Omega(x, Tx, u) : x \in X \}$$

$$\geq \inf \{ x + 2u + : x \in X \}$$

$$\geq 2u > 0.$$

To prove part (5), given $x, y, z \in X$, we divide the proof into the following four cases.

Case 1: x = y = z = 0. Here, $\Omega(x, y, z) = 0$ and $\Omega(Tx, Ty, Tz) = 0$. Thus

$$\varphi\Omega(Tx,Ty,Tz) \leq \varphi\Omega(x,y,z) - \psi\Omega(x,y,z).$$

Case 2: x > 0 and y = z = 0. Here, $\Omega(x, y, z) = x$ and $\Omega(Tx, Ty, Tz) = x - 1$. Since $(x - 1)^2 \le x^2 - x$, we have

$$\varphi \Omega(Tx, Ty, Tz) \leq \varphi \Omega(x, y, z) - \psi \Omega(x, y, z).$$

Case 3: x = 0 and y or z are not equal to 0. Without loss of generality, we may assume that $y \ge z$. Thus $y \ne 0$. Here, $\Omega(x, y, z) = 2y$ and $\Omega(Tx, Ty, Tz) = 2(y-1)$. Since $4(y-1)^2 \le 4y^2 - 2y$, we have

$$\varphi\Omega(Tx, Ty, Tz) \leq \varphi\Omega(x, y, z) - \psi\Omega(x, y, z).$$

Case 4: *x*, *y*, *z* are all different from 0. Without loss of generality, we assume that $y \ge z$. Then $\Omega(x, y, z) = x + 2y$ and $\Omega(Tx, Ty, Tz) = x - 1 + 2(y - 1)$. Since $(x - 1)^2 \le x^2 - x$ and $4(y - 1)^2 \le 4y^2 - 2y$, we have

$$\begin{split} \varphi \Omega(Tx, Ty, Tz) &= \left[x - 1 + 2(y - 1) \right]^2 \\ &= (x - 1)^2 + 4(x - 1)(y - 1) + 4(y - 1)^2 \\ &\leq x^2 - x + 4xy + 4y^2 - 2y \\ &= (x + 2y)^2 - (x + 2y) \\ &= \varphi \Omega(x, y, z) - \psi \Omega(x, y, z). \end{split}$$

Note that Example 3.1 satisfies all the hypotheses of Theorem 3.1. Thus T has a unique fixed point. Here, 0 is the unique fixed point of T.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed equally and significantly in writing this article. Both authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Hashemite University, Zarqa, Jordan. ²Faculty of Applied Sciences, University Politehnica of Bucharest, 313 Splaiul Independenței, Bucharest, 060042, Romania.

Acknowledgements

The authors would like to thank the editor and the referees for their useful comments and remarks.

Received: 8 July 2013 Accepted: 8 October 2013 Published: 08 Nov 2013

References

- 1. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7(2), 289-297 (2006)
- Abbas, M, Nazir, T, Radenović, S: Common fixed point of generalized weakly contractive maps in partially ordered G-metric spaces. Appl. Math. Comput. 218(18), 9395-9398 (2012)
- 3. Aydi, H: A fixed point result involving a generalized weakly contractive condition in *G*-metric spaces. Bull. Math. Anal. Appl. **3**(4), 180-188 (2011)
- Aydi, H: A common fixed point of integral type contraction in generalized metric spaces. J. Adv. Math. Stud. 5(1), 111-117 (2012)

- Aydi, H, Karapinar, E, Shatanawi, W: Tripled common fixed point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl. 2012, 101 (2012)
- Aydi, H, Karapinar, E, Shatanawi, W: Tripled fixed point results in generalized metric spaces. J. Appl. Math. 2012, Article ID 314279 (2012)
- 7. Radenović, S, Pantelić, S, Salimi, P, Vujaković, J: A note on some tripled coincidence point results in G-metric spaces. Int. J. Math. Sci. Eng. Appl. 6(VI), 23-38 (2012)
- 8. Aydi, H, Karapınar, E, Postolache, M: Tripled coincidence point theorems for weak phi-contractions in partially ordered metric spaces. Fixed Point Theory Appl. **2012**, ID 44 (2012)
- 9. Aydi, H, Shatanawi, W, Vetro, C: On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 62(11), 4222-4229 (2011)
- Gajić, L, Crvenković, ZL: A fixed point result for mappings with contractive iterate at a point in G-metric spaces. Filomat 25(2), 53-58 (2011)
- 11. Gajić, L, Crvenković, ZL: On mappings with contractive iterate at a point in generalized metric spaces. Fixed Point Theory Appl. 2010, Article ID 458086 (2010)
- 12. Kaewcharoen, A, Kaewkhao, A: Common fixed points for single-valued and multi-valued mappings in G-metric spaces. Int. J. Math. Anal. 5, 1775-1790 (2011)
- 13. Tahat, N, Aydi, H, Karapinar, E, Shatanawi, W: Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. **2012**, 48 (2012)
- 14. Mustafa, Z, Obiedat, H, Awawdeh, F: Some fixed point theorem for mapping on complete *G*-metric spaces. Fixed Point Theory Appl. **2008**, Article ID 189870 (2008)
- Mustafa, Z, Khandaqji, M, Shatanawi, W: Fixed point results on complete G-metric spaces. Studia Sci. Math. Hung. 48(3), 304-319 (2011)
- 16. Mustafa, Z, Sims, B: Fixed point theorems for contractive mapping in complete G-metric spaces. Fixed Point Theory Appl. 2009, Article ID 917175 (2009)
- 17. Mustafa, Z, Shatanawi, W, Bataineh, M: Existence of fixed points results in G-metric spaces. Int. J. Math. Math. Sci. 2009, Article ID 283028 (2009)
- Öztürk, M, Başarir, M: On some common fixed point theorems with *φ*-maps on G-cone metric spaces. Bull. Math. Anal. Appl. 3, 121-133 (2011)
- Popa, V, Patriciu, AM: A general fixed point theorem for mappings satisfying an *φ*-implicit relation in complete G-metric spaces. Gazi Univ. J. Sci. 25(2), 403-408 (2012)
- 20. Shatanawi, W: Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces. Fixed Point Theory Appl. 2010, Article ID 181650 (2010)
- 21. Jleli, M, Samet, B: Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, ID 210 (2012)
- 22. Chandok, S, Mustafa, Z, Postolache, M: Coupled common fixed point theorems for mixed *g*-monotone mappings in partially ordered *G*-metric spaces. U. Politeh. Buch. Ser. A (in printing)
- Radenović, S: Remarks on some recent coupled coincidence point results in symmetric G-metric spaces. J. Oper. 2013, Article ID 290525 (2013)
- 24. Shatanawi, W, Chauhan, S, Postolache, M, Abbas, M, Radenović, S: Common fixed points for contractive mappings of integral type in G-metric spaces. J. Adv. Math. Stud. 6(1), 53-72 (2013)
- Bhaskar, TG, Laksmikantham, V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65, 1379-1393 (2006)
- Laksmikantham, V, Ćirić, L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70, 4341-4349 (2009)
- Aydi, H, Damjanović, B, Samet, B, Shatanawi, W: Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Math. Comput. Model. 54, 2443-2450 (2011)
- Aydi, H, Postolache, M, Shatanawi, W: Coupled fixed point results for (ψ, φ)-weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 63(1), 298-309 (2012)
- Choudhury, BS, Metiya, N, Postolache, M: A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. 2013, ID 152 (2013)
- Chough, R, Rhoades, BE, Agarwal, M: Coupled fixed points of Geraghty-type mappings in G-metric spaces. J. Adv. Math. Stud. 6(1), 127-142 (2013)
- Cho, YJ, Kadelburg, Z, Saadati, R, Shatanawi, W: Coupled fixed point theorems under weak contractions. Discrete Dyn. Nat. Soc. 2012, Article ID 184534 (2012). doi:10.1155/2012/184534
- 32. Kadelburg, Z, Nashine, HK, Radenović, S: Common coupled fixed point results in partially ordered G-metric spaces. Bull. Math. Anal. Appl. 4(2), 51-63 (2012)
- Nashine, HK, Shatanawi, W: Coupled common fixed point theorems for pair of commuting mappings in partially ordered complete metric spaces. Comput. Math. Appl. 62(4), 1984-1993 (2011)
- 34. Samet, B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. **72**, 4508-4517 (2010)
- Shatanawi, W, Postolache, M: Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013, Article ID 54 (2013)
- 36. Shatanawi, W: Some common coupled fixed point results in cone metric spaces. Int. J. Math. Anal. 4, 2381-2388 (2010)
- Shatanawi, W: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 40(3), 441-447 (2011)
 Shatanawi, W: Partially ordered cone metric spaces and coupled fixed point results. Comput. Math. Appl. 60,
- 2508-2515 (2010)
- Saadati, R, Vaezpour, SM, Vetro, P, Rhoades, BE: Fixed point theorems in generalized partially ordered G-metric spaces. Math. Comput. Model. 52, 797-801 (2010)
- 40. Gholizadeh, L, Saadati, R, Shatanawi, W, Vaezpour, SM: Contractive mapping in generalized, ordered metric spaces with application in integral equations. Math. Probl. Eng. **2011**, Article ID 380784 (2011)
- Lakzian, H, Aydi, H, Rhoades, BE: Fixed points for (φ, ψ, p)-weakly contractive mappings in metric spaces with w-distance. Appl. Math. Comput. 219, 6777-6782 (2013)

- 42. Shatanawi, W, Postolache, M: Some fixed point results for a G-weak contraction in G-metric spaces. Abstr. Appl. Anal. 2012, Article ID 815870 (2012)
- Shatanawi, W: Some fixed point results for a generalized ψ-weak contraction mappings in orbitally metric spaces. Chaos Solitons Fractals 45, 520-526 (2012)
- Shatanawi, W, Samet, B: On (ψ, φ)-weakly contractive condition in partially ordered metric spaces. Comput. Math. Appl. 62, 3204-3214 (2011)
- Haghi, RH, Rezapour, S, Shahzad, N: Some fixed point generalizations are not real generalizations. Nonlinear Anal. 74, 1799-1803 (2011)
- Haghi, RH, Postolache, M, Rezapour, S: On *T*-stability of the Picard iteration for generalized phi-contraction mappings. Abstr. Appl. Anal. 2012, ID 658971 (2012)

10.1186/1687-1812-2013-275

Cite this article as: Shatanawi and Pitea: Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction. Fixed Point Theory and Applications 2013, 2013:275

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com