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Abstract
In this paper, we introduce the concept of αc-admissible non-self mappings and
prove the existence and convergence of the past-present-future (briefly, PPF)
dependent fixed point theorems for such mappings in the Razumikhin class. We use
these results to prove the PPF dependent fixed point of Bernfeld et al. (Appl. Anal.
6:271-280, 1977) and also apply our results to PPF dependent coincidence point
theorems.
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1 Introduction
The applications of fixed point theory are very important and useful in diverse disciplines
of mathematics. The theory can be applied to solve many problem in real world, for ex-
ample: equilibrium problems, variational inequalities and optimization problems. A very
powerful tool in fixed point theory is the Banach fixed point theorem or Banach’s contrac-
tion principle for a single-valued mapping. It is no surprise that there is a great number of
generalizations of this principle. Several mathematicians have gone in several directions
modifying Banach’s contractive condition, changing the space or extending a single-valued
mapping to a multivalued mapping (see [–]).
One of the most interesting results is the extension of Banach’s contraction principle

in case of non-self mappings. In , Bernfeld et al. [] introduced the concept of fixed
point for mappings that have different domains and ranges, the so called past-present-
future (briefly, PPF) dependent fixed point or the fixed point with PPF dependence. Fur-
thermore, they gave the notion of Banach-type contraction for a non-self mapping and
also proved the existence of PPF dependent fixed point theorems in the Razumikhin class
for Banach-type contraction mappings. These results are useful for proving the solutions
of nonlinear functional differential and integral equations which may depend upon the
past history, present data and future consideration. Several PPF dependence fixed point
theorems have been proved by many researchers (see [–]).
On the other hand, Samet et al. [] were first to introduce the concept of α-admissible

self-mappings and they proved the existence of fixed point results using contractive condi-
tions involving an α-admissible mapping in complete metric spaces. They also gave some
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examples and applications to ordinary differential equations of the obtained results. Sub-
sequently, there are a number of results proved for contraction mappings via the concept
of α-admissible mapping in metric spaces and other spaces (see [–] and references
therein).
To the best of our knowledge, there has been no discussion so far concerning the PPF de-

pendent fixed point theorems via α-admissible mappings. In this paper, we introduce the
concept of αc-admissible non-self mappings and establish the existence and convergence
of PPF dependent fixed point theorems for contraction mappings involving αc-admissible
non-self mappings in the Razumikhin class. Furthermore, we apply our results to the ex-
istence of PPF dependent fixed point theorems in [] and also apply to PPF dependent
coincidence point theorems.

2 Preliminaries
Throughout this paper, E denotes a Banach space with the norm ‖ · ‖E , I denotes a closed
interval [a,b] in R, and E = C(I,E) denotes the set of all continuous E-valued functions
on I equipped with the supremum norm ‖ · ‖E defined by

‖φ‖E = sup
t∈I

∥∥φ(t)
∥∥
E

for φ ∈ E.
For a fixed element c ∈ I , the Razumikhin or minimal class of functions in E is defined

by

Rc =
{
φ ∈ E : ‖φ‖E =

∥∥φ(c)
∥∥
E

}
.

It is easy to see that the constant function is one of the mapping inRc. The classRc is said
to be algebraically closed with respect to difference if φ–ξ ∈Rc whenever φ, ξ ∈Rc. Also,
we say that the class Rc is topologically closed if it is closed with respect to the topology
on E generated by the norm ‖ · ‖E .

Definition. (Bernfeld et al. []) Apointφ ∈ E is said to be aPPFdependent fixed point
or a fixed point with PPF dependence of the non-self mapping T : E → E if Tφ = φ(c) for
some c ∈ I .

Definition . (Bernfeld et al. []) Themapping T : E → E is called a Banach-type con-
traction if there exists a real number k ∈ [, ) such that

‖Tφ – Tξ‖E ≤ k‖φ – ξ‖E (.)

for all φ, ξ ∈ E.

Definition . (Samet et al. []) Let X be a nonempty set, T : X → X and α : X × X →
[,∞). We say that T is an α-admissible mapping if it satisfies the following condition:

for x, y ∈ X for which α(x, y)≥  �⇒ α(Tx,Ty) ≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/280
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Example . Let X = [,∞). Define T : X → X and α : X × X → [,∞) by Tx =
x for all x ∈ X and

α(x, y) =

⎧⎨
⎩
 if x ≥ y,

 otherwise.

Then T is α-admissible.

Example . Let X = [,∞). Define T : X → X and α : X × X → [,∞) by Tx = logx for
all x ∈ X and

α(x, y) =

⎧⎨
⎩
ex–y if x≥ y,

 otherwise.

Then T is α-admissible.

Remark . In the setting of Examples . and ., every nondecreasing self-mapping T
is ß-admissible.

Example . Let X =R. Define T : X → X and α : X ×X → [,∞) by

Tx =

⎧⎪⎪⎨
⎪⎪⎩

lnx if x > ,
x
 if  ≤ x ≤ ,

 otherwise

and

α(x, y) =

⎧⎨
⎩
 if x, y ∈ [, ],

 otherwise.

Then T is α-admissible.

3 PPF dependent fixed point theorems for αc-admissible mappings
First of all, we introduce the concept of αc-admissible non-self mappings.

Definition . Let c ∈ I and T : E → E, α : E × E → [,∞). We say that T is an αc-
admissible mapping if for φ, ξ ∈ E,

α
(
φ(c), ξ (c)

) ≥  implies α(Tφ,Tξ )≥ .

Example . Let E = R be real Banach spaces with usual norms and I = [, ]. Define
T : E → E and α : E × E → [,∞) by Tφ = φ() for all φ ∈ E and

α(x, y) =

⎧⎨
⎩
 if x ≥ y,

 otherwise.

Then T is α-admissible.
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Next, we prove the following result for a PPF dependent fixed point.

Theorem . Let T : E → E, α : E×E → [,∞) be two mappings satisfying the following
conditions:
(a) There exists c ∈ I such thatRc is topologically closed and algebraically closed with

respect to difference.
(b) T is αc-admissible.
(c) For all φ, ξ ∈ E,

α
(
φ(c),Tφ

)
α
(
ξ (c),Tξ

)‖Tφ – Tξ‖E ≤ k‖φ – ξ‖E ,

where k ∈ [, ).
(d) If {φn} is a sequence in E such that φn → φ as n→ ∞ and α(φn(c),Tφn) ≥  for all

n ∈N, then α(φ(c),Tφ)≥ .
If there exists φ ∈ Rc such that α(φ(c),Tφ) ≥ , then T has a unique PPF dependent
fixed point φ∗ inRc such that α(φ∗(c),Tφ∗)≥ .
Moreover, for a fixed φ ∈Rc such that α(φ(c),Tφ) ≥ , if a sequence {φn} of iterates of

T inRc is defined by

Tφn– = φn(c) (.)

for all n ∈N, then {φn} converges to a PPF dependent fixed point of T inRc.

Proof Let φ be a point inRc ⊆ E such that α(φ(c),Tφ)≥ . Since Tφ ∈ E, there exists
x ∈ E such that Tφ = x. Choose φ ∈Rc such that

x = φ(c).

Since φ ∈Rc ⊆ E and by hypothesis, we get Tφ ∈ E. This implies that there exists x ∈ E
such that Tφ = x. Thus, we can choose φ ∈Rc such that

x = φ(c).

By continuing this process, by induction, we can construct the sequence {φn} in Rc ⊆ E

such that

Tφn– = φn(c)

for all n ∈N.
It follows from the fact thatRc is algebraically closed with respect to difference that

‖φn– – φn‖E =
∥∥φn–(c) – φn(c)

∥∥
E

for all n ∈N.
Since T is αc-admissible and α(φ(c),φ(c)) = α(φ(c),Tφ) ≥ , we deduce that

α
(
φ(c),Tφ

)
= α(Tφ,Tφ) ≥ .

By continuing this process, we get α(φn–(c),Tφn–) ≥  for all n ∈N.

http://www.fixedpointtheoryandapplications.com/content/2013/1/280
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Next, we show that {φn} is a Cauchy sequence inRc. For each n ∈N, we have

‖φn – φn+‖E =
∥∥φn(c) – φn+(c)

∥∥
E

= ‖Tφn– – Tφn‖E
≤ α

(
φn–(c),Tφn–

)
α
(
φn(c),Tφn

)‖Tφn– – Tφn‖E
≤ k‖φn– – φn‖E .

By repeating the above relation, we get

‖φn – φn+‖E ≤ kn‖φ – φ‖E

for all n ∈N.
Form,n ∈N withm > n, we obtain that

‖φn – φm‖E ≤ ‖φn – φn+‖E + ‖φn+ – φn+‖E + · · · + ‖φm– – φm‖E
≤ (

kn + kn+ + · · · + km–)‖φ – φ‖E ≤ kn

 – k
‖φ – φ‖E .

This implies that the sequence {φn} is a Cauchy sequence inRc ⊆ E. By the completeness
of E, we get that {φn} converges to a limit point φ∗ ∈ E, that is, limn→∞ φn = φ∗. Since
Rc is topologically closed, we have φ∗ ∈Rc.
Now we prove that φ∗ is a PPF dependent fixed point of T . By (d), we have α(φ∗(c),

Tφ∗)≥ . From assumption (c), we get

∥∥Tφ∗ – φ∗(c)
∥∥
E ≤ ∥∥Tφ∗ – φn(c)

∥∥
E +

∥∥φn(c) – φ∗(c)
∥∥
E

=
∥∥Tφ∗ – Tφn–

∥∥
E +

∥∥φn – φ∗∥∥
E

≤ α
(
φ∗(c),Tφ∗)α(

φn–(c),Tφn–
)∥∥Tφ∗ – Tφn–

∥∥
E +

∥∥φn – φ∗∥∥
E

≤ k
∥∥φ∗ – φn–

∥∥
E

+
∥∥φn – φ∗∥∥

E

for all n ∈N. Taking the limit as n→ ∞ in the above inequality, we have

∥∥Tφ∗ – φ∗(c)
∥∥
E = 

and so

Tφ∗ = φ∗(c).

This implies that φ∗ is a PPF dependent fixed point of T inRc.
Finally, we prove the uniqueness of a PPF dependent fixed point of T in Rc. Let φ∗

and ξ ∗ be two PPF dependent fixed points of T in Rc such that α(φ∗(c),Tφ∗) ≥  and
α(ξ ∗(c),Tξ ∗)≥ . Now we obtain that

∥∥φ∗ – ξ ∗∥∥
E

=
∥∥φ∗(c) – ξ ∗(c)

∥∥
E

=
∥∥Tφ∗ – Tξ ∗∥∥

E
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≤ α
(
φ∗(c),Tφ∗)α(

ξ ∗(c),Tξ ∗)∥∥Tφ∗ – Tξ ∗∥∥
E

≤ k
∥∥φ∗ – ξ ∗∥∥

E
.

Since  ≤ k < , we get ‖φ∗ – ξ ∗‖E =  and then φ∗ = ξ ∗. Therefore, T has a unique PPF
dependent fixed point inRc. This completes the proof. �

Theorem . Let T : E → E, α : E×E → [,∞) be two mappings satisfying the following
conditions:
(a) There exists c ∈ I such thatRc is topologically closed and algebraically closed with

respect to difference.
(b) T is αc-admissible.
(c) For all φ, ξ ∈ E,

(‖Tφ – Tξ‖E + ε
)α(φ(c),Tφ)α(ξ (c),Tξ ) ≤ k‖φ – ξ‖E + ε,

where k ∈ [, ) and ε ≥ .
(d) If {φn} is a sequence in E such that φn → φ as n→ ∞ and α(φn(c),Tφn) ≥  for all

n ∈N, then α(φ(c),Tφ)≥ .
If there exists φ ∈ Rc such that α(φ(c),Tφ) ≥ , then T has a unique PPF dependent
fixed point φ∗ inRc such that α(φ∗(c),Tφ∗)≥ .
Moreover, for a fixed φ ∈Rc such that α(φ(c),Tφ) ≥ , if a sequence {φn} of iterates of

T inRc is defined by

Tφn– = φn(c) (.)

for all n ∈N, then {φn} converges to a PPF dependent fixed point of T inRc.

Proof Let φ be a point inRc ⊆ E such that α(φ(c),Tφ)≥ . Since Tφ ∈ E, there exists
x ∈ E such that Tφ = x. Now, we choose φ ∈Rc such that

x = φ(c).

From the fact that Tφ ∈ E, we obtain that there exists x ∈ E such that Tφ = x. Thus, we
can choose φ ∈Rc such that

x = φ(c).

By continuing this process, we can construct the sequence {φn} inRc ⊆ E such that

Tφn– = φn(c)

for all n ∈N.
By algebraic closedness with respect to difference ofRc, we get

‖φn– – φn‖E =
∥∥φn–(c) – φn(c)

∥∥
E

for all n ∈N.

http://www.fixedpointtheoryandapplications.com/content/2013/1/280
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Since T is αc-admissible and α(φ(c),φ(c)) = α(φ(c),Tφ) ≥ , we have

α
(
φ(c),Tφ

)
= α(Tφ,Tφ) ≥ .

By repeating this process and by induction, we get

α
(
φn–(c),Tφn–

) ≥  (.)

for all n ∈N.
Next, we show that {φn} is a Cauchy sequence inRc. For each n ∈N, we have

‖φn – φn+‖E + ε =
∥∥φn(c) – φn+(c)

∥∥
E + ε

= ‖Tφn– – Tφn‖E + ε

≤ (‖Tφn– – Tφn‖E + ε
)α(φn–(c),Tφn–)α(φn(c),Tφn)

≤ k‖φn– – φn‖E + ε.

This implies that

‖φn – φn+‖E ≤ k‖φn– – φn‖E

for all n ∈N. Repeated application of the above relation yields

‖φn – φn+‖E ≤ kn‖φ – φ‖E

for all n ∈N.
Form,n ∈N withm > n, we obtain that

‖φn – φm‖E ≤ ‖φn – φn+‖E + ‖φn+ – φn+‖E + · · · + ‖φm– – φm‖E
≤ (

kn + kn+ + · · · + km–)‖φ – φ‖E
≤ kn

 – k
‖φ – φ‖E .

This implies that the sequence {φn} is a Cauchy sequence in Rc ⊆ E. Since Rc is topo-
logically closed and E is complete, we get {φn} converges to a limit point φ∗ ∈Rc, that is,
limn→∞ φn = φ∗.
Now we show that φ∗ is a PPF dependent fixed point of T . By (.) and assumption (d),

we get α(φ∗(c),Tφ∗) ≥ . From assumption (c), we get

∥∥Tφ∗ – φ∗(c)
∥∥
E + ε ≤ ∥∥Tφ∗ – φn(c)

∥∥
E +

∥∥φn(c) – φ∗(c)
∥∥
E + ε

=
∥∥Tφ∗ – Tφn–

∥∥
E +

∥∥φn – φ∗∥∥
E

+ ε

≤ (∥∥Tφ∗ – Tφn–
∥∥
E + ε

)α(φ∗(c),Tφ∗)α(φn–(c),Tφn–) +
∥∥φn – φ∗∥∥

E

≤ (
k
∥∥φ∗ – φn–

∥∥
E

+ ε
)
+

∥∥φn – φ∗∥∥
E

http://www.fixedpointtheoryandapplications.com/content/2013/1/280
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for all n ∈N. Taking the limit as n→ ∞ in the above inequality, we have

∥∥Tφ∗ – φ∗(c)
∥∥
E = .

This implies that Tφ∗ = φ∗(c) and so φ∗ is a PPF dependent fixed point of T inRc.
Finally, we prove the uniqueness of a PPF dependent fixed point of T in Rc. Let φ∗

and ξ ∗ be two PPF dependent fixed points of T in Rc such that α(φ∗(c),Tφ∗) ≥  and
α(ξ ∗(c),Tξ ∗)≥ . By assumption (c), we have

∥∥φ∗ – ξ ∗∥∥
E

+ ε =
∥∥φ∗(c) – ξ ∗(c)

∥∥
E + ε

=
∥∥Tφ∗ – Tξ ∗∥∥

E + ε

≤ (∥∥Tφ∗ – Tξ ∗∥∥
E + ε

)α(φ∗(c),Tφ∗)α(ξ∗(c),Tξ∗)

≤ k
∥∥φ∗ – ξ ∗∥∥

E
+ ε

≤ k
∥∥φ∗ – ξ ∗∥∥

E
+ ε

and so ‖φ∗ – ξ ∗‖E ≤ k‖φ∗ – ξ ∗‖E . Since  < k < , we have ‖φ∗ – ξ ∗‖E =  and hence
φ∗ = ξ ∗. Therefore, T has a unique PPF dependent fixed point in Rc. This completes the
proof. �

Theorem . Let T : E → E, α : E×E → [,∞) be two mappings satisfying the following
conditions:
(a) There exists c ∈ I such thatRc is topologically closed and algebraically closed with

respect to difference.
(b) T is αc-admissible.
(c) For all φ, ξ ∈ E,

(
α
(
φ(c),Tφ

)
α
(
ξ (c),Tξ

)
–  + ε′)‖Tφ–Tξ‖E ≤ εk‖φ–ξ‖E ,

where k ∈ [, ) and  < ε ≤ ε′.
(d) If {φn} is a sequence in E such that φn → φ as n→ ∞ and α(φn(c),Tφn) ≥  for all

n ∈N, then α(φ(c),Tφ)≥ .
If there exists φ ∈ Rc such that α(φ(c),Tφ) ≥ , then T has a unique PPF dependent
fixed point φ∗ inRc such that α(φ∗(c),Tφ∗)≥ .
Moreover, for a fixed φ ∈Rc such that α(φ(c),Tφ) ≥ , if a sequence {φn} of iterates of

T inRc is defined by

Tφn– = φn(c) (.)

for all n ∈N, then {φn} converges to a PPF dependent fixed point of T inRc.

Proof For fixed φ inRc ⊆ E such that α(φ(c),Tφ)≥ . Here we construct the sequence
{φn} inRc.
Since Tφ ∈ E, there exists x ∈ E such that Tφ = x. Choose φ ∈Rc such that

x = φ(c).

http://www.fixedpointtheoryandapplications.com/content/2013/1/280
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SinceTφ ∈ E, we can find x ∈ E such thatTφ = x. By the same argument, we can choose
φ ∈Rc such that

x = φ(c).

By induction, we produce the sequence {φn} inRc ⊆ E such that

Tφn– = φn(c)

for all n ∈N.
We also obtain that

‖φn– – φn‖E =
∥∥φn–(c) – φn(c)

∥∥
E

for all n ∈N sinceRc is algebraically closed with respect to difference.
Since T is αc-admissible and α(φ(c),φ(c)) = α(φ(c),Tφ) ≥ , we have

α
(
φ(c),Tφ

)
= α(Tφ,Tφ) ≥ .

By continuing this process, we get α(φn–(c),Tφn–) ≥  for all n ∈N.
Next, we show that {φn} is a Cauchy sequence inRc. For each n ∈N, we have

ε‖φn–φn+‖E = ε‖φn(c)–φn+(c)‖E

= ε‖Tφn––Tφn‖E

≤ (
α
(
φn–(c),Tφn–

)
α
(
φn(c),Tφn

)
–  + ε′)‖Tφn––Tφn‖E

≤ εk‖φn––φn‖E .

Since ε > , we have

‖φn – φn+‖E ≤ k‖φn– – φn‖E

for all n ∈N. By repeating this inequality, we have

‖φn – φn+‖E ≤ kn‖φ – φ‖E

for all n ∈N.
Form,n ∈N withm > n, we obtain that

‖φn – φm‖E ≤ ‖φn – φn+‖E + ‖φn+ – φn+‖E + · · · + ‖φm– – φm‖E
≤ (

kn + kn+ + · · · + km–)‖φ – φ‖E
≤ kn

 – k
‖φ – φ‖E .

This implies that the sequence {φn} is a Cauchy sequence inRc ⊆ E.

http://www.fixedpointtheoryandapplications.com/content/2013/1/280
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Since Rc is topologically closed, by the completeness of E, we get {φn} converges to a
limit point φ∗ ∈Rc, that is, limn→∞ φn = φ∗.
Now we prove that φ∗ is a PPF dependent fixed point of T . Since α(φn–(c),Tφn–) ≥ 

for all n ∈ N and limn→∞ φn = φ∗, by using condition (d), we have α(φ∗(c),Tφ∗) ≥ . From
condition (c), we get

ε‖Tφ∗–φ∗(c)‖E ≤ ε‖Tφ∗–φn(c)‖E+‖φn(c)–φ∗(c)‖E

= ε‖Tφ∗–Tφn–‖E+‖φn–φ∗‖E

= ε‖Tφ∗–Tφn–‖Eε‖φn–φ∗‖E

≤ (
α
(
φ∗(c),Tφ∗)α(

φn–(c),Tφn–
)
–  + ε′)‖Tφ∗–Tφn–‖Eε‖φn–φ∗‖E

≤ εk‖φ
∗–φn–‖E ε‖φn–φ∗‖E

≤ εk‖φ
∗–φn–‖E+‖φn–φ∗‖E

for all n ∈N.
Since the exponential function is a real continuous function, we can take the limit as

n→ ∞ in the above inequality, and so

∥∥Tφ∗ – φ∗(c)
∥∥
E = .

This implies that Tφ∗ = φ∗(c) and hence φ∗ is a PPF dependent fixed point of T inRc.
Finally, we prove the uniqueness of PPF dependent fixed point of T in Rc. Let φ∗

and ξ ∗ be two PPF dependent fixed points of T in Rc such that α(φ∗(c),Tφ∗) ≥  and
α(ξ ∗(c),Tξ ∗)≥ . Now we obtain that

ε‖φ∗–ξ∗‖E = ε‖φ∗(c)–ξ∗(c)‖E

= ε‖Tφ∗–Tξ∗‖E

≤ (
α
(
φ∗(c),Tφ∗)α(

ξ ∗(c),Tξ ∗) –  + ε′)‖Tφ∗–Tξ∗‖E

≤ εk‖φ
∗–ξ∗‖E

and then ‖φ∗ – ξ ∗‖E ≤ k‖φ∗ – ξ ∗‖E . Since  ≤ k < , we get ‖φ∗ – ξ ∗‖E =  and then
φ∗ = ξ ∗. Therefore, T has a unique PPF dependent fixed point in Rc. This completes the
proof. �

Remark . If the Razumikhin class Rc is not topologically closed, then the limit of the
sequence {φn} inTheorems ., . and .may be outside ofRc, whichmaynot be unique.

4 Consequences
In this section, we show that many existing results in the literature can be deduced from
and applied easily to our theorems.

4.1 Banach contraction theorem
By applying Theorems ., . and ., we obtain the following results.

http://www.fixedpointtheoryandapplications.com/content/2013/1/280
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Theorem . Let T : E → E, and there exists a real number k ∈ [, ) such that

‖Tφ – Tξ‖E ≤ k‖φ – ξ‖E (.)

for all φ, ξ ∈ E.
If there exists c ∈ I such that Rc is topologically closed and algebraically closed with re-

spect to difference, then T has a unique PPF dependent fixed point inRc.
Moreover, for a fixed φ ∈Rc, if a sequence {φn} of iterates of T inRc is defined by

Tφn– = φn(c) (.)

for all n ∈N, then {φn} converges to a PPF dependent fixed point of T inRc.

Proof Let α : E× E → [,∞) be the mapping defined by α(x, y) =  for all x, y ∈ E. Then T
is an αc-admissible mapping. It is easy to show that all the hypotheses of Theorems ., .
and . are satisfied. Consequently, T has a unique PPF dependent fixed point inRc. �

4.2 PPF dependent coincidence point theorems
In this section, we discuss some relation between PPF dependent fixed point results and
PPF dependent coincidence point results. First, we give the concept of PPF dependent
coincidence point.

Definition . Let S : E → E and T : E → E. A point φ ∈ E is said to be a PPF de-
pendent coincidence point or a coincidence point with PPF dependence of S and T if
Tφ = (Sφ)(c) for some c ∈ I .

Definition . Let c ∈ I and S : E → E, T : E → E, α : E × E → [,∞). We say that
(S,T) is an αc-admissible pair if for φ, ξ ∈ E,

α
(
(Sφ)(c), (Sξ )(c)

) ≥  implies α(Tφ,Tξ )≥ .

Remark . It easy to see that if (S,T) is an αc-admissible pair and S is an identity map-
ping, then T is also an αc-admissible mapping.

Now, we indicate that Theorem . can be utilized to derive a PPF dependent coinci-
dence point theorem.

Theorem. Let S : E → E,T : E → E, α : E×E → [,∞) be threemappings satisfying
the following conditions:
(a) There exists c ∈ I such that S(Rc) is topologically closed and algebraically closed with

respect to difference.
(b) (S,T) is αc-admissible.
(c) For all φ, ξ ∈ E,

α
(
(Sφ)(c),Tφ

)
α
(
(Sξ )(c),Tξ

)‖Tφ – Tξ‖E ≤ k‖Sφ – Sξ‖E ,

where k ∈ [, ).

http://www.fixedpointtheoryandapplications.com/content/2013/1/280
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(d) If {Sφn} is a sequence in E such that Sφn → Sφ as n → ∞ and α((Sφn)(c),Tφn) ≥ 
for all n ∈N, then α((Sφ)(c),Tφ)≥ .

(e) S(Rc) ⊆Rc.
If there exists φ ∈Rc such that α(φ(c),Tφ)≥ , then S and T have a PPF dependent coin-
cidence point ω inRc such that α((Sω)(c),Tω)≥ .

Proof Consider the mapping S : E → E. We obtain that there exists F ⊆ E such that
S(F) = S(E) and S|F is one-to-one. Since T(F) ⊆ T(E) ⊆ E, we can define a mapping
A : S(F) → E by

A(Sφ) = Tφ (.)

for all φ ∈ F. Since S|F is one-to-one, then A is well defined.
From (.) and condition (c), we have

α
(
(Sφ)(c),A(Sφ)

)
α
(
(Sξ )(c),A(Sξ )

)∥∥A(Sφ) –A(Sξ )
∥∥
E ≤ k‖Sφ – Sξ‖E

for all Sφ,Sξ ∈ S(E). This shows that A satisfies condition (c) of Theorem ..
Now, we use Theorem . with a mappingA, then there exists a unique PPF dependent

fixed point ϕ ∈ S(F) of A, that is, Aϕ = ϕ(c) and α(ϕ(c),Aϕ) ≥ . Since ϕ ∈ S(F), we can
find ω ∈ F such that ϕ = Sω. Therefore, we get

Tω =A(Sω) =Aϕ = ϕ(c) = (Sω)(c)

and

α
(
(Sω)(c),Tω

)
= α

(
ϕ(c),Aϕ

) ≥ .

This implies that ω is a PPF dependent coincidence point of T and S. This completes the
proof. �

Similarly, we can apply Theorems . and . to the Theorems . and .. Then, in
order to avoid repetition, the proof is omitted.

Theorem. Let S : E → E,T : E → E, α : E×E → [,∞) be threemappings satisfying
the following conditions:
(a) There exists c ∈ I such that S(Rc) is topologically closed and algebraically closed with

respect to difference.
(b) (S,T) is αc-admissible.
(c) For all φ, ξ ∈ E,

(‖Tφ – Tξ‖E + ε
)α((Sφ)(c),Tφ)α((Sξ )(c),Tξ ) ≤ k‖Sφ – Sξ‖E + ε,

where k ∈ [, ) and ε ≥ .
(d) If {Sφn} is a sequence in E such that Sφn → Sφ as n → ∞ and α((Sφn)(c),Tφn) ≥ 

for all n ∈N, then α((Sφ)(c),Tφ)≥ .
(e) S(Rc) ⊆Rc.
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If there exists φ ∈Rc such that α(φ(c),Tφ)≥ , then S and T have a PPF dependent coin-
cidence point ω inRc such that α((Sω)(c),Tω)≥ .

Theorem. Let S : E → E,T : E → E, α : E×E → [,∞) be threemappings satisfying
the following conditions:
(a) There exists c ∈ I such that S(Rc) is topologically closed and algebraically closed with

respect to difference.
(b) (S,T) is αc-admissible.
(c) For all φ, ξ ∈ E,

(
α
(
(Sφ)(c),Tφ

)
α
(
(Sξ )(c),Tξ

)
–  + ε′)‖Tφ–Tξ‖E ≤ εk‖Sφ–Sξ‖E ,

where k ∈ [, ) and  < ε ≤ ε′.
(d) If {Sφn} is a sequence in E such that Sφn → Sφ as n → ∞ and α((Sφn)(c),Tφn) ≥ 

for all n ∈N, then α((Sφ)(c),Tφ)≥ .
(e) S(Rc) ⊆Rc.

If there exists φ ∈Rc such that α(φ(c),Tφ)≥ , then S and T have a PPF dependent coin-
cidence point ω inRc such that α((Sω)(c),Tω)≥ .
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