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Abstract
In this paper, we construct generating functions for higher-order Euler-type
polynomials and numbers. By using the generating functions, we obtain functional
equations related to a generalized partial Hecke operator and Euler-type polynomials
and numbers. A special case of higher-order Euler-type polynomials is eigenfunctions
for the generalized partial Hecke operators. Moreover, we give not only some
properties, but also applications for these polynomials and numbers.
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1 Introduction
In this section, we define generalized partial Hecke operators and we give some nota-
tion for these operators. Also, we define generalized Euler-type polynomials, Apostol-
Bernoulli polynomials and Frobenius-Euler polynomials.
Throughout this paper, we use the following notations:
N = {, , . . .}, N = {, , , . . .} = N ∪ {}. Also, as usual, Z denotes the set of integers, R

denotes the set of real numbers and C denotes the set of complex numbers. We assume
that ln(z) denotes the principal branch of the multi-valued function ln(z) with an imag-
inary part �(ln(z)) constrained by –π < �(ln(z)) ≤ π . Furthermore, n =  if n = , and
n =  if n ∈N.

N(M) = (N,N, . . . ,NM),

whereM ∈N and N,N, . . . ,NM ∈N.
Let a ∈N and χa,N(M) be a function depending on a,N,N, . . . ,NM such that

χa,N(M) :N →C.

χa,N(M) is defined by

χa,N(M)(k) =
M∏
j=

ξ k(Nj),
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where  ≤ k ≤ a – , j ∈ {, , . . . ,M} and

ξ (Nj) = e
π i
Nj .

χa,N(M) satisfies the following properties:
(i) χa,N(M) is a periodic function with NN · · ·NM .
(ii) If we take N ≥  and N =N = · · · =NM = , we have

χa,(N,,,...,)(k) = ξ k(N)ξ k()ξ k() · · · ξ k() = ξ k(N).

We note that replacing N(M) by (N, , , . . . , ), χa,N(M) is reduced to ξ k(N) (cf. []).
Let C[x] be a ring of polynomials with complex coefficients. By using χa,N(M), we give

the following definition.

Definition . [] Let P ∈ C[x]. The generalized partial Hecke operator of Tχa,N(M) is de-
fined by

Tχa,N(M)

(
P(x)

)
=

a–∑
k=

χa,N(M)(k)P
(
x + k
a

)
.

The operator Tχa,N(M) satisfies the following properties:
(i) Tχa,N(M) is linear on C[x] and

Tχa,N(M) :C[x]→C[x].

(ii) Tχa,N(M) preserves the degree of the polynomials on C[x].
(iii) If we take N ≥  and N =N = · · · =NM = , we have

Tχa,N

(
P(x)

)
=

a–∑
k=

ξ k(N)P
(
x + k
a

)
.

Remark . Setting N(M) = (N, , , . . . , ), Tχa,(N,,,...,)
is reduced to Tχa,N

(cf. []).

The generating function of generalized Euler-type numbers Pn,N(M) is given by

FN(M)(t) =
∞∑
n=

Pn,N(M)
tn

n!
=

∏M
j= ξ (Nj) – 

– + et
∏M

j= ξ (Nj)

[].
Now, we give the definition of Euler-type polynomials as follows.

Definition . [] The polynomial Pn,N(M) is defined bymeans of the following generating
function:

FN(M)(t,x) =
∞∑
n=

Pn,N(M)(x)
tn

n!
=
((
∏M

j= ξ (Nj)) – )etx

(
∏M

j= ξ (Nj))et – 
, ()
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where

∣∣∣∣∣t +
M∑
j=

π i
Nj

∣∣∣∣∣ < π .

The polynomial Pn,N(M) satisfies the following properties:
(i) Pn,N(M) ∈ C[x].
(ii) Pn,N(M) is a polynomial with degree n and depends on N,N, . . . ,NM .
(iii) If we take N ≥  and N =N = · · · =NM = , we have

∞∑
n=

Pn,N (x)
tn

n!
=
(ξN – )etx

ξNet – 
,

where
∣∣∣∣t + π i

N

∣∣∣∣ < π .

(iv) We derive the following functional equation:

FN(M)(t,x) =FN(M)(t)etx, ()

so that, obviously,

Pn,N(M)() = Pn,N(M).

We now are ready to define Euler-type numbers and polynomials with order k.

Definition . Euler-type numbers with order k, P(k)
n,N(M), are defined by means of the

following generating functions:

F (k)
N(M)(t) =

∞∑
n=

P(k)
n,N(M)

tn

n!
, ()

where k ∈N and

∣∣∣∣∣t +
M∑
j=

π i
Nj

∣∣∣∣∣ < π .

Euler-type polynomials with order k are given by the following functional equation:

F (k)
N(M)(t,x) =F (k)

N(M)(t)e
tx =

∞∑
n=

P(k)
n,N(M)(x)

tn

n!
. ()

We see that

F ()
N(M)(t,x) = etx.
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Thus we obtain

P()
n,N(M)(x) = xn.

Remark . Substituting k =  into (), we get (). Therefore, () reduces to (); that is,

P()
n,N(M)(x) = Pn,N(M)(x)

so that, obviously,

P()
n,N(M)() = Pn,N(M).

By using () and (), we obtain

∞∑
n=

P(k)
n,N(M)(x)

tn

n!
=

∞∑
n=

P(k)
n,N(M)

tn

n!

∞∑
n=

xn
tn

n!
.

Therefore, we get the following theorem.

Theorem .

P(k)
n,N(M)(x) =

n∑
j=

(
n
j

)
xn–jP(k)

j,N(M). ()

Hence, we arrive at the following definition.

Definition . Euler-type polynomials with order k, P(k)
n,N(M), are defined by means of the

following generating functions:

F (k)
N(M)(t,x) =

∞∑
n=

P(k)
n,N(M)(x)

tn

n!
, ()

where
∣∣∣∣∣t +

M∑
j=

π i
Nj

∣∣∣∣∣ < π .

Note that there is one generating function for each value of k. These are given explicitly
as follows:

F (k)
N(M)(t,x) =

( – +
∏M

j= ξ (Nj)

– + et
∏M

j= ξ (Nj)

)k

etx

=
∞∑
n=

P(k)
n,N(M)(x)

tn

n!
.

We derive the following functional equation:

F (k+l)
N(M)(t,x) =F (k)

N(M)(t,x)F
(l)
N(M)(t). ()
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By using the above functional equation, we arrive at the following theorem.

Theorem .

P(k+l)
n,N(M)(x) =

n∑
j=

(
n
j

)
P(k)
j,N(M)(x)P

(l)
n–j,N(M). ()

Proof By using (), () and (), we get

∞∑
n=

P(k+l)
n,N(M)(x)

tn

n!
=

∞∑
n=

⎛
⎝ n∑

j=

(
n
j

)
P(k)
j,N(M)(x)P

(l)
n–j,N(M)

⎞
⎠ tn

n!
.

By comparing the coefficients of tn
n! on both sides of the above equation, we get the desired

result. �

Substituting x =  into (), we obtain a convolution formula for the numbers by the
following corollary.

Corollary .

P(k+l)
n,N(M) =

n∑
j=

(
n
j

)
P(k)
j,N(M)P

(l)
n–j,N(M).

By differentiating both sides of equation () with respect to the variable x, we obtain the
following higher-order differential equation:

∂ j

∂xj
FN(M)(t,x) = tjFN(M)(t,x). ()

Remark . SettingN(M) = (N, , , . . . , ), Pn,(N,,,...,) is reduced Pn,N (x) (cf. []). There-
fore Pn,N (x) was defined by generalized Bernoulli-Euler polynomials in [] as follows:

∞∑
n=

Pn,N (x)
tn

n!
=

⎧⎨
⎩

tetx
et– , N = ,
(ξN–)etx
ξNet– , N ≥ ,

so that, obviously,

Pn,(x) = Bn(x)

and

Pn,(x) = En(x).

Here Bn(x) and En(x) are Bernoulli polynomials and Euler polynomials, respectively (cf.
[–]).

The Frobenius-Euler polynomial is defined as follows:

http://www.fixedpointtheoryandapplications.com/content/2013/1/40
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Let u be an algebraic number such that  	= u ∈ C. Then the Frobenius-Euler polynomial
Hn(x,u) is defined by

 – u
et – u

etx =
∞∑
n=

Hn(x,u)
tn

n!
,

where∣∣∣∣t + ln

u

∣∣∣∣ < π

(cf. [–]).

Remark . Frobenius-Euler number is denoted by Hn(u) such that Hn(,u) = Hn(u).
Also, Hn(x, –) = En(x) (cf. [–]).

By using Frobenius-Euler numbers, one can obtain the Frobenius-Euler polynomials as
follows:

Hn(x,u) =
n∑
j=

(
n
j

)
xn–jHj(u)

(cf. [–]).
The Apostol-Bernoulli polynomial is defined as follows.

Definition . [, ] The Apostol-Bernoulli polynomial Bn(x,λ) is defined by

t
λet – 

etx =
∞∑
n=

Bn(x,λ)
tn

n!
,

where λ is the arbitrary real or complex parameter and

|t| < | lnλ|.

Remark . For λ = , we obtain that Bn(x, ) = Bn(x) (cf. [–]).

2 A functional equation of generalized Euler-type polynomials
Bayad, Aygunes and Simsek showed that for a≡ mod(N), there exists a unique sequence
of monic polynomials (Pn,N )n∈N in Q(ξN )[x] with degPn,N = n such that

Tχa,N

(
Pn,N (x)

)
= a–nPn,N (x),

where a,N ∈N (cf. []).
In this section, we give the following theorem.

Theorem . Let a,N,N, . . . ,NM ∈ N and a ≡ (modNN · · ·NM). Then there exists a
sequence (Pn,N(M))n∈N in

Q
(
ξ (N)ξ (N) · · · ξ (NM)

)
[x]

http://www.fixedpointtheoryandapplications.com/content/2013/1/40
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with

degPn,N(M) = n

such that

Tχa,N(M)

(
Pn,N(M)(x)

)
= a–nPn,N(M)(x). ()

Proof Since Pn,N(M) ∈ C[x] and Tχa,N(M) :C[x]→C[x], we get

Tχa,N(M)

(
Pn,N(M)(x)

)
=

a–∑
k=

χa,N(M)(k)Pn,N(M)

(
x + k
a

)
.

From the definition of χa,N(M)(k), we have

Tχa,N(M)

(
Pn,N(M)(x)

)
=

a–∑
k=

( M∏
j=

e
π ik
Nj

)
Pn,N(M)

(
x + k
a

)
.

By using the generating function of Pn,N(M)(x), we get

∞∑
n=

a–∑
k=

( M∏
j=

e
π ik
Nj

)
Pn,N(M)

(
x + k
a

)
tn

n!

=
a–∑
k=

( M∏
j=

e
π ik
Nj

) ∞∑
n=

Pn,N(M)

(
x + k
a

)
tn

n!

=
a–∑
k=

( M∏
j=

e
π ik
Nj

)
((
∏M

j= e
π i
Nj ) – )et( x+ka )

(
∏M

j= e
π i
Nj )et – 

=
((
∏M

j= e
π i
Nj ) – )e tx

a

(
∏M

j= e
π i
Nj )et – 

a–∑
k=

(
exp

( M∑
j=

e
π ik
Nj

))
exp

(
tk
a

)

=
((
∏M

j= e
π i
Nj ) – )e tx

a

(
∏M

j= e
π i
Nj )et – 

a–∑
k=

(
exp

(
t
a
+

M∑
j=

π i
Nj

))k

=
((
∏M

j= e
π i
Nj ) – )e tx

a

(
∏M

j= e
π i
Nj )et – 

et(exp(
∑M

j=
π i
Nj

))a – 

e t
a (exp(

∑M
j=

π i
Nj

)) – 
.

Since a≡ (modNN · · ·NM), the following relation holds:

(
exp

( M∑
j=

π i
Nj

))a

= exp

( M∑
j=

π i
Nj

)
=

M∏
j=

e
π i
Nj .

Therefore, we have

∞∑
n=

( a–∑
k=

( M∏
j=

e
π ik
Nj

)
Pn,N(M)

(
x + k
a

))
tn

n!
=

∞∑
n=

a–nPn,N(M)(x)
tn

n!
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/40
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By comparing the coefficients of tn
n! on both sides of the above equation, we get the de-

sired result. �

Remark . A different proof of () is given in []. If we take N ≥  and N =N = · · · =
NM = , we have the following functional equation:

Tχa,N

(
Pn,N (x)

)
= a–nPn,N (x)

which is satisfied for generalized Bernoulli-Euler polynomials in [].

3 Some properties of generalized Euler-type polynomials
In this section, we obtain some relations between generalized Euler-type polynomials,
Apostol-Bernoulli polynomials and Frobenius-Euler polynomials. Also, we give a formula
to obtain the generalized Euler-type polynomials.

Theorem . Let n ∈N. Then we have

Pn+,N(M)(x) = Pn,N(M)(x) +
∏M

j= ξ (Nj)

 –
∏M

j= ξ (Nj)

n∑
k=

(
n
k

)
P()
k,N(M)(x).

Proof By differentiating both sides of equation () with respect to the variable t, we have

∞∑
n=

Pn+,N(M)(x)
tn

n!
=

∂

∂t
FN(M)(t,x)

= FN(M)(t,x) +
( ∏M

j= ξ (Nj)

 –
∏M

j= ξ (Nj)

)
etetx

(
FN(M)(t)

)

=
∞∑
n=

Pn,N(M)(x)
tn

n!
+

( ∏M
j= ξ (Nj)

 –
∏M

j= ξ (Nj)

)
et

( ∞∑
n=

P()
n,N(M)(x)

tn

n!

)
.

Therefore, we obtain

∞∑
n=

Pn+,N(M)(x)
tn

n!
=

∞∑
n=

(
Pn,N(M)(x) +

∏M
j= ξ (Nj)

 –
∏M

j= ξ (Nj)

n∑
k=

(
n
k

)
P()
k,N(M)(x)

)
tn

n!
.

By comparing the coefficients of tn
n! , we obtain the desired result. �

In the following theorem, we give a relation between the polynomials Pn,N(M)(x) and
Frobenius-Euler polynomials.

Theorem . [] Let n ∈ N. Then we have

Pn,N(M)(x) =Hn

(
x,

M∏
j=


ξ (Nj)

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/40
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Proof By using the generating function of Pn,N(M)(x), we have

∞∑
n=

Pn,N(M)(x)
tn

n!
=

∞∑
n=

Hn

(
x,

M∏
j=


ξ (Nj)

)
tn

n!
.

In the above equation, if we compare the coefficients of tn
n! , we get the desired result.

�

In the following theorem, we give a relation between Pn,N(M)(x) and Apostol-Bernoulli
polynomials.

Theorem . [] Let n ∈N. Then we have

Pn–,N(M)(x) =

( M∏
j=

ξ (Nj) – 

)

n
Bn

(
x,

M∏
j=

ξ (Nj)

)
.

Proof We arrange the generating function of generalized Euler-type polynomials as fol-
lows:

∞∑
n=

Pn–,N(M)
tn–

(n – )!
=

∏M
j= ξ (Nj) – 

et
∏M

j= ξ (Nj) – 
ext .

Therefore, we have

∞∑
n=

Pn–,N(M)
tn–

(n – )!
=

∞∑
n=

(

n

( M∏
j=

ξ (Nj) – 

)
Bn

(
x,

M∏
j=

ξ (Nj)

))
tn–

(n – )!
.

In the above equation, if we compare the coefficients of tn–
(n–)! , we get the desired result.

�

In the following theorem, it is possible to find the generalized Euler-type polynomials.

Theorem . Let n ∈ N. Then we have

Pn,N(M)(x) =
n∑
j=

(
n
j

)
xn–jPj,N(M). ()

Proof of () is the same as that of (), so we omit it [].

P,N(M) =


χ–
a,N(M) – 

,

P,N(M) =


(χ–
a,N(M) – )

+


χ–
a,N(M) – 

,

P,N(M) =


(χ–
a,N(M) – )

+


(χ–
a,N(M) – )

+


χ–
a,N(M) – 

http://www.fixedpointtheoryandapplications.com/content/2013/1/40
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and

P,N(M) =


(χ–
a,N(M) – )

+


(χ–
a,N(M) – )

+


(χ–
a,N(M) – )

+


χ–
a,N(M) – 

.

By using (), we have the following list for the generalized Euler-type polynomials:

P,N(M)(x) = ,

P,N(M)(x) = x +


χ–
a,N(M) – 

,

P,N(M)(x) = x + x
(


χ–
a,N(M) – 

)
+

(


(χ–
a,N(M) – )

+


χ–
a,N(M) – 

)
,

P,N(M)(x) = x + x
(


χ–
a,N(M) – 

)
+ x

(


(χ–
a,N(M) – )

+


χ–
a,N(M) – 

)

+
(


(χ–

a,N(M) – )
+


(χ–

a,N(M) – )
+


χ–
a,N(M) – 

)

and

P,N(M)(x) = x + x
(


χ–
a,N(M) – 

)
+ x

(


(χ–
a,N(M) – )

+


χ–
a,N(M) – 

)

+ x
(


(χ–

a,N(M) – )
+


(χ–

a,N(M) – )
+


χ–
a,N(M) – 

)

+
(


(χ–

a,N(M) – )
+


(χ–

a,N(M) – )
+


(χ–

a,N(M) – )
+


χ–
a,N(M) – 

)
.
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