RESEARCH

Open Access

Higher-order Euler-type polynomials and their applications

Aykut Ahmet Aygunes*

*Correspondence: aygunes@akdeniz.edu.tr Department of Mathematics, Faculty of Science, University of Akdeniz, Antalya, TR-07058, Turkey

Abstract

In this paper, we construct generating functions for higher-order Euler-type polynomials and numbers. By using the generating functions, we obtain functional equations related to a generalized partial Hecke operator and Euler-type polynomials and numbers. A special case of higher-order Euler-type polynomials is eigenfunctions for the generalized partial Hecke operators. Moreover, we give not only some properties, but also applications for these polynomials and numbers.

AMS Subject Classification: 08A40; 11F25; 11F60; 11B68; 30D05

Keywords: generalized partial Hecke operators; higher-order Euler-type polynomials; higher-order Euler-type numbers; Apostol-Bernoulli polynomials; Frobenius-Euler polynomials; Euler polynomials; Euler numbers; functional equation; generating functions

1 Introduction

In this section, we define generalized partial Hecke operators and we give some notation for these operators. Also, we define generalized Euler-type polynomials, Apostol-Bernoulli polynomials and Frobenius-Euler polynomials.

Throughout this paper, we use the following notations:

 $\mathbb{N} = \{1, 2, ...\}, \mathbb{N}_0 = \{0, 1, 2, ...\} = \mathbb{N} \cup \{0\}$. Also, as usual, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers and \mathbb{C} denotes the set of complex numbers. We assume that $\ln(z)$ denotes the principal branch of the multi-valued function $\ln(z)$ with an imaginary part $\Im(\ln(z))$ constrained by $-\pi < \Im(\ln(z)) \le \pi$. Furthermore, $0^n = 1$ if n = 0, and $0^n = 0$ if $n \in \mathbb{N}$.

 $N(M) = (N_1, N_2, \ldots, N_M),$

where $M \in \mathbb{N}$ and $N_1, N_2, \ldots, N_M \in \mathbb{N}$.

Let $a \in \mathbb{N}$ and $\chi_{a,N(M)}$ be a function depending on a, N_1, N_2, \dots, N_M such that

 $\chi_{a,N(M)}: \mathbb{N}_0 \to \mathbb{C}.$

 $\chi_{a,N(M)}$ is defined by

$$\chi_{a,N(M)}(k) = \prod_{j=1}^M \xi^k(N_j),$$

© 2013 Aygunes; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

where
$$0 \le k \le a - 1, j \in \{1, 2, ..., M\}$$
 and

$$\xi(N_j) = e^{\frac{2\pi i}{N_j}}.$$

 $\chi_{a,N(M)}$ satisfies the following properties:

- (i) $\chi_{a,N(M)}$ is a periodic function with $N_1N_2\cdots N_M$.
- (ii) If we take $N_1 \ge 2$ and $N_2 = N_3 = \cdots = N_M = 1$, we have

$$\chi_{a,(N_1,1,1,\dots,1)}(k) = \xi^k(N_1)\xi^k(1)\xi^k(1)\cdots\xi^k(1) = \xi^k(N_1).$$

We note that replacing N(M) by $(N_1, 1, 1, ..., 1)$, $\chi_{a,N(M)}$ is reduced to $\xi^k(N_1)$ (*cf.* [1]).

Let $\mathbb{C}[x]$ be a ring of polynomials with complex coefficients. By using $\chi_{a,N(M)}$, we give the following definition.

Definition 1.1 [2] Let $P \in \mathbb{C}[x]$. The generalized partial Hecke operator of $T_{\chi_{a,N(M)}}$ is defined by

$$T_{\chi_{a,N(M)}}(P(x)) = \sum_{k=0}^{a-1} \chi_{a,N(M)}(k) P\left(\frac{x+k}{a}\right).$$

The operator $T_{\chi_{a,N(M)}}$ satisfies the following properties:

(i) $T_{\chi_{a,N(M)}}$ is linear on $\mathbb{C}[x]$ and

$$T_{\chi_{a,N(M)}}:\mathbb{C}[x]\to\mathbb{C}[x].$$

- (ii) $T_{\chi_{a,N(M)}}$ preserves the degree of the polynomials on $\mathbb{C}[x]$.
- (iii) If we take $N_1 \ge 2$ and $N_2 = N_3 = \cdots = N_M = 1$, we have

$$T_{\chi_{a,N_1}}(P(x)) = \sum_{k=0}^{a-1} \xi^k(N_1) P\left(\frac{x+k}{a}\right).$$

Remark 1.2 Setting $N(M) = (N_1, 1, 1, ..., 1)$, $T_{\chi_{a,(N_1,1,1,...,1)}}$ is reduced to $T_{\chi_{a,N_1}}$ (cf. [1]).

The generating function of generalized Euler-type numbers $P_{n,N(M)}$ is given by

$$\mathcal{F}_{N(M)}(t) = \sum_{n=0}^{\infty} P_{n,N(M)} \frac{t^n}{n!} = \frac{\prod_{j=1}^M \xi(N_j) - 1}{-1 + e^t \prod_{j=1}^M \xi(N_j)}$$

[2].

Now, we give the definition of Euler-type polynomials as follows.

Definition 1.3 [2] The polynomial $P_{n,N(M)}$ is defined by means of the following generating function:

$$\mathcal{F}_{N(M)}(t,x) = \sum_{n=0}^{\infty} P_{n,N(M)}(x) \frac{t^n}{n!} = \frac{((\prod_{j=1}^M \xi(N_j)) - 1)e^{tx}}{(\prod_{j=1}^M \xi(N_j))e^t - 1},$$
(1)

where

$$\left|t+\sum_{j=1}^M\frac{2\pi\,i}{N_j}\right|<2\pi\,.$$

The polynomial $P_{n,N(M)}$ satisfies the following properties:

- (i) $P_{n,N(M)} \in \mathbb{C}[x]$.
- (ii) $P_{n,N(M)}$ is a polynomial with degree *n* and depends on N_1, N_2, \ldots, N_M .
- (iii) If we take $N_1 \ge 2$ and $N_2 = N_3 = \cdots = N_M = 1$, we have

$$\sum_{n=0}^{\infty} P_{n,N_1}(x) \frac{t^n}{n!} = \frac{(\xi_{N_1} - 1)e^{tx}}{\xi_{N_1}e^t - 1},$$

where

$$\left|t+\frac{2\pi i}{N_1}\right|<2\pi.$$

(iv) We derive the following functional equation:

$$\mathcal{F}_{N(M)}(t,x) = \mathcal{F}_{N(M)}(t)e^{tx},$$
(2)

so that, obviously,

$$P_{n,N(M)}(0) = P_{n,N(M)}.$$

We now are ready to define Euler-type numbers and polynomials with order *k*.

Definition 1.4 Euler-type numbers with order *k*, $P_{n,N(M)}^{(k)}$, are defined by means of the following generating functions:

$$\mathcal{F}_{N(M)}^{(k)}(t) = \sum_{n=0}^{\infty} P_{n,N(M)}^{(k)} \frac{t^n}{n!},\tag{3}$$

where $k \in \mathbb{N}$ and

$$\left|t+\sum_{j=1}^{M}\frac{2\pi\,i}{N_{j}}\right|<2\pi\,.$$

Euler-type polynomials with order k are given by the following functional equation:

$$\mathcal{F}_{N(M)}^{(k)}(t,x) = \mathcal{F}_{N(M)}^{(k)}(t)e^{tx} = \sum_{n=0}^{\infty} P_{n,N(M)}^{(k)}(x)\frac{t^n}{n!}.$$
(4)

We see that

$$\mathcal{F}_{N(M)}^{(0)}(t,x)=e^{tx}.$$

$$P_{n,N(M)}^{(0)}(x) = x^n.$$

Remark 1.5 Substituting k = 1 into (4), we get (2). Therefore, (3) reduces to (1); that is,

$$P_{n,N(M)}^{(1)}(x) = P_{n,N(M)}(x)$$

so that, obviously,

$$P_{n,N(M)}^{(1)}(0) = P_{n,N(M)}.$$

By using (4) and (3), we obtain

$$\sum_{n=0}^{\infty} P_{n,N(M)}^{(k)}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} P_{n,N(M)}^{(k)} \frac{t^n}{n!} \sum_{n=0}^{\infty} x^n \frac{t^n}{n!}.$$

Therefore, we get the following theorem.

Theorem 1.6

$$P_{n,N(M)}^{(k)}(x) = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} P_{j,N(M)}^{(k)}.$$
(5)

Hence, we arrive at the following definition.

Definition 1.7 Euler-type polynomials with order *k*, $P_{n,N(M)}^{(k)}$, are defined by means of the following generating functions:

$$\mathcal{F}_{N(M)}^{(k)}(t,x) = \sum_{n=0}^{\infty} P_{n,N(M)}^{(k)}(x) \frac{t^n}{n!},\tag{6}$$

where

$$\left|t+\sum_{j=1}^M\frac{2\pi\,i}{N_j}\right|<2\pi\,.$$

Note that there is one generating function for each value of *k*. These are given explicitly as follows:

$$\begin{aligned} \mathcal{F}_{N(M)}^{(k)}(t,x) &= \left(\frac{-1 + \prod_{j=1}^{M} \xi(N_j)}{-1 + e^t \prod_{j=1}^{M} \xi(N_j)}\right)^k e^{tx} \\ &= \sum_{n=0}^{\infty} P_{n,N(M)}^{(k)}(x) \frac{t^n}{n!}. \end{aligned}$$

We derive the following functional equation:

$$\mathcal{F}_{N(M)}^{(k+l)}(t,x) = \mathcal{F}_{N(M)}^{(k)}(t,x)\mathcal{F}_{N(M)}^{(l)}(t).$$
(7)

By using the above functional equation, we arrive at the following theorem.

Theorem 1.8

$$P_{n,N(M)}^{(k+l)}(x) = \sum_{j=0}^{n} \binom{n}{j} P_{j,N(M)}^{(k)}(x) P_{n-j,N(M)}^{(l)}.$$
(8)

Proof By using (3), (6) and (7), we get

$$\sum_{n=0}^{\infty} P_{n,N(M)}^{(k+l)}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(\sum_{j=0}^n \binom{n}{j} P_{j,N(M)}^{(k)}(x) P_{n-j,N(M)}^{(l)} \right) \frac{t^n}{n!}.$$

By comparing the coefficients of $\frac{t^n}{n!}$ on both sides of the above equation, we get the desired result.

Substituting x = 0 into (8), we obtain a convolution formula for the numbers by the following corollary.

Corollary 1.9

$$P_{n,N(M)}^{(k+l)} = \sum_{j=0}^{n} \binom{n}{j} P_{j,N(M)}^{(k)} P_{n-j,N(M)}^{(l)}.$$

By differentiating both sides of equation (2) with respect to the variable *x*, we obtain the following higher-order differential equation:

$$\frac{\partial^{j}}{\partial x^{j}}\mathcal{F}_{N(M)}(t,x) = t^{j}\mathcal{F}_{N(M)}(t,x).$$
(9)

Remark 1.10 Setting $N(M) = (N_1, 1, 1, ..., 1)$, $P_{n,(N_1,1,1,...,1)}$ is reduced $P_{n,N_1}(x)$ (*cf.* [1]). Therefore $P_{n,N}(x)$ was defined by generalized Bernoulli-Euler polynomials in [1] as follows:

$$\sum_{n=0}^{\infty} P_{n,N}(x) \frac{t^n}{n!} = \begin{cases} \frac{te^{tx}}{e^t - 1}, & N = 1, \\ \frac{(\xi_N - 1)e^{tx}}{\xi_N e^t - 1}, & N \ge 2, \end{cases}$$

so that, obviously,

$$P_{n,1}(x) = B_n(x)$$

and

$$P_{n,2}(x) = E_n(x).$$

Here $B_n(x)$ and $E_n(x)$ are Bernoulli polynomials and Euler polynomials, respectively (*cf.* [1–19]).

The Frobenius-Euler polynomial is defined as follows:

Let *u* be an algebraic number such that $1 \neq u \in \mathbb{C}$. Then the Frobenius-Euler polynomial $H_n(x, u)$ is defined by

$$\frac{1-u}{e^t-u}e^{tx}=\sum_{n=0}^{\infty}H_n(x,u)\frac{t^n}{n!},$$

where

$$\left|t + \ln\frac{1}{u}\right| < 2\pi$$

(cf. [1–19]).

Remark 1.11 Frobenius-Euler number is denoted by $H_n(u)$ such that $H_n(0, u) = H_n(u)$. Also, $H_n(x, -1) = E_n(x)$ (cf. [1–19]).

By using Frobenius-Euler numbers, one can obtain the Frobenius-Euler polynomials as follows:

$$H_n(x,u) = \sum_{j=0}^n \binom{n}{j} x^{n-j} H_j(u)$$

(cf. [1-19]).

The Apostol-Bernoulli polynomial is defined as follows.

Definition 1.12 [3, 16] The Apostol-Bernoulli polynomial $\mathcal{B}_n(x, \lambda)$ is defined by

$$\frac{t}{\lambda e^t - 1} e^{tx} = \sum_{n=0}^{\infty} \mathcal{B}_n(x, \lambda) \frac{t^n}{n!},$$

where λ is the arbitrary real or complex parameter and

 $|t| < |\ln \lambda|.$

Remark 1.13 For $\lambda = 1$, we obtain that $\mathcal{B}_n(x, 1) = B_n(x)$ (*cf.* [1–19]).

2 A functional equation of generalized Euler-type polynomials

Bayad, Aygunes and Simsek showed that for $a \equiv 1 \mod(N)$, there exists a unique sequence of monic polynomials $(P_{n,N})_{n \in \mathbb{N}_0}$ in $\mathbb{Q}(\xi_N)[x]$ with deg $P_{n,N} = n$ such that

$$T_{\chi_{a,N}}(P_{n,N}(x)) = a^{-n}P_{n,N}(x),$$

where $a, N \in \mathbb{N}$ (*cf.* [1]).

In this section, we give the following theorem.

Theorem 2.1 Let $a, N_1, N_2, ..., N_M \in \mathbb{N}$ and $a \equiv 1 \pmod{N_1 N_2 \cdots N_M}$. Then there exists a sequence $(P_{n,N(M)})_{n \in \mathbb{N}_0}$ in

$$\mathbb{Q}(\xi(N_1)\xi(N_2)\cdots\xi(N_M))[x]$$

with

$$\deg P_{n,N(M)} = n$$

such that

$$T_{\chi_{a,N(M)}}(P_{n,N(M)}(x)) = a^{-n} P_{n,N(M)}(x).$$
(10)

Proof Since $P_{n,N(M)} \in \mathbb{C}[x]$ and $T_{\chi_{a,N(M)}} : \mathbb{C}[x] \to \mathbb{C}[x]$, we get

$$T_{\chi_{a,N(M)}}(P_{n,N(M)}(x)) = \sum_{k=0}^{a-1} \chi_{a,N(M)}(k) P_{n,N(M)}\left(\frac{x+k}{a}\right).$$

From the definition of $\chi_{a,N(M)}(k)$, we have

$$T_{\chi_{a,N(M)}}\left(P_{n,N(M)}(x)\right) = \sum_{k=0}^{a-1} \left(\prod_{j=1}^{M} e^{\frac{2\pi i k}{N_j}}\right) P_{n,N(M)}\left(\frac{x+k}{a}\right).$$

By using the generating function of $P_{n,N(M)}(x)$, we get

$$\begin{split} &\sum_{n=0}^{\infty} \sum_{k=0}^{a-1} \left(\prod_{j=1}^{M} e^{\frac{2\pi i k}{N_j}} \right) P_{n,N(M)} \left(\frac{x+k}{a} \right) \frac{t^n}{n!} \\ &= \sum_{k=0}^{a-1} \left(\prod_{j=1}^{M} e^{\frac{2\pi i k}{N_j}} \right) \sum_{n=0}^{\infty} P_{n,N(M)} \left(\frac{x+k}{a} \right) \frac{t^n}{n!} \\ &= \sum_{k=0}^{a-1} \left(\prod_{j=1}^{M} e^{\frac{2\pi i k}{N_j}} \right) \frac{((\prod_{j=1}^{M} e^{\frac{2\pi i j}{N_j}}) - 1)e^{t(\frac{x+k}{a}})}{(\prod_{j=1}^{M} e^{\frac{2\pi i j}{N_j}})e^t - 1} \\ &= \frac{((\prod_{j=1}^{M} e^{\frac{2\pi i j}{N_j}}) - 1)e^{\frac{tx}{a}}}{(\prod_{j=1}^{M} e^{\frac{2\pi i j}{N_j}})e^t - 1} \sum_{k=0}^{a-1} \left(\exp\left(\sum_{j=1}^{M} e^{\frac{2\pi i k}{N_j}}\right) \right) \exp\left(\frac{tk}{a}\right) \\ &= \frac{((\prod_{j=1}^{M} e^{\frac{2\pi i j}{N_j}}) - 1)e^{\frac{tx}{a}}}{(\prod_{j=1}^{M} e^{\frac{2\pi i j}{N_j}})e^t - 1} \sum_{k=0}^{a-1} \left(\exp\left(\frac{t}{a} + \sum_{j=1}^{M} \frac{2\pi i j}{N_j}\right) \right)^k \\ &= \frac{((\prod_{j=1}^{M} e^{\frac{2\pi i j}{N_j}}) - 1)e^{\frac{tx}{a}}}{(\prod_{j=1}^{M} e^{\frac{2\pi i j}{N_j}})e^t - 1} \frac{e^t (\exp(\sum_{j=1}^{M} \frac{2\pi i j}{N_j}))^a - 1}{(\prod_{j=1}^{M} e^{\frac{2\pi i j}{N_j}})e^t - 1} \end{split}$$

Since $a \equiv 1 \pmod{N_1 N_2 \cdots N_M}$, the following relation holds:

$$\left(\exp\left(\sum_{j=1}^{M}\frac{2\pi i}{N_{j}}\right)\right)^{a}=\exp\left(\sum_{j=1}^{M}\frac{2\pi i}{N_{j}}\right)=\prod_{j=1}^{M}e^{\frac{2\pi i}{N_{j}}}.$$

Therefore, we have

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{a-1} \left(\prod_{j=1}^{M} e^{\frac{2\pi i k}{N_j}} \right) P_{n,N(M)} \left(\frac{x+k}{a} \right) \right) \frac{t^n}{n!} = \sum_{n=0}^{\infty} a^{-n} P_{n,N(M)}(x) \frac{t^n}{n!}.$$

By comparing the coefficients of $\frac{t^n}{n!}$ on both sides of the above equation, we get the desired result.

Remark 2.2 A different proof of (10) is given in [2]. If we take $N_1 \ge 2$ and $N_2 = N_3 = \cdots = N_M = 1$, we have the following functional equation:

$$T_{\chi_{a,N_1}}(P_{n,N_1}(x)) = a^{-n}P_{n,N_1}(x)$$

which is satisfied for generalized Bernoulli-Euler polynomials in [1].

3 Some properties of generalized Euler-type polynomials

In this section, we obtain some relations between generalized Euler-type polynomials, Apostol-Bernoulli polynomials and Frobenius-Euler polynomials. Also, we give a formula to obtain the generalized Euler-type polynomials.

Theorem 3.1 *Let* $n \in \mathbb{N}$ *. Then we have*

$$P_{n+1,N(M)}(x) = P_{n,N(M)}(x) + \frac{\prod_{j=1}^{M} \xi(N_j)}{1 - \prod_{j=1}^{M} \xi(N_j)} \sum_{k=0}^{n} \binom{n}{k} P_{k,N(M)}^{(2)}(x).$$

Proof By differentiating both sides of equation (2) with respect to the variable *t*, we have

$$\begin{split} \sum_{n=0}^{\infty} P_{n+1,N(M)}(x) \frac{t^n}{n!} &= \frac{\partial}{\partial t} \mathcal{F}_{N(M)}(t,x) \\ &= \mathcal{F}_{N(M)}(t,x) + \left(\frac{\prod_{j=1}^M \xi(N_j)}{1 - \prod_{j=1}^M \xi(N_j)}\right) e^t e^{tx} \left(\mathcal{F}_{N(M)}(t)\right)^2 \\ &= \sum_{n=0}^{\infty} P_{n,N(M)}(x) \frac{t^n}{n!} + \left(\frac{\prod_{j=1}^M \xi(N_j)}{1 - \prod_{j=1}^M \xi(N_j)}\right) e^t \left(\sum_{n=0}^{\infty} P_{n,N(M)}(x) \frac{t^n}{n!}\right), \end{split}$$

Therefore, we obtain

$$\sum_{n=0}^{\infty} P_{n+1,N(M)}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(P_{n,N(M)}(x) + \frac{\prod_{j=1}^M \xi(N_j)}{1 - \prod_{j=1}^M \xi(N_j)} \sum_{k=0}^n \binom{n}{k} P_{k,N(M)}^{(2)}(x) \right) \frac{t^n}{n!}.$$

By comparing the coefficients of $\frac{t^n}{n!}$, we obtain the desired result.

In the following theorem, we give a relation between the polynomials $P_{n,N(M)}(x)$ and Frobenius-Euler polynomials.

Theorem 3.2 [2] Let $n \in \mathbb{N}_0$. Then we have

$$P_{n,N(M)}(x) = H_n\left(x, \prod_{j=1}^M \frac{1}{\xi(N_j)}\right).$$

Proof By using the generating function of $P_{n,N(M)}(x)$, we have

$$\sum_{n=0}^{\infty} P_{n,N(M)}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} H_n\left(x, \prod_{j=1}^{M} \frac{1}{\xi(N_j)}\right) \frac{t^n}{n!}.$$

In the above equation, if we compare the coefficients of $\frac{t^n}{n!}$, we get the desired result.

In the following theorem, we give a relation between $P_{n,N(M)}(x)$ and Apostol-Bernoulli polynomials.

Theorem 3.3 [2] *Let* $n \in \mathbb{N}$ *. Then we have*

$$P_{n-1,N(M)}(\boldsymbol{x}) = \left(\prod_{j=1}^{M} \xi(N_j) - 1\right) \frac{1}{n} \mathcal{B}_n\left(\boldsymbol{x}, \prod_{j=1}^{M} \xi(N_j)\right).$$

Proof We arrange the generating function of generalized Euler-type polynomials as follows:

$$\sum_{n=1}^{\infty} P_{n-1,N(M)} \frac{t^{n-1}}{(n-1)!} = \frac{\prod_{j=1}^{M} \xi(N_j) - 1}{e^t \prod_{j=1}^{M} \xi(N_j) - 1} e^{xt}$$

Therefore, we have

$$\sum_{n=1}^{\infty} P_{n-1,N(M)} \frac{t^{n-1}}{(n-1)!} = \sum_{n=1}^{\infty} \left(\frac{1}{n} \left(\prod_{j=1}^{M} \xi(N_j) - 1 \right) \mathcal{B}_n \left(x, \prod_{j=1}^{M} \xi(N_j) \right) \right) \frac{t^{n-1}}{(n-1)!}.$$

In the above equation, if we compare the coefficients of $\frac{t^{n-1}}{(n-1)!}$, we get the desired result.

In the following theorem, it is possible to find the generalized Euler-type polynomials.

Theorem 3.4 *Let* $n \in \mathbb{N}_0$ *. Then we have*

$$P_{n,N(M)}(x) = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} P_{j,N(M)}.$$
(11)

Proof of (11) is the same as that of (5), so we omit it [2].

$$\begin{split} P_{1,N(M)} &= \frac{1}{\chi_{a,N(M)}^{-1} - 1}, \\ P_{2,N(M)} &= \frac{2}{(\chi_{a,N(M)}^{-1} - 1)^2} + \frac{1}{\chi_{a,N(M)}^{-1} - 1}, \\ P_{3,N(M)} &= \frac{6}{(\chi_{a,N(M)}^{-1} - 1)^3} + \frac{6}{(\chi_{a,N(M)}^{-1} - 1)^2} + \frac{1}{\chi_{a,N(M)}^{-1} - 1} \end{split}$$

$$P_{4,N(M)} = \frac{24}{(\chi_{a,N(M)}^{-1}-1)^4} + \frac{36}{(\chi_{a,N(M)}^{-1}-1)^3} + \frac{14}{(\chi_{a,N(M)}^{-1}-1)^2} + \frac{1}{\chi_{a,N(M)}^{-1}-1}.$$

By using (11), we have the following list for the generalized Euler-type polynomials:

$$\begin{split} P_{0,N(M)}(x) &= 1, \\ P_{1,N(M)}(x) &= x + \frac{1}{\chi_{a,N(M)}^{-1} - 1}, \\ P_{2,N(M)}(x) &= x^2 + x \left(\frac{2}{\chi_{a,N(M)}^{-1} - 1}\right) + \left(\frac{2}{(\chi_{a,N(M)}^{-1} - 1)^2} + \frac{1}{\chi_{a,N(M)}^{-1} - 1}\right), \\ P_{3,N(M)}(x) &= x^3 + x^2 \left(\frac{3}{\chi_{a,N(M)}^{-1} - 1}\right) + x \left(\frac{6}{(\chi_{a,N(M)}^{-1} - 1)^2} + \frac{3}{\chi_{a,N(M)}^{-1} - 1}\right) \\ &+ \left(\frac{6}{(\chi_{a,N(M)}^{-1} - 1)^3} + \frac{6}{(\chi_{a,N(M)}^{-1} - 1)^2} + \frac{1}{\chi_{a,N(M)}^{-1} - 1}\right) \end{split}$$

and

$$\begin{split} P_{4,N(M)}(x) &= x^4 + x^3 \left(\frac{4}{\chi_{a,N(M)}^{-1}-1}\right) + x^2 \left(\frac{12}{(\chi_{a,N(M)}^{-1}-1)^2} + \frac{6}{\chi_{a,N(M)}^{-1}-1}\right) \\ &+ x \left(\frac{24}{(\chi_{a,N(M)}^{-1}-1)^3} + \frac{24}{(\chi_{a,N(M)}^{-1}-1)^2} + \frac{4}{\chi_{a,N(M)}^{-1}-1}\right) \\ &+ \left(\frac{24}{(\chi_{a,N(M)}^{-1}-1)^4} + \frac{36}{(\chi_{a,N(M)}^{-1}-1)^3} + \frac{14}{(\chi_{a,N(M)}^{-1}-1)^2} + \frac{1}{\chi_{a,N(M)}^{-1}-1}\right). \end{split}$$

Competing interests

The author declares that he has no competing interests.

Author's contributions

The author completed the paper himself. The author read and approved the final manuscript.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

The present investigation was supported by the Scientific Research Project Administration of Akdeniz University.

Received: 11 December 2012 Accepted: 6 February 2013 Published: 26 February 2013

References

- 1. Bayad, A, Aygunes, AA, Simsek, Y: Hecke operators and generalized Bernoulli-Euler polynomials. J. Algebra Number Theory, Adv. Appl. 3, 111-122 (2010)
- 2. Aygunes, AA: Hecke type operators and their application (Hecke tipi operatörler ve uygulamaları). PhD thesis, November (2012)
- 3. Apostol, TM: On the Lerch zeta function. Pac. J. Math. 2, 161-167 (1951)
- 4. Carlitz, L: The product of two Eulerian polynomials. Math. Mag. 36, 37-41 (1963)
- 5. Kim, T: Identities involving Frobenius-Euler polynomials arising from non-linear differential equations. J. Number Theory 132, 2854-2865 (2012)
- 6. Kim, DS, Kim, T: Some new identities of Frobenius-Euler numbers and polynomials. J. Inequal. Appl. (2012). doi:10.1186/1029-242X-2012-307
- 7. Kim, T, Rim, SH, Simsek, Y, Kim, D: On the analogs of Bernoulli and Euler numbers, related identities and zeta and L-functions. J. Korean Math. Soc. 45, 435-453 (2008)
- 8. Luo, Q-M, Srivastava, HM: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 10, 631-642 (2005)
- 9. Ozden, H, Simsek, Y, Srivastava, HM: A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 60, 2779-2787 (2010)

and

л

- 10. Satoh, J: q-analogue of Riemann's ζ -function and q-Euler numbers. J. Number Theory **31**, 346-362 (1989)
- 11. Shiratani, K: On Euler numbers. Mem. Fac. Sci., Kyushu Univ. 27, 1-5 (1975)
- 12. Simsek, Y: q-analogue of the twisted I-series and q-twisted Euler numbers. J. Number Theory 110, 267-278 (2005)
- Simsek, Y: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application (2011). arxiv:1111.3848v1
- Simsek, Y: Generating functions for *q*-Apostol type Frobenius-Euler numbers and polynomials. Axioms 1, 395-403 (2012). doi:10.3390/axioms1030395
- Simsek, Y, Bayad, A, Lokesha, V: q-Bernstein polynomials related to q-Frobenius-Euler polynomials, *l*-functions, and q-Stirling numbers. Math. Methods Appl. Sci. 35, 877-884 (2012)
- 16. Srivastava, HM: Some generalizations and basic (or *q*-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. **5**, 390-444 (2011)
- 17. Srivastava, HM, Choi, J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)
- Srivastava, HM, Kim, T, Simsek, Y: q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series. Russ. J. Math. Phys. 12, 241-268 (2005)
- 19. Tsumura, H: A note on *q*-analogues of the Dirichlet series and *q*-Bernoulli numbers. J. Number Theory **39**, 251-256 (1991)

doi:10.1186/1687-1812-2013-40

Cite this article as: Aygunes: Higher-order Euler-type polynomials and their applications. Fixed Point Theory and Applications 2013 2013:40.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com