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Abstract
In this paper, we propose and analyze some relaxed and hybrid viscosity iterative
algorithms for finding a common element of the solution set Ξ of a general system
of variational inequalities, the solution set Γ of a split feasibility problem and the
fixed point set Fix(S) of a strictly pseudocontractive mapping S in the setting of
infinite-dimensional Hilbert spaces. We prove that the sequences generated by the
proposed algorithms converge strongly to an element of Fix(S)∩ Ξ ∩ Γ under mild
conditions.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let C be a
nonempty closed convex subset ofH. The (nearest point or metric) projection ofH onto
C is denoted by PC . Let S : C → C be a self-mapping on C. We denote by Fix(S) the set
of fixed points of S and by R the set of all real numbers. For a given nonlinear operator
A : C → H, we consider the variational inequality problem (VIP) of finding x∗ ∈ C such
that

〈
Ax∗,x – x∗〉 ≥ , ∀x ∈ C. (.)

The solution set of VIP (.) is denoted byVI(C,A). Variational inequality theory has been
studied quite extensively and has emerged as an important tool in the study of a wide class
of obstacle, unilateral, free, moving and equilibrium problems. It is now well known that
variational inequalities are equivalent to fixed point problems, the origin of which can
be traced back to Lions and Stampacchia []. This alternative formulation has been used
to suggest and analyze a projection iterative method for solving variational inequalities
under the conditions that the involved operator must be strongly monotone and Lipschitz
continuous. Related to the variational inequalities, we have the problem of finding fixed
points of nonexpansive mappings or strict pseudo-contraction mappings, which is the
current interest in functional analysis. Several people considered a unified approach to
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solve variational inequality problems and fixed point problems; see, for example, [–]
and the references therein.
For finding an element of Fix(S) ∩ VI(C,A) when C is closed and convex, S is nonex-

pansive and A is α-inverse strongly monotone, Takahashi and Toyoda [] introduced the
following Mann-type iterative algorithm:

xn+ = αnxn + ( – αn)SPC( – λnAxn), ∀n≥ , (.)

where PC is the metric projection ofH onto C, x = x ∈ C, {αn} is a sequence in (, ) and
{λn} is a sequence in (, α). They showed that if Fix(S)∩VI(C,A) �= ∅, then the sequence
{xn} converges weakly to some z ∈ Fix(S) ∩VI(C,A). Nadezhkina and Takahashi [] and
Zeng and Yao [] proposed extragradientmethodsmotivated by Korpelevich [] for find-
ing a common element of the fixed point set of a nonexpansive mapping and the solution
set of a variational inequality problem. Further, these iterative methods were extended in
[] to develop a new iterative method for finding elements in Fix(S)∩VI(C,A).
Let B,B : C →H be two mappings. Recently, Ceng, Wang and Yao [] introduced and

considered the problem of finding (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩〈μBy∗ + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C,
(.)

which is called a general system of variational inequalities (GSVI), whereμ >  andμ > 
are two constants. The set of solutions of problem (.) is denoted by GSVI(C,B,B). In
particular, if B = B, then problem (.) reduces to the new system of variational inequali-
ties (NSVI) introduced and studied by Verma []. Further, if x∗ = y∗ additionally, then the
NSVI reduces to VIP (.).
Recently, Ceng, Wang and Yao [] transformed problem (.) into a fixed point problem

in the following way.

Lemma . (see []) For given x̄, ȳ ∈ C, (x̄, ȳ) is a solution of problem (.) if and only if x̄
is a fixed point of the mapping G : C → C defined by

G(x) = PC
[
PC(x –μBx) –μBPC(x –μBx)

]
, ∀x ∈ C,

where ȳ = PC(x̄ –μBx̄).
In particular, if the mapping Bi : C →H is βi-inverse strongly monotone for i = , , then

the mapping G is nonexpansive provided μi ∈ (, βi) for i = , .

Utilizing Lemma ., they introduced and studied a relaxed extragradient method for
solving GSVI (.). Throughout this paper, the set of fixed points of the mapping G is
denoted by Ξ . Based on the extragradient method and viscosity approximation method,
Yao et al. [] proposed and analyzed a relaxed extragradientmethod for finding a common
solution of GSVI (.) and a fixed point problem of a strictly pseudo-contractive mapping
S : C → C.

Theorem YLK (see [, Theorem .]) Let C be a nonempty bounded closed convex subset
of a real Hilbert spaceH. Let the mapping Bi : C →H be μi-inverse strongly monotone for

http://www.fixedpointtheoryandapplications.com/content/2013/1/43


Ceng and Yao Fixed Point Theory and Applications 2013, 2013:43 Page 3 of 50
http://www.fixedpointtheoryandapplications.com/content/2013/1/43

i = , . Let S : C → C be a k-strictly pseudocontractive mapping such that Fix(S)∩ Ξ �= ∅.
Let Q : C → C be a ρ-contraction with ρ ∈ [,  ). For x ∈ C given arbitrarily, let the se-
quences {xn}, {yn} and {zn} be generated iteratively by

⎧⎪⎪⎨
⎪⎪⎩
zn = PC(xn –μBxn),

yn = αnQxn + ( – αn)PC(zn –μBzn),

xn+ = βnxn + γnPC(zn –μBzn) + δnSyn, ∀n≥ ,

(.)

where μi ∈ (, βi) for i = , , and {αn}, {βn}, {γn}, {δn} are four sequences in [, ] such
that

(i) βn + γn + δn =  and (γn + δn)k ≤ γn < ( – ρ)δn for all n≥ ;
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ δn > ;
(iv) limn→∞( γn+

–βn+
– γn

–βn
) = .

Then the sequence {xn} generated by (.) converges strongly to x̄ = PFix(S)∩ΞQx̄ and (x̄, ȳ) is
a solution of GSVI (.), where ȳ = PC(x̄ –μBx̄).

Subsequently, Ceng, Guu and Yao [] further presented and analyzed an iterative
scheme for finding a common element of the solution set of VIP (.), the solution set
of GSVI (.) and the fixed point set of a strictly pseudo-contractive mapping S : C → C.

Theorem CGY (see [, Theorem .]) Let C be a nonempty closed convex subset of a
real Hilbert space H. Let A : C → H be α-inverse strongly monotone and Bi : C → H be
βi-inverse strongly monotone for i = , . Let S : C → C be a k-strictly pseudocontractive
mapping such that Fix(S) ∩ Ξ ∩ VI(C,A) �= ∅. Let Q : C → C be a ρ-contraction with
ρ ∈ [,  ). For x ∈ C given arbitrarily, let the sequences {xn}, {yn} and {zn} be generated
iteratively by

⎧⎪⎪⎨
⎪⎪⎩
zn = PC(xn – λnAxn),

yn = αnQxn + ( – αn)PC[PC(zn –μBzn) –μBPC(zn –μBzn)],

xn+ = βnxn + γnyn + δnSyn, ∀n≥ ,

(.)

where μi ∈ (, βi) for i = , , {λn} ⊂ (, α] and {αn}, {βn}, {γn}, {δn} ⊂ [, ] such that
(i) βn + γn + δn =  and (γn + δn)k ≤ γn for all n≥ ;
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ δn > ;
(iv) limn→∞( γn+

–βn+
– γn

–βn
) = ;

(v)  < lim infn→∞ λn ≤ lim supn→∞ λn < α and limn→∞ |λn+ – λn| = .
Then the sequence {xn} generated by (.) converges strongly to x̄ = PFix(S)∩Ξ∩VI(C,A)Qx̄ and
(x̄, ȳ) is a solution of GSVI (.), where ȳ = PC(x̄ –μBx̄).

On the other hand, let C and Q be nonempty closed convex subsets of infinite-
dimensional real Hilbert spaces H and H, respectively. The split feasibility problem
(SFP) is to find a point x∗ with the property

x∗ ∈ C and Ax∗ ∈Q, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/43
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where A ∈ B(H,H) and B(H,H) denotes the family of all bounded linear operators
fromH toH.
In , the SFP was first introduced by Censor and Elfving [], in finite-dimensional

Hilbert spaces, for modeling inverse problems which arise from phase retrievals and in
medical image reconstruction. A number of image reconstruction problems can be for-
mulated as the SFP; see, e.g., [] and the references therein. Recently, it has been found
that the SFP can also be applied to study intensity-modulated radiation therapy; see, e.g.,
[–] and the references therein. In the recent past, a wide variety of iterative methods
have been used in signal processing and image reconstruction and for solving the SFP; see,
e.g., [–] and the references therein. A special case of the SFP is the following convex
constrained linear inverse problem [] of finding an element x such that

x ∈ C and Ax = b. (.)

It has been extensively investigated in the literature using the projected Landweber itera-
tivemethod []. Comparatively, the SFP has receivedmuch less attention so far due to the
complexity resulting from the set Q. Therefore, whether various versions of the projected
Landweber iterative method [] can be extended to solve the SFP remains an interesting
open topic. For example, it is not clear whether the dual approach to (.) of [] can be
extended to the SFP. The original algorithm given in [] involves the computation of the
inverse A– (assuming the existence of the inverse of A) and thus has not become popular.
A seemingly more popular algorithm that solves the SFP is the CQ algorithm of Byrne
[, ] which is found to be a gradient-projection method (GPM) in convex minimiza-
tion. It is also a special case of the proximal forward-backward splitting method []. The
CQ algorithm only involves the computation of the projections PC and PQ onto the sets
C and Q, respectively, and is therefore implementable in the case where PC and PQ have
closed-form expressions, for example, C andQ are closed balls or half-spaces. However, it
remains a challenge how to implement theCQ algorithm in the case where the projections
PC and/or PQ fail to have closed-form expressions, though theoretically we can prove the
(weak) convergence of the algorithm.
Very recently, Xu [] gave a continuation of the study on the CQ algorithm and its

convergence. He appliedMann’s algorithm to the SFP and proposed an averaged CQ algo-
rithm which was proved to be weakly convergent to a solution of the SFP. He also estab-
lished the strong convergence result, which shows that the minimum-norm solution can
be obtained.
Furthermore, Korpelevich [] introduced the so-called extragradient method for find-

ing a solution of a saddle point problem. She proved that the sequences generated by the
proposed iterative algorithm converge to a solution of the saddle point problem.
Throughout this paper, assume that the SFP is consistent, that is, the solution set Γ of

the SFP is nonempty. Let f :H → R be a continuous differentiable function. The mini-
mization problem

min
x∈C f (x) :=



‖Ax – PQAx‖ (.)

is ill-posed. Therefore, Xu [] considered the followingTikhonov regularization problem:

min
x∈C fα(x) :=



‖Ax – PQAx‖ + 


α‖x‖, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/43
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where α >  is the regularization parameter. The regularized minimization (.) has a
unique solution which is denoted by xα . The following results are easy to prove.

Proposition . (see [, Proposition .]) Given x∗ ∈ H, the following statements are
equivalent:

(i) x∗ solves the SFP;
(ii) x∗ solves the fixed point equation

PC(I – λ∇f )x∗ = x∗,

where λ > , ∇f = A∗(I – PQ)A and A∗ is the adjoint of A;
(iii) x∗ solves the variational inequality problem (VIP) of finding x∗ ∈ C such that

〈∇f
(
x∗),x – x∗〉 ≥ , ∀x ∈ C. (.)

It is clear from Proposition . that

Γ = Fix
(
PC(I – λ∇f )

)
=VI(C,∇f )

for all λ > , where Fix(PC(I – λ∇f )) and VI(C,∇f ) denote the set of fixed points of PC(I –
λ∇f ) and the solution set of VIP (.), respectively.

Proposition . (see []) The following statements hold:
(i) the gradient

∇fα = ∇f + αI = A∗(I – PQ)A + αI

is (α + ‖A‖)-Lipschitz continuous and α-strongly monotone;
(ii) the mapping PC(I – λ∇fα) is a contraction with coefficient

√
 – λ

(
α – λ

(‖A‖ + α
))(≤ √

 – αλ ≤  –


αλ

)
,

where  < λ ≤ α

(‖A‖+α) ;
(iii) if the SFP is consistent, then the strong limα→ xα exists and is the minimum-norm

solution of the SFP.

Very recently, by combining the regularization method and extragradient method due
to Nadezhkina and Takahashi [], Ceng, Ansari and Yao [] proposed an extragradient
algorithm with regularization and proved that the sequences generated by the proposed
algorithm converge weakly to an element of Fix(S)∩Γ , where S : C → C is a nonexpansive
mapping.

Theorem CAY (see [, Theorem .]) Let S : C → C be a nonexpansive mapping such
that Fix(S) ∩ Γ �= ∅. Let {xn} and {yn} be the sequences in C generated by the following

http://www.fixedpointtheoryandapplications.com/content/2013/1/43
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extragradient algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C chosen arbitrarily,

yn = PC(xn – λn∇fαn (xn)),

xn+ = βnxn + ( – βn)SPC(xn – λn∇fαn (yn)), ∀n≥ ,

(.)

where
∑∞

n= αn < ∞, {λn} ⊂ [a,b] for some a,b ∈ (, 
‖A‖ ) and {βn} ⊂ [c,d] for some c,d ∈

(, ). Then both the sequences {xn} and {yn} converge weakly to an element x̂ ∈ Fix(S)∩ Γ .

Motivated and inspired by the research going on in this area, we propose and analyze
some relaxed and hybrid viscosity iterative algorithms for finding a common element
of the solution set Ξ of GSVI (.), the solution set Γ of SFP (.) and the fixed point
set Fix(S) of a strictly pseudocontractive mapping S : C → C. These iterative algorithms
are based on the regularization method, the viscosity approximation method, the relaxed
method in [] and the hybrid method in []. Furthermore, it is proven that the sequences
generated by the proposed algorithms converge strongly to an element of Fix(S)∩ Ξ ∩ Γ

under mild conditions.
Observe that both [, Theorem .] and [, Theorem .] are weak convergence re-

sults for solving the SFP and that our problem of finding an element of Fix(S)∩ Ξ ∩ Γ is
more general than the corresponding ones in [, Theorem .] and [, Theorem .],
respectively. Hence there is no doubt that our strong convergence results are very interest-
ing and quite valuable. It is worth emphasizing that our relaxed and hybrid viscosity iter-
ative algorithms involve a ρ-contractive self-mapping Q, a k-strictly pseudo-contractive
self-mapping S and several parameter sequences, they are more flexible, more advanta-
geous and more subtle than the corresponding ones in [, Theorem .] and [, The-
orem .], respectively. Furthermore, relaxed extragradient iterative scheme (.) and hy-
brid extragradient iterative scheme (.) are extended to develop our relaxed viscosity it-
erative algorithms and hybrid viscosity iterative algorithms, respectively. In our strong
convergence results, the relaxed and hybrid viscosity iterative algorithms drop the re-
quirement of boundedness for the domain in which various mappings are defined; see,
e.g., Yao et al. [, Theorem .]. Therefore, our results represent the modification, sup-
plementation, extension and improvement of [, Theorem .], [, Theorem .], [,
Theorem .] and [, Theorem .] to a great extent.

2 Preliminaries
LetH be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let K be a nonempty, closed and convex subset ofH. Now, we present some
known results and definitions which will be used in the sequel.
The metric (or nearest point) projection from H onto K is the mapping PK : H → K

which assigns to each point x ∈H the unique point PKx ∈ K satisfying the property

‖x – PKx‖ = inf
y∈K ‖x – y‖ =: d(x,K).

The following properties of projections are useful and pertinent to our purpose.

Proposition . (see []) For given x ∈H and z ∈ K ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/43
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(i) z = PKx ⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ K ;
(ii) z = PKx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ K ;
(iii) 〈PKx – PKy,x – y〉 ≥ ‖PKx – PKy‖, ∀y ∈H, which hence implies that PK is

nonexpansive and monotone.

Definition . A mapping T :H →H is said to be
(a) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈H;

(b) firmly nonexpansive if T – I is nonexpansive, or equivalently,

〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈H;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =


(I + S),

where S :H →H is nonexpansive; projections are firmly nonexpansive.

Definition. LetT be a nonlinear operatorwith domainD(T)⊆H and rangeR(T)⊆H.
(a) T is said to be monotone if

〈x – y,Tx – Ty〉 ≥ , ∀x, y ∈D(T).

(b) Given a number β > , T is said to be β-strongly monotone if

〈x – y,Tx – Ty〉 ≥ β‖x – y‖, ∀x, y ∈D(T).

(c) Given a number ν > , T is said to be ν-inverse strongly monotone (ν-ism) if

〈x – y,Tx – Ty〉 ≥ ν‖Tx – Ty‖, ∀x, y ∈D(T).

It can be easily seen that if S is nonexpansive, then I – S is monotone. It is also easy to
see that a projection PK is -ism.
Inverse strongly monotone (also referred to as co-coercive) operators have been applied

widely to solving practical problems in various fields, for instance, in traffic assignment
problems; see, e.g., [, ].

Definition . A mapping T : H → H is said to be an averaged mapping if it can be
written as an average of the identity I and a nonexpansive mapping, that is,

T ≡ ( – α)I + αS,

where α ∈ (, ) and S : H → H is nonexpansive. More precisely, when the last equality
holds, we say that T is α-averaged. Thus, firmly nonexpansive mappings (in particular,
projections) are 

 -averaged maps.

http://www.fixedpointtheoryandapplications.com/content/2013/1/43
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Proposition . (see []) Let T :H →H be a given mapping.
(i) T is nonexpansive if and only if the complement I – T is 

 -ism.
(ii) If T is ν-ism, then for γ > , γT is ν

γ
-ism.

(iii) T is averaged if and only if the complement I – T is ν-ism for some ν > /. Indeed,
for α ∈ (, ), T is α-averaged if and only if I – T is 

α -ism.

Proposition . (see [, ]) Let S,T ,V :H →H be given operators.
(i) If T = ( – α)S + αV for some α ∈ (, ) and if S is averaged and V is nonexpansive,

then T is averaged.
(ii) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.
(iii) If T = ( – α)S + αV for some α ∈ (, ) and if S is firmly nonexpansive and V is

nonexpansive, then T is averaged.
(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the

mappings {Ti}Ni= is averaged, then so is the composite T ◦ T ◦ · · · ◦ TN . In
particular, if T is α-averaged and T is α-averaged, where α,α ∈ (, ), then the
composite T ◦ T is α-averaged, where α = α + α – αα.

(v) If the mappings {Ti}Ni= are averaged and have a common fixed point, then

N⋂
i=

Fix(Ti) = Fix(T · · ·TN ).

The notation Fix(T) denotes the set of all fixed points of the mapping T , that is, Fix(T) =
{x ∈H : Tx = x}.

It is clear that, in a real Hilbert space H, S : C → C is k-strictly pseudo-contractive if
and only if the following inequality holds:

〈Sx – Sy,x – y〉 ≤ ‖x – y‖ –  – k


∥∥(I – S)x – (I – S)y
∥∥, ∀x, y ∈ C. (.)

This immediately implies that if S is a k-strictly pseudo-contractive mapping, then I – S
is –k

 -inverse strongly monotone; for further details, we refer to [] and the references
therein. It is well known that the class of strict pseudo-contractions strictly includes the
class of nonexpansive mappings.
In order to prove the main results of this paper, the following lemmas will be required.

Lemma . (see []) Let {xn} and {yn} be bounded sequences in a Banach space X and
let {βn} be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose xn+ =
( –βn)yn +βnxn for all integers n ≥  and lim supn→∞(‖yn+ – yn‖– ‖xn+ – xn‖) ≤ . Then
limn→∞ ‖yn – xn‖ = .

Lemma . (see [, Proposition .]) Let C be a nonempty closed convex subset of a real
Hilbert spaceH and S : C → C be a mapping.

(i) If S is a k-strict pseudo-contractive mapping, then S satisfies the Lipschitz condition

‖Sx – Sy‖ ≤  + k
 – k

‖x – y‖, ∀x, y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/43
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(ii) If S is a k-strict pseudo-contractive mapping, then the mapping I – S is semiclosed at
, that is, if {xn} is a sequence in C such that xn → x̃ weakly and (I – S)xn → 
strongly, then (I – S)x̃ = .

(iii) If S is k-(quasi-)strict pseudo-contraction, then the fixed point set Fix(S) of S is
closed and convex so that the projection PFix(S) is well defined.

The following lemma plays a key role in proving strong convergence of the sequences
generated by our algorithms.

Lemma . (see []) Let {an} be a sequence of nonnegative real numbers satisfying the
property

an+ ≤ ( – sn)an + sntn + rn, ∀n≥ ,

where {sn} ⊂ (, ] and {tn} are such that
(i)

∑∞
n= sn = ∞;

(ii) either lim supn→∞ tn ≤  or
∑∞

n= |sntn| < ∞;
(iii)

∑∞
n= rn < ∞, where rn ≥ , ∀n≥ .

Then limn→∞ an = .

Lemma . (see []) Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S : C → C be a k-strictly pseudo-contractive mapping. Let γ and δ be two nonnegative
real numbers such that (γ + δ)k ≤ γ . Then

∥∥γ (x – y) + δ(Sx – Sy)
∥∥ ≤ (γ + δ)‖x – y‖, ∀x, y ∈ C. (.)

The following lemma is an immediate consequence of an inner product.

Lemma . In a real Hilbert spaceH, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H.

Let K be a nonempty closed convex subset of a real Hilbert space H and let F : K → H
be a monotone mapping. The variational inequality problem (VIP) is to find x ∈ K such
that

〈Fx, y – x〉 ≥ , ∀y ∈ K .

The solution set of the VIP is denoted by VI(K ,F). It is well known that

x ∈VI(K ,F) ⇔ x = PK (x – λFx) for some λ > .

A set-valued mapping T : H → H is called monotone if for all x, y ∈ H, f ∈ Tx and
g ∈ Ty imply that 〈x – y, f – g〉 ≥ . A monotone set-valued mapping T :H → H is called
maximal if its graph Gph(T) is not properly contained in the graph of any other mono-
tone set-valued mapping. It is known that a monotone set-valued mapping T :H → H is
maximal if and only if for (x, f ) ∈H×H, 〈x– y, f – g〉 ≥  for every (y, g) ∈Gph(T) implies

http://www.fixedpointtheoryandapplications.com/content/2013/1/43
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that f ∈ Tx. Let F : K →H be a monotone and Lipschitz continuous mapping and letNKv
be the normal cone to K at v ∈ K , that is,

NKv =
{
w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ K

}
.

Define

Tv =

⎧⎨
⎩Fv +NKv if v ∈ K ,

∅ if v /∈ K .

It is known that in this case the mapping T is maximal monotone and  ∈ Tv if and only
if v ∈VI(K ,F); for further details, we refer to [] and the references therein.

3 Relaxed viscosity methods and their convergence criteria
In this section, we propose and analyze the following relaxed viscosity iterative algorithms
for finding a common element of the solution set of GSVI (.), the solution set of SFP (.)
and the fixed point set of a strictly pseudo-contractive mapping S : C → C.

Algorithm . Let μi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {βn},

{γn}, {δn} ⊂ [, ] such that βn + γn + δn =  for all n ≥ . For x ∈ C given arbitrarily, let
{xn}, {yn}, {zn} be the sequences generated by the Mann-type viscosity iterative scheme
with regularization

⎧⎪⎪⎨
⎪⎪⎩
zn = PC[PC(xn –μBxn) –μBPC(xn –μBxn)],

yn = σnQxn + ( – σn)PC(zn – λn∇fαn (zn)),

xn+ = βnxn + γnyn + δnSyn, ∀n≥ .

Algorithm . Let μi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {βn},

{γn}, {δn} ⊂ [, ] such that βn + γn + δn =  for all n ≥ . For x ∈ C given arbitrarily, let
{xn}, {yn}, {zn} be the sequences generated by the Mann-type viscosity iterative scheme
with regularization

⎧⎪⎪⎨
⎪⎪⎩
zn = PC(xn – λn∇fαn (xn)),

yn = σnQxn + ( – σn)PC[PC(zn –μBzn) –μBPC(zn –μBzn)],

xn+ = βnxn + γnyn + δnSyn, ∀n≥ .

Next, we first give the strong convergence criteria of the sequences generated by Algo-
rithm ..

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A ∈ B(H,H) and Bi : C → H be βi-inverse strongly monotone for i = , . Let S : C → C
be a k-strictly pseudocontractive mapping such that Fix(S) ∩ Ξ ∩ Γ �= ∅. Let Q : C → C
be a ρ-contraction with ρ ∈ [,  ). For x ∈ C given arbitrarily, let {xn}, {yn}, {zn} be the
sequences generated by Algorithm ., where μi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂
(, 

‖A‖ ) and {σn}, {βn}, {γn}, {δn} ⊂ [, ] such that

http://www.fixedpointtheoryandapplications.com/content/2013/1/43
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(i)
∑∞

n= αn <∞;
(ii) βn + γn + δn =  and (γn + δn)k ≤ γn for all n≥ ;
(iii) limn→∞ σn =  and

∑∞
n= σn = ∞;

(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ δn > ;
(v) limn→∞( γn+

–βn+
– γn

–βn
) = ;

(vi)  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ and limn→∞ |λn+ – λn| = .

Then the sequences {xn}, {yn}, {zn} converge strongly to the same point x̄ = PFix(S)∩Ξ∩Γ Qx̄
if and only if limn→∞ ‖yn – zn‖ = . Furthermore, (x̄, ȳ) is a solution of GSVI (.), where
ȳ = PC(x̄ –μBx̄).

Proof First, taking into account  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ , without loss of

generality, we may assume that {λn} ⊂ [a,b] for some a,b ∈ (, 
‖A‖ ).

Now, let us show that PC(I – λ∇fα) is ζ -averaged for each λ ∈ (, 
α+‖A‖ ), where

ζ =
 + λ(α + ‖A‖)


.

Indeed, it is easy to see that ∇f = A∗(I – PQ)A is 
‖A‖ -ism, that is,

〈∇f (x) –∇f (y),x – y
〉 ≥ 

‖A‖
∥∥∇f (x) –∇f (y)

∥∥.

Observe that

(
α + ‖A‖)〈∇fα(x) –∇fα(y),x – y

〉
=

(
α + ‖A‖)[α‖x – y‖ + 〈∇f (x) –∇f (y),x – y

〉]
= α‖x – y‖ + α

〈∇f (x) –∇f (y),x – y
〉
+ α‖A‖‖x – y‖

+ ‖A‖〈∇f (x) –∇f (y),x – y
〉

≥ α‖x – y‖ + α
〈∇f (x) –∇f (y),x – y

〉
+

∥∥∇f (x) –∇f (y)
∥∥

=
∥∥α(x – y) +∇f (x) –∇f (y)

∥∥

=
∥∥∇fα(x) –∇fα(y)

∥∥.

Hence, it follows that ∇fα = αI +A∗(I –PQ)A is 
α+‖A‖ -ism. Thus, λ∇fα is 

λ(α+‖A‖) -ism ac-

cording to Proposition .(ii). By Proposition .(iii), the complement I–λ∇fα is λ(α+‖A‖)
 -

averaged. Therefore, noting that PC is 
 -averaged and utilizing Proposition .(iv), we

know that for each λ ∈ (, 
α+‖A‖ ), PC(I – λ∇fα) is ζ -averaged with

ζ =


+

λ(α + ‖A‖)


–



· λ(α + ‖A‖)


=
 + λ(α + ‖A‖)


∈ (, ).

This shows that PC(I – λ∇fα) is nonexpansive. Furthermore, for {λn} ⊂ [a,b] with a,b ∈
(, 

‖A‖ ), we have

a ≤ inf
n≥

λn ≤ sup
n≥

λn ≤ b <


‖A‖ = lim
n→∞


αn + ‖A‖ .
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Without loss of generality, we may assume that

a ≤ inf
n≥

λn ≤ sup
n≥

λn ≤ b <


αn + ‖A‖ , ∀n≥ .

Consequently, it follows that for each integer n≥ , PC(I – λn∇fαn ) is ζn-averaged with

ζn =


+

λn(αn + ‖A‖)


–



· λn(αn + ‖A‖)


=
 + λn(αn + ‖A‖)


∈ (, ).

This immediately implies that PC(I – λn∇fαn ) is nonexpansive for all n≥ .
Next, we divide the remainder of the proof into several steps.
Step . {xn} is bounded.
Indeed, take p ∈ Fix(S) ∩ Ξ ∩ Γ arbitrarily. Then Sp = p, PC(I – λ∇f )p = p for λ ∈

(, 
‖A‖ ), and

p = PC
[
PC(p –μBp) –μBPC(p –μBp)

]
.

For simplicity, we write

q = PC(p –μBp), x̃n = PC(xn –μBxn) and un = PC
(
zn – λn∇fαn (zn)

)
for each n≥ . Then yn = σnQxn + ( – σn)un for each n≥ . From Algorithm . it follows
that

‖un – p‖
=

∥∥PC(I – λn∇fαn )zn – PC(I – λn∇f )p
∥∥

≤ ∥∥PC(I – λn∇fαn )zn – PC(I – λn∇fαn )p
∥∥ +

∥∥PC(I – λn∇fαn )p – PC(I – λn∇f )p
∥∥

≤ ‖zn – p‖ + ∥∥(I – λn∇fαn )p – (I – λn∇f )p
∥∥

≤ ‖zn – p‖ + λnαn‖p‖. (.)

Utilizing Lemma ., we also have

‖un – p‖

=
∥∥PC(I – λn∇fαn )zn – PC(I – λn∇f )p

∥∥

=
∥∥PC(I – λn∇fαn )zn – PC(I – λn∇fαn )p + PC(I – λn∇fαn )p – PC(I – λn∇f )p

∥∥

≤ ∥∥PC(I – λn∇fαn )zn – PC(I – λn∇fαn )p
∥∥

+ 
〈
PC(I – λn∇fαn )p – PC(I – λn∇f )p,un – p

〉
≤ ‖zn – p‖ + 

∥∥PC(I – λn∇fαn )p – PC(I – λn∇f )p
∥∥‖un – p‖

≤ ‖zn – p‖ + 
∥∥(I – λn∇fαn )p – (I – λn∇f )p

∥∥‖un – p‖
= ‖zn – p‖ + λnαn‖p‖‖un – p‖
≤ ‖zn – p‖ + λnαn‖p‖‖un – p‖. (.)
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Since Bi : C → H is βi-inverse strongly monotone for i = ,  and  < μi < βi for i = , ,
we know that for all n≥ ,

‖zn – p‖

=
∥∥PC

[
PC(xn –μBxn) –μBPC(xn –μBxn)

]
– p

∥∥

=
∥∥PC

[
PC(xn –μBxn) –μBPC(xn –μBxn)

]
– PC

[
PC(p –μBp) –μBPC(p –μBp)

]∥∥

≤ ∥∥[
PC(xn –μBxn) –μBPC(xn –μBxn)

]
–

[
PC(p –μBp) –μBPC(p –μBp)

]∥∥

=
∥∥[
PC(xn –μBxn) – PC(p –μBp)

]
–μ

[
BPC(xn –μBxn) – BPC(p –μBp)

]∥∥

≤ ∥∥PC(xn –μBxn) – PC(p –μBp)
∥∥

–μ(β –μ)
∥∥BPC(xn –μBxn) – BPC(p –μBp)

∥∥

≤ ∥∥(xn –μBxn) – (p –μBp)
∥∥ –μ(β –μ)‖Bx̃n – Bq‖

=
∥∥(xn – p) –μ(Bxn – Bp)

∥∥ –μ(β –μ)‖Bx̃n – Bq‖

≤ ‖xn – p‖ –μ(β –μ)‖Bxn – Bp‖ –μ(β –μ)‖Bx̃n – Bq‖

≤ ‖xn – p‖. (.)

Hence it follows from (.) and (.) that

‖yn – p‖ =
∥∥σn(Qxn – p) + ( – σn)(un – p)

∥∥
≤ σn‖Qxn – p‖ + ( – σn)‖un – p‖
≤ σn

(‖Qxn –Qp‖ + ‖Qp – p‖) + ( – σn)
(‖zn – p‖ + λnαn‖p‖

)
≤ σn

(
ρ‖xn – p‖ + ‖Qp – p‖) + ( – σn)

(‖xn – p‖ + λnαn‖p‖
)

≤ (
 – ( – ρ)σn

)‖xn – p‖ + σn‖Qp – p‖ + λnαn‖p‖

=
(
 – ( – ρ)σn

)‖xn – p‖ + ( – ρ)σn
‖Qp – p‖
 – ρ

+ λnαn‖p‖

≤ max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ λnαn‖p‖. (.)

Since (γn + δn)k ≤ γn for all n≥ , utilizing Lemma ., we obtain from (.)

‖xn+ – p‖ =
∥∥βn(xn – p) + γn(yn – p) + δn(Syn – p)

∥∥
≤ βn‖xn – p‖ + ∥∥γn(yn – p) + δn(Syn – p)

∥∥
≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

≤ βn‖xn – p‖ + (γn + δn)
[
max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ λnαn‖p‖

]
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≤ βn‖xn – p‖ + (γn + δn)max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ λnαn‖p‖

≤ max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖αn. (.)

Now, we claim that

‖xn+ – p‖ ≤ max

{
‖x – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖

n∑
j=

αj. (.)

As a matter of fact, if n = , then it is clear that (.) is valid, that is,

‖x – p‖ ≤ max

{
‖x – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖

∑
j=

αj.

Assume that (.) holds for n≥ , that is,

‖xn – p‖ ≤ max

{
‖x – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖

n–∑
j=

αj. (.)

Then we conclude from (.) and (.) that

‖xn+ – p‖ ≤ max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖αn

≤ max

{
max

{
‖x – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖

n–∑
j=

αj,
‖Qp – p‖
 – ρ

}
+ b‖p‖αn

≤ max

{
‖x – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖

n–∑
j=

αj + b‖p‖αn

=max

{
‖x – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖

n∑
j=

αj.

By induction, we conclude that (.) is valid. Hence, {xn} is bounded. Since PC , ∇fαn , B

and B are Lipschitz continuous, it is easy to see that {un}, {zn}, {yn} and {x̃n} are bounded,
where x̃n = PC(xn –μBxn) for all n≥ .
Step . limn→∞ ‖xn+ – xn‖ = .
Indeed, define xn+ = βnxn + ( – βn)wn for all n≥ . It follows that

wn+ –wn =
xn+ – βn+xn+

 – βn+
–
xn+ – βnxn

 – βn

=
γn+yn+ + δn+Syn+

 – βn+
–

γnyn + δnSyn
 – βn

=
γn+(yn+ – yn) + δn+(Syn+ – Syn)

 – βn+
+

(
γn+

 – βn+
–

γn

 – βn

)
yn

+
(

δn+

 – βn+
–

δn

 – βn

)
Syn. (.)
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Since (γn + δn)k ≤ γn for all n≥ , utilizing Lemma ., we have

∥∥γn+(yn+ – yn) + δn+(Syn+ – Syn)
∥∥ ≤ (γn+ + δn+)‖yn+ – yn‖. (.)

Next, we estimate ‖yn+ – yn‖. Observe that

‖un+ – un‖ =
∥∥PC

(
zn+ – λn+∇fαn+ (zn+)

)
– PC

(
zn – λn∇fαn (zn)

)∥∥
≤ ∥∥PC(I – λn+∇fαn+ )zn+ – PC(I – λn+∇fαn+ )zn

∥∥
+

∥∥PC(I – λn+∇fαn+ )zn – PC(I – λn∇fαn )zn
∥∥

≤ ‖zn+ – zn‖ +
∥∥(I – λn+∇fαn+ )zn – (I – λn∇fαn )zn

∥∥
= ‖zn+ – zn‖ +

∥∥λn+(αn+I +∇f )zn – λn(αnI +∇f )zn
∥∥

≤ ‖zn+ – zn‖ + |λn+ – λn|
∥∥∇f (zn)

∥∥ + |λn+αn+ – λnαn|‖zn‖ (.)

and

‖zn+ – zn‖ =
∥∥PC

[
PC(xn+ –μBxn+) –μBPC(xn+ –μBxn+)

]
– PC

[
PC(xn –μBxn) –μBPC(xn –μBxn)

]∥∥

≤ ∥∥[
PC(xn+ –μBxn+) –μBPC(xn+ –μBxn+)

]
–

[
PC(xn –μBxn) –μBPC(xn –μBxn)

]∥∥

=
∥∥[
PC(xn+ –μBxn+) – PC(xn –μBxn)

]
–μ

[
BPC(xn+ –μBxn+) – BPC(xn –μBxn)

]∥∥

≤ ∥∥PC(xn+ –μBxn+) – PC(xn –μBxn)
∥∥

–μ(β –μ)
∥∥BPC(xn+ –μBxn+) – BPC(xn –μBxn)

∥∥

≤ ∥∥PC(xn+ –μBxn+) – PC(xn –μBxn)
∥∥

≤ ∥∥(xn+ –μBxn+) – (xn –μBxn)
∥∥

=
∥∥(xn+ – xn) –μ(Bxn+ – Bxn)

∥∥

≤ ‖xn+ – xn‖ –μ(β –μ)‖Bxn+ – Bxn‖

≤ ‖xn+ – xn‖. (.)

Combining (.) with (.), we get

‖un+ – un‖ ≤ ‖zn+ – zn‖ + |λn+ – λn|
∥∥∇f (zn)

∥∥ + |λn+αn+ – λnαn|‖zn‖
≤ ‖xn+ – xn‖ + |λn+ – λn|

∥∥∇f (zn)
∥∥ + |λn+αn+ – λnαn|‖zn‖, (.)

which hence implies that

‖yn+ – yn‖ =
∥∥un+ + σn+(Qxn+ – un+) – un – σn(Qxn – un)

∥∥
≤ ‖un+ – un‖ + σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖
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≤ ‖xn+ – xn‖ + |λn+ – λn|
∥∥∇f (zn)

∥∥ + |λn+αn+ – λnαn|‖zn‖
+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖. (.)

Hence it follows from (.), (.) and (.) that

‖wn+ –wn‖

≤ ‖γn+(yn+ – yn) + δn+(Syn+ – Syn)‖
 – βn+

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣‖yn‖
+

∣∣∣∣ δn+

 – βn+
–

δn

 – βn

∣∣∣∣‖Syn‖
≤ γn+ + δn+

 – βn+
‖yn+ – yn‖ +

∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)

= ‖yn+ – yn‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)

≤ ‖xn+ – xn‖ + |λn+ – λn|
∥∥∇f (zn)

∥∥ + |λn+αn+ – λnαn|‖zn‖

+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)
.

Since {xn}, {yn}, {zn} and {un} are bounded, it follows from conditions (i), (iii), (v) and (vi)
that

lim sup
n→∞

(‖wn+ –wn‖ – ‖xn+ – xn‖
)

≤ lim sup
n→∞

{
|λn+ – λn|

∥∥∇f (zn)
∥∥ + |λn+αn+ – λnαn|‖zn‖

+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)}

= .

Hence by Lemma ., we get limn→∞ ‖wn – xn‖ = . Thus,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖wn – xn‖ = . (.)

Step . limn→∞ ‖Bx̃n–Bq‖ =  and limn→∞ ‖Bxn–Bp‖ = , where q = PC(p–μBp).
Indeed, utilizing Lemma . and the convexity of ‖ · ‖, we obtain from Algorithm .

and (.)-(.) that

‖xn+ – p‖

=
∥∥βn(xn – p) + γn(yn – p) + δn(Syn – p)

∥∥

≤ βn‖xn – p‖ + (γn + δn)
∥∥∥∥ 
γn + δn

[
γn(yn – p) + δn(Syn – p)

]∥∥∥∥


≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

≤ βn‖xn – p‖ + (γn + δn)
[
σn‖Qxn – p‖ + ( – σn)‖un – p‖]

≤ βn‖xn – p‖ + σn‖Qxn – p‖ + (γn + δn)‖un – p‖
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≤ βn‖xn – p‖ + σn‖Qxn – p‖ + (γn + δn)
(‖zn – p‖ + λnαn‖p‖‖un – p‖)

≤ βn‖xn – p‖ + σn‖Qxn – p‖ + (γn + δn)
[‖xn – p‖ –μ(β –μ)‖Bxn – Bp‖

–μ(β –μ)‖Bx̃n – Bq‖ + λnαn‖p‖‖un – p‖]
≤ ‖xn – p‖ + σn‖Qxn – p‖ – (γn + δn)

[
μ(β –μ)‖Bxn – Bp‖

+μ(β –μ)‖Bx̃n – Bq‖
]
+ λnαn‖p‖‖un – p‖.

Therefore,

(γn + δn)
[
μ(β –μ)‖Bxn – Bp‖ +μ(β –μ)‖Bx̃n – Bq‖

]
≤ ‖xn – p‖ – ‖xn+ – p‖ + σn‖Qxn – p‖ + λnαn‖p‖‖un – p‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + σn‖Qxn – p‖ + λnαn‖p‖‖un – p‖.

Since αn → , σn → , ‖xn – xn+‖ → , lim infn→∞(γn + δn) >  and {λn} ⊂ [a,b] for some
a,b ∈ (, 

‖A‖ ), it follows that

lim
n→∞‖Bx̃n – Bq‖ =  and lim

n→∞‖Bxn – Bp‖ = .

Step . limn→∞ ‖Syn – yn‖ = .
Indeed, by firm nonexpansiveness of PC , we have

‖x̃n – q‖

=
∥∥PC(xn –μBxn) – PC(p –μBp)

∥∥

≤ 〈
(xn –μBxn) – (p –μBp), x̃n – q

〉
=


[∥∥xn – p –μ(Bxn – Bp)

∥∥ + ‖x̃n – q‖

–
∥∥(xn – p) –μ(Bxn – Bp) – (x̃n – q)

∥∥]
≤ 


[‖xn – p‖ + ‖x̃n – q‖ – ∥∥(xn – x̃n) –μ(Bxn – Bp) – (p – q)

∥∥]
=


[‖xn – p‖ + ‖x̃n – q‖ – ∥∥xn – x̃n – (p – q)

∥∥

+ μ
〈
xn – x̃n – (p – q),Bxn – Bp

〉
–μ

‖Bxn – Bp‖
]

≤ 

[‖xn – p‖ + ‖x̃n – q‖ – ∥∥xn – x̃n – (p – q)

∥∥

+ μ
∥∥xn – x̃n – (p – q)

∥∥‖Bxn – Bp‖
]
,

that is,

‖x̃n – q‖

≤ ‖xn – p‖ – ∥∥xn – x̃n – (p – q)
∥∥ + μ

∥∥xn – x̃n – (p – q)
∥∥‖Bxn – Bp‖. (.)
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Moreover, using the argument technique similar to the above one, we derive

‖zn – p‖

=
∥∥PC(x̃n –μBx̃n) – PC(q –μBq)

∥∥

≤ 〈
(x̃n –μBx̃n) – (q –μBq), zn – p

〉
=


[∥∥x̃n – q –μ(Bx̃n – Bq)

∥∥ + ‖zn – p‖

–
∥∥(x̃n – q) –μ(Bx̃n – Bq) – (zn – p)

∥∥]
≤ 


[‖x̃n – q‖ + ‖zn – p‖ – ∥∥(x̃n – zn) –μ(Bx̃n – Bq) + (p – q)

∥∥]
=


[‖x̃n – q‖ + ‖zn – p‖ – ∥∥x̃n – zn + (p – q)

∥∥ + μ
〈
x̃n – zn + (p – q),Bx̃n – Bq

〉
–μ

‖Bx̃n – Bq‖
]

≤ 

[‖x̃n – q‖ + ‖zn – p‖ – ∥∥x̃n – zn + (p – q)

∥∥

+ μ
∥∥x̃n – zn + (p – q)

∥∥‖Bx̃n – Bq‖
]
,

that is,

‖zn – p‖

≤ ‖x̃n – q‖ – ∥∥x̃n – zn + (p – q)
∥∥ + μ

∥∥x̃n – zn + (p – q)
∥∥‖Bx̃n – Bq‖. (.)

Utilizing (.), (.) and (.), we have

‖un – p‖ ≤ ‖zn – p‖ + λnαn‖p‖‖un – p‖
≤ ‖x̃n – q‖ – ∥∥x̃n – zn + (p – q)

∥∥ + μ
∥∥x̃n – zn + (p – q)

∥∥‖Bx̃n – Bq‖
+ λnαn‖p‖‖un – p‖

≤ ‖xn – p‖ – ∥∥xn – x̃n – (p – q)
∥∥ + μ

∥∥xn – x̃n – (p – q)
∥∥‖Bxn – Bp‖

–
∥∥x̃n – zn + (p – q)

∥∥ + μ
∥∥x̃n – zn + (p – q)

∥∥‖Bx̃n – Bq‖
+ λnαn‖p‖‖un – p‖. (.)

So, from Algorithm . and (.), it follows that

‖xn+ – p‖

=
∥∥βn(xn – p) + γn(yn – p) + δn(Syn – p)

∥∥

≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

= βn‖xn – p‖ + ( – βn)‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
[
σn‖Qxn – p‖ + ( – σn)‖un – p‖]

≤ βn‖xn – p‖ + σn‖Qxn – p‖ + ( – βn)‖un – p‖
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≤ βn‖xn – p‖ + σn‖Qxn – p‖ + ( – βn)
[‖xn – p‖ – ∥∥xn – x̃n – (p – q)

∥∥

+ μ
∥∥xn – x̃n – (p – q)

∥∥‖Bxn – Bp‖ –
∥∥x̃n – zn + (p – q)

∥∥

+ μ
∥∥x̃n – zn + (p – q)

∥∥‖Bx̃n – Bq‖ + λnαn‖p‖‖un – p‖]
= ‖xn – p‖ + σn‖Qxn – p‖ – ( – βn)

[∥∥xn – x̃n – (p – q)
∥∥ +

∥∥x̃n – zn + (p – q)
∥∥]

+ ( – βn)
[
μ

∥∥xn – x̃n – (p – q)
∥∥‖Bxn – Bp‖

+ μ
∥∥x̃n – zn + (p – q)

∥∥‖Bx̃n – Bq‖ + λnαn‖p‖‖un – p‖],
which hence implies that

( – βn)
[∥∥xn – x̃n – (p – q)

∥∥ +
∥∥x̃n – zn + (p – q)

∥∥]
≤ ‖xn – p‖ – ‖xn+ – p‖ + σn‖Qxn – p‖

+ ( – βn)
[
μ

∥∥xn – x̃n – (p – q)
∥∥‖Bxn – Bp‖

+ μ
∥∥x̃n – zn + (p – q)

∥∥‖Bx̃n – Bq‖ + λnαn‖p‖‖un – p‖]
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + σn‖Qxn – p‖

+ μ
∥∥xn – x̃n – (p – q)

∥∥‖Bxn – Bp‖
+ μ

∥∥x̃n – zn + (p – q)
∥∥‖Bx̃n – Bq‖ + λnαn‖p‖‖un – p‖.

Since lim supn→∞ βn < , {λn} ⊂ [a,b], αn → , σn → , ‖Bxn–Bp‖ → , ‖Bx̃n–Bq‖ →
 and ‖xn+ – xn‖ → , it follows from the boundedness of {xn}, {x̃n}, {zn} and {un} that

lim
n→∞

∥∥xn – x̃n – (p – q)
∥∥ =  and lim

n→∞
∥∥x̃n – zn + (p – q)

∥∥ = .

Consequently, it immediately follows that limn→∞ ‖xn – zn‖ = . Also, since yn = σnQxn +
( – σn)un and ‖yn – zn‖ → , we have

(–σn)‖un–zn‖ =
∥∥yn–zn–σn(Qxn–zn)

∥∥ ≤ ‖yn–zn‖+σn‖Qxn–zn‖ →  (n→ ∞).

Thus, we have

lim
n→∞‖un – zn‖ =  and lim

n→∞‖xn – yn‖ = . (.)

Note that

∥∥δn(Syn – xn)
∥∥ ≤ ‖xn+ – xn‖ + γn‖yn – xn‖.

It hence follows that

lim
n→∞‖Syn – xn‖ =  and lim

n→∞‖Syn – yn‖ = .

Step . lim supn→∞〈Qx̄ – x̄,xn – x̄〉 ≤ , where x̄ = PFix(S)∩Ξ∩Γ Qx̄.
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Indeed, since {xn} is bounded, there exists a subsequence {xni} of {xn} such that

lim sup
n→∞

〈Qx̄ – x̄,xn – x̄〉 = lim
i→∞〈Qx̄ – x̄,xni – x̄〉. (.)

Also, since H is reflexive and {yn} is bounded, without loss of generality, we may assume
that yni → p̂ weakly for some p̂ ∈ C. First, it is clear from Lemma . that p̂ ∈ Fix(S). Now,
let us show that p̂ ∈ Ξ . We note that

∥∥xn –G(xn)
∥∥ =

∥∥xn – PC
[
PC(xn –μBxn) –μBPC(xn –μBxn)

]∥∥
= ‖xn – zn‖ →  (n→ ∞),

where G : C → C is defined as that in Lemma .. According to Lemma ., we obtain
p̂ ∈ Ξ . Further, let us show that p̂ ∈ Γ . As amatter of fact, since ‖xn–zn‖ → , ‖un–zn‖ →
 and ‖xn – yn‖ → , we deduce that zni → p̂ weakly and uni → p̂ weakly. Let

Tv =

⎧⎨
⎩∇f (v) +NCv if v ∈ C,

∅ if v /∈ C,

where NCv = {w ∈H : 〈v– u,w〉 ≥ ,∀u ∈ C}. Then T is maximal monotone and  ∈ Tv if
and only if v ∈VI(C,∇f ); see [] for more details. Let (v,w) ∈Gph(T). Then we have

w ∈ Tv = ∇f (v) +NCv

and hence

w –∇f (v) ∈NCv.

So, we have

〈
v – u,w –∇f (v)

〉 ≥ , ∀u ∈ C.

On the other hand, from

un = PC
(
zn – λn∇fαn (zn)

)
and v ∈ C,

we have

〈
zn – λn∇fαn (zn) – un,un – v

〉 ≥ 

and hence,
〈
v – un,

un – zn
λn

+∇fαn (zn)
〉
≥ .

Therefore, from

w –∇f (v) ∈NCv and uni ∈ C,
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we have

〈v – uni ,w〉 ≥ 〈
v – uni ,∇f (v)

〉
≥ 〈

v – uni ,∇f (v)
〉
–

〈
v – uni ,

uni – zni
λni

+∇fαni (zni )
〉

=
〈
v – uni ,∇f (v)

〉
–

〈
v – uni ,

uni – zni
λni

+∇f (zni )
〉
– αni〈v – uni , zni〉

=
〈
v – uni ,∇f (v) –∇f (uni )

〉
+

〈
v – uni ,∇f (uni ) –∇f (zni )

〉
–

〈
v – uni ,

uni – zni
λni

〉
– αni〈v – uni , zni〉

≥ 〈
v – uni ,∇f (uni ) –∇f (zni )

〉
–

〈
v – uni ,

uni – zni
λni

〉
– αni〈v – uni , zni〉.

Hence, we get

〈v – p̂,w〉 ≥  as i→ ∞.

Since T is maximal monotone, we have p̂ ∈ T–, and hence p̂ ∈VI(C,∇f ). Thus it is clear
that p̂ ∈ Γ . Therefore, p̂ ∈ Fix(S) ∩ Ξ ∩ Γ . Consequently, in terms of Proposition .(i),
we obtain from (.) that

lim sup
n→∞

〈Qx̄ – x̄,xn – x̄〉 = lim
i→∞〈Qx̄ – x̄,xni – x̄〉 = 〈Qx̄ – x̄, p̂ – x̄〉 ≤ .

Step . limn→∞ ‖xn – x̄‖ = .
Indeed, from (.) and (.) it follows that

‖un – x̄‖ ≤ ‖zn – x̄‖ + λnαn‖x̄‖‖un – x̄‖ ≤ ‖xn – x̄‖ + λnαn‖x̄‖‖un – x̄‖.

Note that

〈Qxn – x̄, yn – x̄〉 = 〈Qxn – x̄,xn – x̄〉 + 〈Qxn – x̄, yn – xn〉
= 〈Qxn –Qx̄,xn – x̄〉 + 〈Qx̄ – x̄,xn – x̄〉 + 〈Qxn – x̄, yn – xn〉
≤ ρ‖xn – x̄‖ + 〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖.

Utilizing Lemmas . and ., we obtain from (.) and the convexity of ‖ · ‖

‖xn+ – x̄‖

=
∥∥βn(xn – x̄) + γn(yn – x̄) + δn(Syn – x̄)

∥∥

≤ βn‖xn – x̄‖ + (γn + δn)
∥∥∥∥ 
γn + δn

[
γn(yn – x̄) + δn(Syn – x̄)

]∥∥∥∥


≤ βn‖xn – x̄‖ + (γn + δn)‖yn – x̄‖

≤ βn‖xn – x̄‖ + (γn + δn)
[
( – σn)‖un – x̄‖ + σn〈Qxn – x̄, yn – x̄〉]

≤ βn‖xn – x̄‖ + (γn + δn)
[
( – σn)

(‖xn – x̄‖ + λnαn‖x̄‖‖un – x̄‖)
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+ σn〈Qxn – x̄, yn – x̄〉]
=

(
 – (γn + δn)σn

)‖xn – x̄‖ + (γn + δn)σn〈Qxn – x̄, yn – x̄〉
+ (γn + δn)λnαn‖x̄‖‖un – x̄‖

≤ (
 – (γn + δn)σn

)‖xn – x̄‖ + (γn + δn)σn〈Qxn – x̄, yn – x̄〉
+ λnαn‖x̄‖‖un – x̄‖

≤ (
 – (γn + δn)σn

)‖xn – x̄‖ + (γn + δn)σn
[
ρ‖xn – x̄‖

+ 〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖
]
+ λnαn‖x̄‖‖un – x̄‖

=
[
 – ( – ρ)(γn + δn)σn

]‖xn – x̄‖ + (γn + δn)σn
[〈Qx̄ – x̄,xn – x̄〉

+ ‖Qxn – x̄‖‖yn – xn‖
]
+ λnαn‖x̄‖‖un – x̄‖

=
[
 – ( – ρ)(γn + δn)σn

]‖xn – x̄‖

+ ( – ρ)(γn + δn)σn
[〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖]

 – ρ

+ λnαn‖x̄‖‖un – x̄‖.

Note that lim infn→∞( – ρ)(γn + δn) > . It follows that
∑∞

n=( – ρ)(γn + δn)σn = ∞. It is
clear that

lim sup
n→∞

[〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖]
 – ρ

≤ 

because lim supn→∞〈Qx̄ – x̄,xn – x̄〉 ≤  and limn→∞ ‖xn – yn‖ = . In addition, note also
that {λn} ⊂ [a,b],

∑∞
n= αn < ∞ and {un} is bounded. Hence we get

∑∞
n= λnαn‖x̄‖‖un –

x̄‖ < ∞. Therefore, all conditions of Lemma . are satisfied. Consequently, we immedi-
ately deduce that ‖xn – x̄‖ →  as n→ ∞. This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A ∈ B(H,H) and Bi : C → H be βi-inverse strongly monotone for i = , . Let S : C → C
be a k-strictly pseudocontractive mapping such that Fix(S) ∩ Ξ ∩ Γ �= ∅. For fixed u ∈ C
and x ∈ C given arbitrarily, let the sequences {xn}, {yn}, {zn} be generated iteratively by

⎧⎪⎪⎨
⎪⎪⎩
zn = PC[PC(xn –μBxn) –μBPC(xn –μBxn)],

yn = σnu + ( – σn)PC(zn – λn∇fαn (zn)),

xn+ = βnxn + γnyn + δnSyn, ∀n≥ ,

(.)

where μi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {βn}, {γn}, {δn} ⊂

[, ] such that
(i)

∑∞
n= αn <∞;

(ii) βn + γn + δn =  and (γn + δn)k ≤ γn for all n≥ ;
(iii) limn→∞ σn =  and

∑∞
n= σn = ∞;

(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ δn > ;
(v) limn→∞( γn+

–βn+
– γn

–βn
) = ;

(vi)  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ and limn→∞ |λn+ – λn| = .
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Then the sequences {xn}, {yn}, {zn} converge strongly to the same point x̄ = PFix(S)∩Ξ∩Γ u
if and only if limn→∞ ‖yn – zn‖ = . Furthermore, (x̄, ȳ) is a solution of GSVI (.), where
ȳ = PC(x̄ –μBx̄).

Next, utilizing Corollary ., we give the following result.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A ∈ B(H,H) and S : C → C be a nonexpansive mapping such that Fix(S) ∩ Γ �= ∅. For
fixed u ∈ C and x ∈ C given arbitrarily, let the sequences {xn}, {yn} be generated iteratively
by

⎧⎨
⎩yn = σnu + ( – σn)PC(xn – λn∇fαn (xn)),

xn+ = βnxn + ( – βn)Syn, ∀n≥ ,
(.)

where {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {βn} ⊂ [, ] such that

(i)
∑∞

n= αn <∞;
(ii) limn→∞ σn =  and

∑∞
n= σn = ∞;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iv)  < lim infn→∞ λn ≤ lim supn→∞ λn < 

‖A‖ and limn→∞ |λn+ – λn| = .
Then the sequences {xn}, {yn} converge strongly to the same point x̄ = PFix(S)∩Γ u if and only
if limn→∞ ‖xn – yn‖ = .

Proof In Corollary ., put B = B =  and γn = . Then Ξ = C, βn + δn =  for all n ≥ ,
and the iterative scheme (.) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩
zn = xn,

yn = σnu + ( – σn)PC(zn – λn∇fαn (zn)),

xn+ = βnxn + δnSyn, ∀n≥ .

This is equivalent to (.). Since S is a nonexpansive mapping, S must be a k-strictly
pseudo-contractive mapping with k = . In this case, it is easy to see that conditions (i)-
(vi) in Corollary . all are satisfied. Therefore, in terms of Corollary ., we obtain the
desired result. �

Now, we are in a position to present the strong convergence criteria of the sequences
generated by Algorithm ..

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A ∈ B(H,H) and Bi : C → H be βi-inverse strongly monotone for i = , . Let S : C → C
be a k-strictly pseudocontractive mapping such that Fix(S) ∩ Ξ ∩ Γ �= ∅. Let Q : C → C
be a ρ-contraction with ρ ∈ [,  ). For x ∈ C given arbitrarily, let {xn}, {yn}, {zn} be the
sequences generated by Algorithm ., where μi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂
(, 

‖A‖ ) and {σn}, {βn}, {γn}, {δn} ⊂ [, ] such that
(i)

∑∞
n= αn <∞;

(ii) βn + γn + δn =  and (γn + δn)k ≤ γn for all n≥ ;
(iii) limn→∞ σn =  and

∑∞
n= σn = ∞;
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(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ δn > ;
(v) limn→∞( γn+

–βn+
– γn

–βn
) = ;

(vi)  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ and limn→∞ |λn+ – λn| = .

Then the sequences {xn}, {yn}, {zn} converge strongly to the same point x̄ = PFix(S)∩Ξ∩Γ Qx̄
if and only if limn→∞ ‖yn – zn‖ = . Furthermore, (x̄, ȳ) is a solution of GSVI (.), where
ȳ = PC(x̄ –μBx̄).

Proof First, taking into account  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ , without loss of

generality, we may assume that {λn} ⊂ [a,b] for some a,b ∈ (, 
‖A‖ ). Repeating the same

argument as that in the proof of Theorem ., we can show that PC(I –λ∇fα) is ζ -averaged
for each λ ∈ (, 

α+‖A‖ ), where ζ = +λ(α+‖A‖)
 . Further, repeating the same argument as that

in the proof of Theorem ., we can also show that for each integer n ≥ , PC(I – λn∇fαn )
is ζn-averaged with ζn = +λn(αn+‖A‖)

 ∈ (, ).
Next, we divide the remainder of the proof into several steps.
Step . {xn} is bounded.
Indeed, take p ∈ Fix(S) ∩ Ξ ∩ Γ arbitrarily. Then Sp = p, PC(I – λ∇f )p = p for λ ∈

(, 
‖A‖ ), and

p = PC
[
PC(p –μBp) –μBPC(p –μBp)

]
.

For simplicity, we write

q = PC(p –μBp), z̃n = PC(zn –μBzn) and un = PC(z̃n –μBz̃n)

for each n≥ . Then yn = σnQxn+(–σn)un for each n≥ . Utilizing the arguments similar
to those of (.) and (.) in the proof of Theorem ., from Algorithm . we can obtain

‖zn – p‖ ≤ ‖xn – p‖ + λnαn‖p‖ (.)

and

‖zn – p‖ ≤ ‖xn – p‖ + λnαn‖p‖‖zn – p‖. (.)

Since Bi : C → H is βi-inverse strongly monotone and  < μi < βi for i = , , utilizing
the argument similar to that of (.) in the proof of Theorem ., we can obtain that for
all n≥ ,

‖un – p‖ ≤ ‖zn – p‖ –μ(β –μ)‖Bzn – Bp‖ –μ(β –μ)‖Bz̃n – Bq‖

≤ ‖zn – p‖. (.)

Hence it follows from (.) and (.) that

‖yn – p‖ =
∥∥σn(Qxn – p) + ( – σn)(un – p)

∥∥
≤ σn

(‖Qxn –Qp‖ + ‖Qp – p‖) + ( – σn)‖zn – p‖
≤ σn

(
ρ‖xn – p‖ + ‖Qp – p‖) + ( – σn)

(‖xn – p‖ + λnαn‖p‖
)
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≤ (
 – ( – ρ)σn

)‖xn – p‖ + σn‖Qp – p‖ + λnαn‖p‖

≤ max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ λnαn‖p‖. (.)

Since (γn + δn)k ≤ γn for all n≥ , by Lemma . we can readily see from (.) that

‖xn+ – p‖ ≤ max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖αn. (.)

Repeating the same argument as that of (.) in the proof of Theorem ., by induction
we can prove that

‖xn+ – p‖ ≤ max

{
‖x – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖

n∑
j=

αj. (.)

Thus, {xn} is bounded. Since PC , ∇fαn , B and B are Lipschitz continuous, it is easy to see
that {zn}, {un}, {ūn}, {yn} and {z̃n} are bounded, where z̃n = PC(zn –μBzn) for all n ≥ .
Step . limn→∞ ‖xn+ – xn‖ = .
Indeed, define xn+ = βnxn+(–βn)wn for all n≥ . Then, utilizing the arguments similar

to those of (.)-(.) in the proof of Theorem ., we can obtain that

wn+ –wn

=
γn+(yn+ – yn) + δn+(Syn+ – Syn)

 – βn+
+

(
γn+

 – βn+
–

γn

 – βn

)
yn

+
(

δn+

 – βn+
–

δn

 – βn

)
Syn, (.)

∥∥γn+(yn+ – yn) + δn+(Syn+ – Syn)
∥∥ ≤ (γn+ + δn+)‖yn+ – yn‖ (.)

(due to Lemma .)

‖zn+ – zn‖ ≤ ‖xn+ – xn‖ + |λn+ – λn|
∥∥∇f (xn)

∥∥ + |λn+αn+ – λnαn|‖xn‖ (.)

and

‖un+ – un‖ ≤ ∥∥PC(zn+ –μBzn+) – PC(zn –μBzn)
∥∥

–μ(β –μ)
∥∥BPC(zn+ –μBzn+) – BPC(zn –μBzn)

∥∥

≤ ∥∥(zn+ –μBzn+) – (zn –μBzn)
∥∥

≤ ‖zn+ – zn‖ –μ(β –μ)‖Bzn+ – Bzn‖

≤ ‖zn+ – zn‖. (.)

So, from (.) and (.), we get

‖yn+ – yn‖ =
∥∥un+ + σn+(Qxn+ – un+) – un – σn(Qxn – un)

∥∥
≤ ‖un+ – un‖ + σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖
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≤ ‖xn+ – xn‖ + |λn+ – λn|
∥∥∇f (xn)

∥∥ + |λn+αn+ – λnαn|‖xn‖
+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖. (.)

Hence it follows from (.), (.) and (.) that

‖wn+ –wn‖
≤ ‖xn+ – xn‖ + |λn+ – λn|

∥∥∇f (xn)
∥∥ + |λn+αn+ – λnαn|‖xn‖

+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)
.

Since {xn}, {yn}, {zn} and {un} are bounded, it follows from conditions (i), (iii), (v) and (vi)
that

lim sup
n→∞

(‖wn+ –wn‖ – ‖xn+ – xn‖
)

≤ lim sup
n→∞

{
|λn+ – λn|

∥∥∇f (xn)
∥∥ + |λn+αn+ – λnαn|‖xn‖

+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)}

= .

Hence by Lemma ., we get limn→∞ ‖wn – xn‖ = . Thus,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖wn – xn‖ = . (.)

Step . limn→∞ ‖Bz̃n –Bq‖ =  and limn→∞ ‖Bzn –Bp‖ = , where q = PC(p–μBp).
Indeed, utilizing the arguments similar to those of Step  in the proof of Theorem .,

we can obtain the desired conclusion.
Step . limn→∞ ‖Syn – yn‖ = .
Indeed, utilizing the arguments similar to those of Step  in the proof of Theorem .,

we can obtain the desired conclusion.
Step . lim supn→∞〈Qx̄ – x̄,xn – x̄〉 ≤ , where x̄ = PFix(S)∩Ξ∩Γ Qx̄.
Indeed, utilizing the arguments similar to those of Step  in the proof of Theorem .,

we can obtain the desired conclusion.
Step . limn→∞ ‖xn – x̄‖ = .
Indeed, utilizing the arguments similar to those of Step  in the proof of Theorem .,

we can obtain the desired conclusion. This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A ∈ B(H,H) and Bi : C → H be βi-inverse strongly monotone for i = , . Let S : C → C
be a k-strictly pseudocontractive mapping such that Fix(S) ∩ Ξ ∩ Γ �= ∅. For fixed u ∈ C
and x ∈ C given arbitrarily, let the sequences {xn}, {yn}, {zn} be generated iteratively by

⎧⎪⎪⎨
⎪⎪⎩
zn = PC(xn – λn∇fαn (xn)),

yn = σnu + ( – σn)PC[PC(zn –μBzn) –μBPC(zn –μBzn)],

xn+ = βnxn + γnyn + δnSyn, ∀n≥ ,

(.)
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where μi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {βn}, {γn}, {δn} ⊂

[, ] such that
(i)

∑∞
n= αn <∞;

(ii) βn + γn + δn =  and (γn + δn)k ≤ γn for all n≥ ;
(iii) limn→∞ σn =  and

∑∞
n= σn = ∞;

(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ δn > ;
(v) limn→∞( γn+

–βn+
– γn

–βn
) = ;

(vi)  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ and limn→∞ |λn+ – λn| = .

Then the sequences {xn}, {yn}, {zn} converge strongly to the same point x̄ = PFix(S)∩Ξ∩Γ Qx̄
if and only if limn→∞ ‖yn – zn‖ = . Furthermore, (x̄, ȳ) is a solution of GSVI (.), where
ȳ = PC(x̄ –μBx̄).

Remark . In Corollary ., let S be a nonexpansive mapping and put B = B =  and
γn = . Then Ξ = C, βn + δn = , PC[PC(zn –μBzn) –μBPC(zn –μBzn)] = zn, and the
iterative scheme (.) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩
zn = PC(xn – λn∇fαn (xn)),

yn = σnu + ( – σn)zn,

xn+ = βnxn + δnSyn, ∀n≥ .

(.)

This is equivalent to (.) in Corollary .. In this case, it is easy to see that Corollary .
reduces to Corollary .. Thus Corollary . includes Corollary . as a special case.

Remark . Our Theorems . and . improve, extend and develop [, Theorem .],
[, Theorem .], [, Theorem .] and [, Theorem .] in the following aspects:
(i) Compared with the relaxed extragradient method in [, Theorem .], our relaxed

viscosity iterative algorithms (i.e., Algorithms . and .) drop the requirement of bound-
edness for the domain in which various mappings are defined.
(ii) Because both [, Theorem .] and [, Theorem .] are weak convergence results

for solving the SFP, beyond question, our Theorems . and ., as strong convergence
results, are very interesting and quite valuable.
(iii) The problem of finding an element of Fix(S) ∩ Ξ ∩ Γ in our Theorems . and .

is more general than the corresponding problems in [, Theorem .] and [, Theo-
rem .], respectively.
(iv) The hybrid extragradient method for finding an element of Fix(S) ∩ Ξ ∩ VI(C,A)

in [, Theorem .] is extended to develop our relaxed viscosity iterative algorithms (i.e.,
Algorithms . and .) for finding an element of Fix(S)∩ Ξ ∩ Γ .
(v) The proof of our results is very different from that of [, Theorem .] because our

argument technique depends on Lemma ., the restriction on the regularization param-
eter sequence {αn} and the properties of the averaged mappings PC(I – λn∇fαn ) to a great
extent.
(vi) Because Algorithms . and . involve a contractive self-mapping Q, a k-strictly

pseudo-contractive self-mapping S and several parameter sequences, they are more flex-
ible and more advantageous than the corresponding ones in [, Theorem .] and [,
Theorem .], respectively.
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4 Hybrid viscosity methods and their convergence criteria
In this section, we propose and analyze the following hybrid viscosity iterative algorithms
for finding a common element of the solution set of GSVI (.), the solution set of SFP
(.) and the fixed point set of a strictly pseudo-contractive mapping S : C → C.

Algorithm . Let μi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {τn},

{βn}, {γn}, {δn} ⊂ [, ] such that σn + τn ≤  and βn + γn + δn =  for all n ≥ . For x ∈ C
given arbitrarily, let {xn}, {yn} and {zn} be the sequences generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zn = PC(xn – λn∇fαn (xn)),

yn = σnQxn + τnPC(zn – λn∇fαn (zn))

+ ( – σn – τn)PC[PC(zn –μBzn) –μBPC(zn –μBzn)],

xn+ = βnxn + γnyn + δnSyn, ∀n≥ .

Algorithm . Let μi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {βn},

{γn}, {δn} ⊂ [, ] such that βn + γn + δn =  for all n ≥ . For x ∈ C given arbitrarily, let
{xn}, {un} and {ũn} be the sequences generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un = PC[PC(xn –μBxn) –μBPC(xn –μBxn)],

ũn = PC(un – λn∇fαn (un)),

yn = σnQxn + ( – σn)PC(ũn – λn∇fαn (ũn)),

xn+ = βnxn + γnyn + δnSyn, ∀n≥ .

Next, we first give the strong convergence criteria of the sequences generated by Algo-
rithm ..

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A ∈ B(H,H) and Bi : C → H be βi-inverse strongly monotone for i = , . Let S : C → C
be a k-strictly pseudocontractive mapping such that Fix(S) ∩ Ξ ∩ Γ �= ∅. Let Q : C → C
be a ρ-contraction with ρ ∈ [,  ). For x ∈ C given arbitrarily, let {xn}, {yn}, {zn} be the
sequences generated by Algorithm ., where μi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂
(, 

‖A‖ ) and {σn}, {τn}, {βn}, {γn}, {δn} ⊂ [, ] such that
(i)

∑∞
n= αn <∞;

(ii) σn + τn ≤ , βn + γn + δn =  and (γn + δn)k ≤ γn for all n≥ ;
(iii) limn→∞ σn =  and

∑∞
n= σn = ∞;

(iv) lim supn→∞ τn <  and limn→∞ |τn+ – τn| = ;
(v)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ δn > ;
(vi) limn→∞( γn+

–βn+
– γn

–βn
) = ;

(vii)  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ and limn→∞ |λn+ – λn| = .

Then the sequences {xn}, {yn}, {zn} converge strongly to the same point x̄ = PFix(S)∩Ξ∩Γ Qx̄
if and only if limn→∞ ‖xn – zn‖ = . Furthermore, (x̄, ȳ) is a solution of GSVI (.), where
ȳ = PC(x̄ –μBx̄).

Proof First, taking into account  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ , without loss of

generality, we may assume that {λn} ⊂ [a,b] for some a,b ∈ (, 
‖A‖ ). Repeating the same
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argument as that in the proof of Theorem ., we can show that PC(I –λ∇fα) is ζ -averaged
for each λ ∈ (, 

α+‖A‖ ), where ζ = +λ(α+‖A‖)
 . Further, repeating the same argument as that

in the proof of Theorem ., we can also show that for each integer n ≥ , PC(I – λn∇fαn )
is ζn-averaged with ζn = +λn(αn+‖A‖)

 ∈ (, ).
Next, we divide the remainder of the proof into several steps.
Step . {xn} is bounded.
Indeed, take p ∈ Fix(S) ∩ Ξ ∩ Γ arbitrarily. Then Sp = p, PC(I – λ∇f )p = p for λ ∈

(, 
‖A‖ ), and

p = PC
[
PC(p –μBp) –μBPC(p –μBp)

]
.

For simplicity, we write q = PC(p –μBp), z̃n = PC(zn –μBzn),

un = PC
[
PC(zn –μBzn) –μBPC(zn –μBzn)

]
and ūn = PC

(
zn – λn∇fαn (zn)

)
for each n ≥ . Then yn = σnxn + τnūn + ( – σn – τn)un for each n ≥ . Utilizing the argu-
ments similar to those of (.), (.) and (.) in the proof of Theorem ., we deduce from
Algorithm . that

‖zn – p‖ ≤ ‖xn – p‖ + λnαn‖p‖, (.)

‖zn – p‖ ≤ ‖xn – p‖ + λnαn‖p‖‖zn – p‖ (.)

and

‖un – p‖

≤ ‖zn – p‖ –μ(β –μ)‖Bzn – Bp‖ –μ(β –μ)‖Bz̃n – Bq‖. (.)

Furthermore, repeating the same arguments as in (.) and (.), we can obtain that

‖ūn – p‖ ≤ ‖zn – p‖ + λnαn‖p‖ (.)

and

‖ūn – p‖ ≤ ‖zn – p‖ + λnαn‖p‖‖ūn – p‖. (.)

Hence it follows from (.), (.) and (.) that

‖yn – p‖ =
∥∥σn(Qxn – p) + τn(ūn – p) + ( – σn – τn)(un – p)

∥∥
≤ σn‖Qxn – p‖ + τn‖ūn – p‖ + ( – σn – τn)‖un – p‖
≤ σn

(‖Qxn –Qp‖ + ‖Qp – p‖) + τn
(‖zn – p‖ + λnαn‖p‖

)
+ ( – σn – τn)‖zn – p‖

≤ σn
(
ρ‖xn – p‖ + ‖Qp – p‖) + ( – σn)‖zn – p‖ + λnαn‖p‖

≤ σnρ‖xn – p‖ + σn‖Qp – p‖ + ( – σn)
(‖xn – p‖ + λnαn‖p‖

)
+ λnαn‖p‖
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≤ (
 – ( – ρ)σn

)‖xn – p‖ + σn‖Qp – p‖ + λnαn‖p‖

=
(
 – ( – ρ)σn

)‖xn – p‖ + ( – ρ)σn
‖Qp – p‖
 – ρ

+ λnαn‖p‖

≤ max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ λnαn‖p‖. (.)

Since (γn + δn)k ≤ γn for all n≥ , utilizing Lemma ., we obtain from (.)

‖xn+ – p‖ = ∥∥βn(xn – p) + γn(yn – p) + δn(Syn – p)
∥∥

≤ βn‖xn – p‖ + ∥∥γn(yn – p) + δn(Syn – p)
∥∥

≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

≤ βn‖xn – p‖ + (γn + δn)
[
max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ λnαn‖p‖

]

≤ βn‖xn – p‖ + (γn + δn)max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ λnαn‖p‖

≤ max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖αn. (.)

By induction, we can derive

‖xn+ – p‖ ≤ max

{
‖x – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖

n∑
j=

αj. (.)

Hence, {xn} is bounded. Since PC , ∇fαn , B and B are Lipschitz continuous, it is easy to
see that {zn}, {un}, {ūn}, {yn} and {z̃n} are bounded, where

z̃n = PC(zn –μBzn), ∀n≥ . (.)

Step . limn→∞ ‖xn+ – xn‖ = .
Indeed, define xn+ = βnxn + ( – βn)wn for all n≥ . It follows that

wn+ –wn =
γn+(yn+ – yn) + δn+(Syn+ – Syn)

 – βn+
+

(
γn+

 – βn+
–

γn

 – βn

)
yn

+
(

δn+

 – βn+
–

δn

 – βn

)
Syn. (.)

Since (γn + δn)k ≤ γn for all n≥ , utilizing Lemma ., we have

∥∥γn+(yn+ – yn) + δn+(Syn+ – Syn)
∥∥ ≤ (γn+ + δn+)‖yn+ – yn‖. (.)

Next, we estimate ‖yn+ – yn‖. Utilizing the arguments similar to those of (.) and (.)
in the proof of Theorem ., we obtain that

‖zn+ – zn‖ ≤ ‖xn+ – xn‖ + |λn+ – λn|
∥∥∇f (xn)

∥∥ + |λn+αn+ – λnαn|‖xn‖ (.)
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and

‖un+ – un‖

≤ ∥∥PC(zn+ –μBzn+) – PC(zn –μBzn)
∥∥

–μ(β –μ)
∥∥BPC(zn+ –μBzn+) – BPC(zn –μBzn)

∥∥

≤ ‖zn+ – zn‖ –μ(β –μ)‖Bzn+ – Bzn‖. (.)

Thus,

‖ūn+ – ūn‖
≤ ‖zn+ – zn‖ + |λn+ – λn|

∥∥∇f (zn)
∥∥ + |λn+αn+ – λnαn|‖zn‖

≤ ‖xn+ – xn‖ + |λn+ – λn|
∥∥∇f (xn)

∥∥ + |λn+αn+ – λnαn|‖xn‖
+ |λn+ – λn|

∥∥∇f (zn)
∥∥ + |λn+αn+ – λnαn|‖zn‖

= ‖xn+ – xn‖ + |λn+ – λn|
(∥∥∇f (xn)

∥∥ +
∥∥∇f (zn)

∥∥)
+ |λn+αn+ – λnαn|

(‖xn‖ + ‖zn‖
)
. (.)

This together with (.) implies that

‖yn+ – yn‖
=

∥∥σn+(Qxn+ – un+) + τn+ūn+ + ( – τn+)un+

– σn(Qxn – un) – τnūn – ( – τn)un
∥∥

≤ ‖τn+ūn+ – τnūn‖ +
∥∥( – τn+)un+ – ( – τn)un

∥∥
+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖

≤ |τn+ – τn|‖ūn+‖ + τn‖ūn+ – ūn‖ + |τn+ – τn|‖un+‖ + ( – τn)‖un+ – un‖
+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖

≤ τn
[‖xn+ – xn‖ + |λn+ – λn|

(∥∥∇f (xn)
∥∥ +

∥∥∇f (zn)
∥∥)

+ |λn+αn+ – λnαn|
(‖xn‖ + ‖zn‖

)]
+ ( – τn)‖zn+ – zn‖ + |τn+ – τn|

(‖ūn+‖ + ‖un+‖
)

+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖
≤ τn

[‖xn+ – xn‖ + |λn+ – λn|
(∥∥∇f (xn)

∥∥ +
∥∥∇f (zn)

∥∥)
+ |λn+αn+ – λnαn|

(‖xn‖ + ‖zn‖
)]

+ ( – τn)
[‖xn+ – xn‖ + |λn+ – λn|

∥∥∇f (xn)
∥∥ + |λn+αn+ – λnαn|‖xn‖

]
+ |τn+ – τn|

(‖ūn+‖ + ‖un+‖
)
+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖

≤ ‖xn+ – xn‖ + |λn+ – λn|
(∥∥∇f (xn)

∥∥ +
∥∥∇f (zn)

∥∥)
+ |λn+αn+ – λnαn|

(‖xn‖ + ‖zn‖
)

+ |τn+ – τn|
(‖ūn+‖ + ‖un+‖

)
+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖. (.)
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Hence it follows from (.), (.) and (.) that

‖wn+ –wn‖

≤ ‖γn+(yn+ – yn) + δn+(Syn+ – Syn)‖
 – βn+

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣‖yn‖
+

∣∣∣∣ δn+

 – βn+
–

δn

 – βn

∣∣∣∣‖Syn‖
≤ γn+ + δn+

 – βn+
‖yn+ – yn‖ +

∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)

= ‖yn+ – yn‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)

≤ ‖xn+ – xn‖ + |λn+ – λn|
(∥∥∇f (xn)

∥∥ +
∥∥∇f (zn)

∥∥)
+ |λn+αn+ – λnαn|

(‖xn‖ + ‖zn‖
)

+ |τn+ – τn|
(‖ūn+‖ + ‖un+‖

)
+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)
.

Since {xn}, {yn}, {zn}, {un} and {ūn} are bounded, it follows from conditions (i), (iii), (iv),
(vi) and (vii) that

lim sup
n→∞

(‖wn+ –wn‖ – ‖xn+ – xn‖
)

≤ lim sup
n→∞

{
|λn+ – λn|

(∥∥∇f (xn)
∥∥ +

∥∥∇f (zn)
∥∥)

+ |λn+αn+ – λnαn|
(‖xn‖ + ‖zn‖

)
+ |τn+ – τn|

(‖ūn+‖ + ‖un+‖
)
+ σn+‖Qxn+ – un+‖ + σn‖Qxn – un‖

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)}

= .

Hence by Lemma ., we get limn→∞ ‖wn – xn‖ = . Thus,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖wn – xn‖ = . (.)

Step . limn→∞ ‖Bzn –Bp‖ =  and limn→∞ ‖Bz̃n –Bq‖ = , where q = PC(p–μBp).
Indeed, utilizing Lemma . and the convexity of ‖ · ‖, we obtain from Algorithm .

and (.), (.), (.) that

‖xn+ – p‖

≤ βn‖xn – p‖ + (γn + δn)
∥∥∥∥ 
γn + δn

[
γn(yn – p) + δn(Syn – p)

]∥∥∥∥


≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

≤ βn‖xn – p‖ + (γn + δn)
[
σn‖Qxn – p‖ + τn‖ūn – p‖ + ( – σn – τn)‖un – p‖]

≤ βn‖xn – p‖ + (γn + δn)
{
σn‖Qxn – p‖ + τn

[‖zn – p‖ + λnαn‖p‖‖ūn – p‖]
+ ( – σn – τn)

[‖zn – p‖ –μ(β –μ)‖Bzn – Bp‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/43


Ceng and Yao Fixed Point Theory and Applications 2013, 2013:43 Page 33 of 50
http://www.fixedpointtheoryandapplications.com/content/2013/1/43

–μ(β –μ)‖Bz̃n – Bq‖
]}

≤ βn‖xn – p‖ + (γn + δn)
{
σn‖Qxn – p‖ + τn

[‖xn – p‖ + λnαn‖p‖‖zn – p‖
+ λnαn‖p‖‖ūn – p‖] + ( – σn – τn)

[‖xn – p‖ + λnαn‖p‖‖zn – p‖
–μ(β –μ)‖Bzn – Bp‖ –μ(β –μ)‖Bz̃n – Bq‖

]}
= βn‖xn – p‖ + (γn + δn)

{
σn‖Qxn – p‖ + ( – σn)‖xn – p‖

+ ( – σn)λnαn‖p‖‖zn – p‖
+ τnλnαn‖p‖‖ūn – p‖ – ( – σn – τn)

[
μ(β –μ)‖Bzn – Bp‖

+μ(β –μ)‖Bz̃n – Bq‖
]}

≤ ‖xn – p‖ + σn‖Qxn – p‖ + λnαn‖p‖
(‖zn – p‖ + ‖ūn – p‖)

– (γn + δn)( – σn – τn)
[
μ(β –μ)‖Bzn – Bp‖

+μ(β –μ)‖Bz̃n – Bq‖
]
.

Therefore,

(γn + δn)( – σn – τn)
[
μ(β –μ)‖Bzn – Bp‖ +μ(β –μ)‖Bz̃n – Bq‖

]
≤ ‖xn – p‖ – ‖xn+ – p‖ + σn‖Qxn – p‖ + λnαn‖p‖

(‖zn – p‖ + ‖ūn – p‖)
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + σn‖Qxn – p‖

+ λnαn‖p‖
(‖zn – p‖ + ‖ūn – p‖).

Sinceαn → , ‖xn–xn+‖ → , lim infn→∞ δn > , {λn} ⊂ [a,b], σn →  and lim supn→∞ τn <
, it follows that

lim
n→∞‖Bz̃n – Bq‖ =  and lim

n→∞‖Bzn – Bp‖ = .

Step . limn→∞ ‖Syn – yn‖ = .
Indeed, observe that

‖ūn – zn‖ =
∥∥PC(I – λn∇fαn )zn – PC(I – λn∇fαn )xn

∥∥ ≤ ‖zn – xn‖.

This together with ‖zn – xn‖ →  implies that limn→∞ ‖ūn – zn‖ =  and hence
limn→∞ ‖ūn – xn‖ = . By firm nonexpansiveness of PC , we have

‖z̃n – q‖

=
∥∥PC(zn –μBzn) – PC(p –μBp)

∥∥

≤ 〈
(zn –μBzn) – (p –μBp), z̃n – q

〉
=


[∥∥zn – p –μ(Bzn – Bp)

∥∥ + ‖z̃n – q‖

–
∥∥(zn – p) –μ(Bzn – Bp) – (z̃n – q)

∥∥]
≤ 


[‖zn – p‖ + ‖z̃n – q‖ – ∥∥(zn – z̃n) –μ(Bzn – Bp) – (p – q)

∥∥]
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=


[‖zn – p‖ + ‖z̃n – q‖ – ∥∥zn – z̃n – (p – q)

∥∥

+ μ
〈
zn – z̃n – (p – q),Bzn – Bp

〉
–μ

‖Bzn – Bp‖
]

≤ 

[‖zn – p‖ + ‖z̃n – q‖ – ∥∥zn – z̃n – (p – q)

∥∥

+ μ
∥∥zn – z̃n – (p – q)

∥∥‖Bzn – Bp‖
]
,

that is,

‖z̃n – q‖

≤ ‖zn – p‖ – ∥∥zn – z̃n – (p – q)
∥∥ + μ

∥∥zn – z̃n – (p – q)
∥∥‖Bzn – Bp‖. (.)

Moreover, using the argument technique similar to the above one, we derive

‖un – p‖

=
∥∥PC(z̃n –μBz̃n) – PC(q –μBq)

∥∥

≤ 〈
(z̃n –μBz̃n) – (q –μBq),un – p

〉
=


[∥∥z̃n – q –μ(Bz̃n – Bq)

∥∥ + ‖un – p‖

–
∥∥(z̃n – q) –μ(Bz̃n – Bq) – (un – p)

∥∥]
≤ 


[‖z̃n – q‖ + ‖un – p‖ – ∥∥(z̃n – un) –μ(Bz̃n – Bq) + (p – q)

∥∥]
=


[‖z̃n – q‖ + ‖un – p‖ – ∥∥z̃n – un + (p – q)

∥∥

+ μ
〈
z̃n – un + (p – q),Bz̃n – Bq

〉
–μ

‖Bz̃n – Bq‖
]

≤ 

[‖z̃n – q‖ + ‖un – p‖ – ∥∥z̃n – un + (p – q)

∥∥

+ μ
∥∥z̃n – un + (p – q)

∥∥‖Bz̃n – Bq‖
]
,

that is,

‖un – p‖

≤ ‖z̃n – q‖ – ∥∥z̃n – un + (p – q)
∥∥ + μ

∥∥z̃n – un + (p – q)
∥∥‖Bz̃n – Bq‖. (.)

Utilizing (.), (.), (.) and (.), we have

‖yn – p‖

=
∥∥σn(Qxn – p) + τn(ūn – p) + ( – σn – τn)(un – p)

∥∥

≤ σn‖Qxn – p‖ + τn‖ūn – p‖ + ( – σn – τn)‖un – p‖

≤ σn‖Qxn – p‖ + τn
(‖zn – p‖ + λnαn‖p‖‖ūn – p‖)

+ ( – σn – τn)
[‖z̃n – q‖ – ∥∥z̃n – un + (p – q)

∥∥
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+ μ
∥∥z̃n – un + (p – q)

∥∥‖Bz̃n – Bq‖
]

≤ σn‖Qxn – p‖ + τn
(‖xn – p‖ + λnαn‖p‖‖zn – p‖ + λnαn‖p‖‖ūn – p‖)

+ ( – σn – τn)
{‖zn – p‖ – ∥∥zn – z̃n – (p – q)

∥∥

+ μ
∥∥zn – z̃n – (p – q)

∥∥‖Bzn – Bp‖
–

∥∥z̃n – un + (p – q)
∥∥ + μ

∥∥z̃n – un + (p – q)
∥∥‖Bz̃n – Bq‖

}
≤ σn‖Qxn – p‖ + τn

[‖xn – p‖ + λnαn‖p‖
(‖zn – p‖ + ‖ūn – p‖)]

+ ( – σn – τn)
{‖xn – p‖ + λnαn‖p‖‖zn – p‖

–
∥∥zn – z̃n – (p – q)

∥∥ + μ
∥∥zn – z̃n – (p – q)

∥∥‖Bzn – Bp‖
–

∥∥z̃n – un + (p – q)
∥∥ + μ

∥∥z̃n – un + (p – q)
∥∥‖Bz̃n – Bq‖

}
≤ σn‖Qxn – p‖ + ‖xn – p‖ + λnαn‖p‖

(‖zn – p‖ + ‖ūn – p‖)
+ μ

∥∥zn – z̃n – (p – q)
∥∥‖Bzn – Bp‖ + μ

∥∥z̃n – un + (p – q)
∥∥‖Bz̃n – Bq‖

– ( – σn – τn)
(∥∥zn – z̃n – (p – q)

∥∥ +
∥∥z̃n – un + (p – q)

∥∥). (.)

Thus, from Algorithm . and (.), it follows that

‖xn+ – p‖

=
∥∥βn(xn – p) + γn(yn – p) + δn(Syn – p)

∥∥

≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

= βn‖xn – p‖ + ( – βn)‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
{‖xn – p‖ + σn‖Qxn – p‖

+ λnαn‖p‖
(‖zn – p‖ + ‖ūn – p‖)

+ μ
∥∥zn – z̃n – (p – q)

∥∥‖Bzn – Bp‖ + μ
∥∥z̃n – un + (p – q)

∥∥‖Bz̃n – Bq‖
– ( – σn – τn)

(∥∥zn – z̃n – (p – q)
∥∥ +

∥∥z̃n – un + (p – q)
∥∥)}

≤ ‖xn – p‖ + σn‖Qxn – p‖ + λnαn‖p‖
(‖zn – p‖ + ‖ūn – p‖)

+ μ
∥∥zn – z̃n – (p – q)

∥∥‖Bzn – Bp‖ + μ
∥∥z̃n – un + (p – q)

∥∥‖Bz̃n – Bq‖
– ( – βn)( – σn – τn)

(∥∥zn – z̃n – (p – q)
∥∥ +

∥∥z̃n – un + (p – q)
∥∥),

which hence implies that

( – βn)( – σn – τn)
(∥∥zn – z̃n – (p – q)

∥∥ +
∥∥z̃n – un + (p – q)

∥∥)
≤ ‖xn – p‖ – ‖xn+ – p‖ + σn‖Qxn – p‖ + λnαn‖p‖

(‖zn – p‖ + ‖ūn – p‖)
+ μ

∥∥zn – z̃n – (p – q)
∥∥‖Bzn – Bp‖ + μ

∥∥z̃n – un + (p – q)
∥∥‖Bz̃n – Bq‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + σn‖Qxn – p‖

+ λnαn‖p‖
(‖zn – p‖ + ‖ūn – p‖)

+ μ
∥∥zn – z̃n – (p – q)

∥∥‖Bzn – Bp‖ + μ
∥∥z̃n – un + (p – q)

∥∥‖Bz̃n – Bq‖.
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Since lim supn→∞ βn < , lim supn→∞ τn < , {λn} ⊂ [a,b], αn → , σn → , ‖Bzn –Bp‖ →
, ‖Bz̃n – Bq‖ →  and ‖xn+ – xn‖ → , it follows from the boundedness of {xn}, {un},
{ūn}, {zn} and {z̃n} that

lim
n→∞

∥∥zn – z̃n – (p – q)
∥∥ =  and lim

n→∞
∥∥z̃n – un + (p – q)

∥∥ = .

Consequently, it immediately follows that

lim
n→∞‖zn – un‖ =  and lim

n→∞‖un – ūn‖ = . (.)

Also, note that

‖yn – ūn‖ ≤ σn‖Qxn – ūn‖ + ( – σn – τn)‖un – ūn‖ → .

This together with ‖xn – ūn‖ →  implies that

lim
n→∞‖xn – yn‖ = .

Since

∥∥δn(Syn – xn)
∥∥ ≤ ‖xn+ – xn‖ + γn‖yn – xn‖,

it follows that

lim
n→∞‖Syn – xn‖ =  and lim

n→∞‖Syn – yn‖ = .

Step . lim supn→∞〈Qx̄ – x̄,xn – x̄〉 ≤ , where x̄ = PFix(S)∩Ξ∩Γ Qx̄.
Indeed, since {xn} is bounded, there exists a subsequence {xni} of {xn} such that

lim sup
n→∞

〈Qx̄ – x̄,xn – x̄〉 = lim
i→∞〈Qx̄ – x̄,xni – x̄〉. (.)

Also, since H is reflexive and {xn} is bounded, without loss of generality, we may assume
that xni → p̂ weakly for some p̂ ∈ C. Taking into account that ‖xn – yn‖ →  and ‖xn –
zn‖ →  as n→ ∞, we deduce that yni → p̂ weakly and zni → p̂ weakly.
First, it is clear from Lemma . and ‖Syn – yn‖ →  that p̂ ∈ Fix(S). Now, let us show

that p̂ ∈ Ξ . Note that

∥∥zn –G(zn)
∥∥ =

∥∥zn – PC
[
PC(zn –μBzn) –μBPC(zn –μBzn)

]∥∥
= ‖zn – un‖ →  (n→ ∞),

where G : C → C is defined as in Lemma .. According to Lemma ., we get p̂ ∈ Ξ .
Further, let us show that p̂ ∈ Γ . As a matter of fact, define

Tv =

⎧⎨
⎩∇f (v) +NCv if v ∈ C,

∅ if v /∈ C,
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where NCv = {w ∈ H : 〈v – u,w〉 ≥ ,∀u ∈ C}. Then T is maximal monotone and  ∈ Tv
if and only if v ∈ VI(C,∇f ); see [] for more details. Utilizing the arguments similar to
those of Step  in the proof of Theorem . and the relations

zn = PC
(
xn – λn∇fαn (xn)

)
and v ∈ C,

we can derive

〈v – p̂,w〉 ≥  as i→ ∞.

Since T is maximal monotone, we have p̂ ∈ T– and hence p̂ ∈VI(C,∇f ). Thus it is clear
that p̂ ∈ Γ . Therefore, p̂ ∈ Fix(S) ∩ Ξ ∩ Γ . Consequently, in terms of Proposition .(i),
we obtain from (.) that

lim sup
n→∞

〈Qx̄ – x̄,xn – x̄〉 = lim
i→∞〈Qx̄ – x̄,xni – x̄〉 = 〈Qx̄ – x̄, p̂ – x̄〉 ≤ .

Step . limn→∞ ‖xn – x̄‖ = .
Indeed, observe that

〈Qxn – x̄, yn – x̄〉 = 〈Qxn – x̄,xn – x̄〉 + 〈Qxn – x̄, yn – xn〉
= 〈Qxn –Qx̄,xn – x̄〉 + 〈Qx̄ – x̄,xn – x̄〉 + 〈Qxn – x̄, yn – xn〉
≤ ρ‖xn – x̄‖ + 〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖.

Utilizing Lemmas . and ., we obtain from (.), (.) and (.) and the convexity of
‖ · ‖ that

‖xn+ – x̄‖

=
∥∥βn(xn – x̄) + γn(yn – x̄) + δn(Syn – x̄)

∥∥

≤ βn‖xn – x̄‖ + (γn + δn)
∥∥∥∥ 
γn + δn

[
γn(yn – x̄) + δn(Syn – x̄)

]∥∥∥∥


≤ βn‖xn – x̄‖ + (γn + δn)‖yn – x̄‖

≤ βn‖xn – x̄‖ + (γn + δn)
[∥∥τn(ūn – x̄) + ( – σn – τn)(un – x̄)

∥∥

+ σn〈Qxn – x̄, yn – x̄〉]
≤ βn‖xn – x̄‖ + (γn + δn)

[
τn‖ūn – x̄‖ + ( – σn – τn)‖un – x̄‖

+ σn〈Qxn – x̄, yn – x̄〉]
≤ βn‖xn – x̄‖ + (γn + δn)

[
τn‖ūn – x̄‖ + ( – σn – τn)‖zn – x̄‖

+ σn〈Qxn – x̄, yn – x̄〉]
≤ βn‖xn – x̄‖ + (γn + δn)

{
τn

(‖xn – x̄‖ + λnαn‖x̄‖
(‖zn – x̄‖ + ‖ūn – x̄‖))

+ ( – σn – τn)
(‖xn – x̄‖ + λnαn‖x̄‖‖zn – x̄‖) + σn〈Qxn – x̄, yn – x̄〉}

≤ βn‖xn – x̄‖ + (γn + δn)
{
( – σn)

(‖xn – x̄‖ + λnαn‖x̄‖
(‖zn – x̄‖ + ‖ūn – x̄‖))
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+ σn〈Qxn – x̄, yn – x̄〉}
=

(
 – (γn + δn)σn

)‖xn – x̄‖ + (γn + δn)( – σn)λnαn‖x̄‖
(‖zn – x̄‖ + ‖ūn – x̄‖)

+ (γn + δn)σn〈Qxn – x̄, yn – x̄〉
≤ (

 – (γn + δn)σn
)‖xn – x̄‖ + (γn + δn)σn

[
ρ‖xn – x̄‖

+ 〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖
]
+ λnαn‖x̄‖

(‖zn – x̄‖ + ‖ūn – x̄‖)
=

[
 – ( – ρ)(γn + δn)σn

]‖xn – x̄‖

+ ( – ρ)(γn + δn)σn
[〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖]

 – ρ

+ λnαn‖x̄‖
(‖zn – x̄‖ + ‖ūn – x̄‖).

Note that lim infn→∞( – ρ)(γn + δn) > . It follows that
∑∞

n=( – ρ)(γn + δn)σn = ∞. It is
clear that

lim sup
n→∞

[〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖]
 – ρ

≤ 

because lim supn→∞〈Qx̄ – x̄,xn – x̄〉 ≤  and limn→∞ ‖xn – yn‖ = . In addition, note also
that {λn} ⊂ [a,b],

∑∞
n= αn < ∞ and {zn} is bounded. Hence we get

∑∞
n= λnαn‖x̄‖‖zn –

x̄‖ < ∞. Therefore, all conditions of Lemma . are satisfied. Consequently, we imme-
diately deduce that ‖xn – x̄‖ →  as n → ∞. In the meantime, taking into account that
‖xn – yn‖ →  and ‖xn – zn‖ →  as n→ ∞, we infer that

lim
n→∞‖yn – x̄‖ = lim

n→∞‖zn – x̄‖ = .

This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A ∈ B(H,H) and Bi : C → H be βi-inverse strongly monotone for i = , . Let S : C → C
be a k-strictly pseudocontractive mapping such that Fix(S) ∩ Ξ ∩ Γ �= ∅. For fixed u ∈ C
and x ∈ C given arbitrarily, let the sequences {xn}, {yn}, {zn} be generated iteratively by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zn = PC(xn – λn∇fαn (xn)),

yn = σnu + τnPC(zn – λn∇fαn (zn))

+ ( – σn – τn)PC[PC(zn –μBzn) –μBPC(zn –μBzn)],

xn+ = βnxn + γnyn + δnSyn, ∀n≥ ,

(.)

whereμi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {τn}, {βn}, {γn}, {δn} ⊂

[, ] such that
(i)

∑∞
n= αn <∞;

(ii) σn + τn ≤ , βn + γn + δn =  and (γn + δn)k ≤ γn for all n≥ ;
(iii) limn→∞ σn =  and

∑∞
n= σn = ∞;

(iv) lim supn→∞ τn <  and limn→∞ |τn+ – τn| = ;
(v)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ δn > ;
(vi) limn→∞( γn+

–βn+
– γn

–βn
) = ;

(vii)  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ and limn→∞ |λn+ – λn| = .
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Then the sequences {xn}, {yn}, {zn} converge strongly to the same point x̄ = PFix(S)∩Ξ∩Γ u
if and only if limn→∞ ‖xn – zn‖ = . Furthermore, (x̄, ȳ) is a solution of GSVI (.), where
ȳ = PC(x̄ –μBx̄).

Next, utilizing Corollary ., we give the following improvement and extension of the
main result in [] (i.e., [, Theorem .]).

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A ∈ B(H,H) and S : C → C be a nonexpansive mapping such that Fix(S) ∩ Γ �= ∅. For
fixed u ∈ C and x ∈ C given arbitrarily, let the sequences {xn}, {zn} be generated iteratively
by

⎧⎪⎪⎨
⎪⎪⎩
zn = PC(xn – λn∇fαn (xn)),

xn+ = βnxn + ( – βn)S[σnu + τnPC(zn – λn∇fαn (zn)) + ( – σn – τn)zn],

∀n≥ ,

(.)

where {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {τn}, {βn} ⊂ [, ] such that

(i)
∑∞

n= αn <∞;
(ii) σn + τn ≤  for all n≥ ;
(iii) limn→∞ σn =  and

∑∞
n= σn = ∞;

(iv) lim supn→∞ τn <  and limn→∞ |τn+ – τn| = ;
(v)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(vi)  < lim infn→∞ λn ≤ lim supn→∞ λn < 

‖A‖ and limn→∞ |λn+ – λn| = .
Then the sequences {xn}, {zn} converge strongly to the same point x̄ = PFix(S)∩Γ u if and only
if limn→∞ ‖xn – zn‖ = .

Proof In Corollary ., put B = B =  and γn = . Then Ξ = C, βn + δn = , PC[PC(zn –
μBzn) –μBPC(zn –μBzn)] = zn, and the iterative scheme (.) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩
zn = PC(xn – λn∇fαn (xn)),

yn = σnu + τnPC(zn – λn∇fαn (zn)) + ( – σn – τn)zn,

xn+ = βnxn + δnSyn, ∀n≥ .

This is equivalent to (.). Since S is a nonexpansive mapping, S must be a k-strictly
pseudocontractive mapping with k = . In this case, it is easy to see that conditions (i)-
(vii) in Corollary . all are satisfied. Therefore, in terms of Corollary ., we obtain the
desired result. �

Now, we are in a position to present the strong convergence criteria of the sequences
generated by Algorithm ..

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A ∈ B(H,H) and Bi : C → H be βi-inverse strongly monotone for i = , . Let S : C → C
be a k-strictly pseudo-contractivemapping such that Fix(S)∩Ξ ∩Γ �= ∅. Let Q : C → C be a
ρ-contraction with ρ ∈ [,  ). For x ∈ C given arbitrarily, let the sequences {xn}, {un}, {ũn}
be generated by Algorithm .,whereμi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂ (, 

‖A‖ )
and {σn}, {βn}, {γn}, {δn} ⊂ [, ] such that
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(i)
∑∞

n= αn <∞;
(ii) βn + γn + δn =  and (γn + δn)k ≤ γn for all n≥ ;
(iii) limn→∞ σn =  and

∑∞
n= σn = ∞;

(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ δn > ;
(v) limn→∞( γn+

–βn+
– γn

–βn
) = ;

(vi)  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ and limn→∞ |λn+ – λn| = .

Then the sequences {xn}, {un}, {ũn} converge strongly to the same point x̄ = PFix(S)∩Ξ∩Γ Qx̄
if and only if limn→∞ ‖ũn – un‖ = . Furthermore, (x̄, ȳ) is a solution of GSVI (.), where
ȳ = PC(x̄ –μBx̄).

Proof First, taking into account  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ , without loss of

generality, we may assume that {λn} ⊂ [a,b] for some a,b ∈ (, 
‖A‖ ). Repeating the same

argument as that in the proof of Theorem ., we can show that PC(I –λ∇fα) is ζ -averaged
for each λ ∈ (, 

α+‖A‖ ), where ζ = +λ(α+‖A‖)
 . Further, repeating the same argument as that

in the proof of Theorem ., we can also show that for each integer n ≥ , PC(I – λn∇fαn )
is ζn-averaged with ζn = +λn(αn+‖A‖)

 ∈ (, ).
Next, we divide the remainder of the proof into several steps.
Step . {xn} is bounded.
Indeed, take p ∈ Fix(S) ∩ Ξ ∩ Γ arbitrarily. Then Sp = p, PC(I – λ∇f )p = p for λ ∈

(, 
‖A‖ ), and

p = PC
[
PC(p –μBp) –μBPC(p –μBp)

]
.

For simplicity, we write

q = PC(p –μBp), x̃n = PC(xn –μBxn) and ūn = PC
(
ũn – λn∇fαn (ũn)

)
for each n≥ . Then yn = σnxn + ( – σn)ūn for each n≥ . Utilizing the arguments similar
to those of (.) and (.) in the proof of Theorem ., from Algorithm . we can obtain

‖ũn – p‖ ≤ ‖un – p‖ + λnαn‖p‖ (.)

and

‖ũn – p‖ ≤ ‖un – p‖ + λnαn‖p‖‖ũn – p‖. (.)

Since Bi : C → H is βi-inverse strongly monotone and  < μi < βi for i = , , utilizing
the argument similar to that of (.) in the proof of Theorem ., we can obtain that for
all n≥ ,

‖un – p‖

≤ ‖xn – p‖ –μ(β –μ)‖Bxn – Bp‖ –μ(β –μ)‖Bx̃n – Bq‖. (.)

Utilizing the argument similar to that of (.) and (.) in the proof of Theorem ., from
(.) we can obtain

‖ūn – p‖ ≤ ‖ũn – p‖ + λnαn‖p‖ (.)
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and

‖ūn – p‖ ≤ ‖ũn – p‖ + λnαn‖p‖‖ūn – p‖. (.)

Hence it follows from (.), (.) and (.) that

‖yn – p‖ =
∥∥σn(Qxn – p) + ( – σn)(ūn – p)

∥∥
≤ σn‖Qxn – p‖ + ( – σn)‖ūn – p‖
≤ σn

(‖Qxn –Qp‖ + ‖Qp – p‖) + ( – σn)
(‖ũn – p‖ + λnαn‖p‖

)
≤ σn

(
ρ‖xn – p‖ + ‖Qp – p‖) + ( – σn)

(‖un – p‖ + λnαn‖p‖ + λnαn‖p‖
)

≤ σnρ‖xn – p‖ + σn‖Qp – p‖ + ( – σn)
(‖xn – p‖ + λnαn‖p‖

)
≤ (

 – σn( – ρ)
)‖xn – p‖ + σn‖Qp – p‖ + λnαn‖p‖

≤ max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ λnαn‖p‖. (.)

Since (γn + δn)k ≤ γn for all n≥ , by Lemma . we can readily see from (.) that

‖xn+ – p‖ ≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

≤ max

{
‖xn – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖αn. (.)

By induction, we can derive

‖xn+ – p‖ ≤ max

{
‖x – p‖, ‖Qp – p‖

 – ρ

}
+ b‖p‖

n∑
j=

αj. (.)

Hence, {xn} is bounded. Since PC ,∇fαn , B and B are Lipschitz continuous, it is easy to see
that {un}, {ũn}, {ūn}, {x̃n} and {yn} are bounded, where x̃n = PC(xn –μBxn) for all n ≥ .
Step . limn→∞ ‖xn+ – xn‖ = .
Indeed, define xn+ = βnxn + ( – βn)wn for all n≥ . It follows that

wn+ –wn =
γn+(yn+ – yn) + δn+(Syn+ – Syn)

 – βn+
+

(
γn+

 – βn+
–

γn

 – βn

)
yn

+
(

δn+

 – βn+
–

δn

 – βn

)
Syn. (.)

Since (γn + δn)k ≤ γn for all n≥ , utilizing Lemma ., we have

∥∥γn+(yn+ – yn) + δn+(Syn+ – Syn)
∥∥ ≤ (γn+ + δn+)‖yn+ – yn‖. (.)

Next, we estimate ‖yn+ – yn‖. Utilizing the arguments similar to those of (.), (.)
and (.), we can obtain that

‖ũn+ – ũn‖ ≤ ‖un+ – un‖ + |λn+ – λn|
∥∥∇f (un)

∥∥ + |λn+αn+ – λnαn|‖un‖, (.)

‖un+ – un‖ ≤ ‖xn+ – xn‖ (.)
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and hence

‖ūn+ – ūn‖
≤ ‖ũn+ – ũn‖ + |λn+ – λn|

∥∥∇f (ũn)
∥∥ + |λn+αn+ – λnαn|‖ũn‖

≤ ‖un+ – un‖ + |λn+ – λn|
∥∥∇f (un)

∥∥ + |λn+αn+ – λnαn|‖un‖ + |λn+ – λn|
∥∥∇f (ũn)

∥∥
+ |λn+αn+ – λnαn|‖ũn‖

≤ ‖xn+ – xn‖ + |λn+ – λn|
∥∥∇f (un)

∥∥ + |λn+αn+ – λnαn|‖un‖ + |λn+ – λn|
∥∥∇f (ũn)

∥∥
+ |λn+αn+ – λnαn|‖ũn‖

= ‖xn+ – xn‖ + |λn+ – λn|
(∥∥∇f (un)

∥∥ +
∥∥∇f (ũn)

∥∥)
+ |λn+αn+ – λnαn|

(‖un‖ + ‖ũn‖
)
. (.)

This together with Algorithm . implies that

‖yn+ – yn‖
=

∥∥ūn+ + σn+(Qxn+ – ūn+) – ūn – σn(Qxn – ūn)
∥∥

≤ ‖ūn+ – ūn‖ + σn+‖Qxn+ – ūn+‖ + σn‖Qxn – ūn‖
≤ ‖xn+ – xn‖ + |λn+ – λn|

(∥∥∇f (un)
∥∥ +

∥∥∇f (ũn)
∥∥)

+ |λn+αn+ – λnαn|
(‖un‖ + ‖ũn‖

)
+ σn+‖Qxn+ – ūn+‖ + σn‖Qxn – ūn‖. (.)

Hence it follows from (.), (.) and (.) that

‖wn+ –wn‖

≤ ‖γn+(yn+ – yn) + δn+(Syn+ – Syn)‖
 – βn+

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣‖yn‖
+

∣∣∣∣ δn+

 – βn+
–

δn

 – βn

∣∣∣∣‖Syn‖
≤ ‖yn+ – yn‖ +

∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)

≤ ‖xn+ – xn‖ + |λn+ – λn|
(∥∥∇f (un)

∥∥ +
∥∥∇f (ũn)

∥∥)
+ |λn+αn+ – λnαn|

(‖un‖ + ‖ũn‖
)

+ σn+‖Qxn+ – ūn+‖ + σn‖Qxn – ūn‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)
.

Since {xn}, {un}, {ũn}, {ūn} and {yn} are bounded, it follows from conditions (i), (iii), (v) and
(vi) that

lim sup
n→∞

(‖wn+ –wn‖ – ‖xn+ – xn‖
)

≤ lim sup
n→∞

{
|λn+ – λn|

(∥∥∇f (un)
∥∥ +

∥∥∇f (ũn)
∥∥)

+ |λn+αn+ – λnαn|
(‖un‖ + ‖ũn‖

)
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+ σn+‖Qxn+ – ūn+‖ + σn‖Qxn – ūn‖

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖yn‖ + ‖Syn‖
)}

= .

Hence by Lemma ., we get limn→∞ ‖wn – xn‖ = . Thus,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖wn – xn‖ = . (.)

Step . limn→∞ ‖Bxn–Bp‖ =  and limn→∞ ‖Bx̃n–Bq‖ = , where q = PC(p–μBp).
Indeed, utilizing Lemma . and the convexity of ‖ · ‖, we obtain from Algorithm .

and (.), (.), (.) that

‖xn+ – p‖

≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

≤ βn‖xn – p‖ + (γn + δn)
[
σn‖Qxn – p‖ + ( – σn)‖ūn – p‖]

≤ βn‖xn – p‖ + (γn + δn)
[
σn‖Qxn – p‖ + ( – σn)

(‖ũn – p‖ + λnαn‖p‖‖ūn – p‖)]
≤ βn‖xn – p‖ + (γn + δn)

[
σn‖Qxn – p‖

+ ( – σn)
(‖un – p‖ + λnαn‖p‖

(‖ũn – p‖ + ‖ūn – p‖))]
≤ βn‖xn – p‖ + (γn + δn)

[
σn‖Qxn – p‖

+ ( – σn)
(‖xn – p‖ –μ(β –μ)‖Bxn – Bp‖

–μ(β –μ)‖Bx̃n – Bq‖ + λnαn‖p‖
(‖ũn – p‖ + ‖ūn – p‖))]

≤ ‖xn – p‖ + σn‖Qxn – p‖ – (γn + δn)( – σn)
[
μ(β –μ)‖Bxn – Bp‖

+μ(β –μ)‖Bx̃n – Bq‖
]
+ λnαn‖p‖

(‖ũn – p‖ + ‖ūn – p‖).
Therefore,

(γn + δn)( – σn)
[
μ(β –μ)‖Bxn – Bp‖ +μ(β –μ)‖Bx̃n – Bq‖

]
≤ ‖xn – p‖ – ‖xn+ – p‖ + σn‖Qxn – p‖ + λnαn‖p‖

(‖ũn – p‖ + ‖ūn – p‖)
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + σn‖Qxn – p‖

+ λnαn‖p‖
(‖ũn – p‖ + ‖ūn – p‖).

Since αn → , ‖xn – xn+‖ → , lim infn→∞ δn > , {λn} ⊂ [a,b] and σn → , it follows that

lim
n→∞‖Bx̃n – Bq‖ =  and lim

n→∞‖Bxn – Bp‖ = .

Step . limn→∞ ‖Syn – yn‖ = .
Indeed, utilizing the Lipschitz continuity of ∇fαn , we have

‖ūn – ũn‖ =
∥∥PC(I – λn∇fαn )ũn – PC(I – λn∇fαn )un

∥∥ ≤ ‖ũn – un‖.
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This together with ‖ũn – un‖ →  implies that limn→∞ ‖ūn – ũn‖ =  and hence
limn→∞ ‖ūn – un‖ = . Utilizing the arguments similar to those of (.) and (.) in
the proof of Theorem ., we get

‖x̃n – q‖

≤ ‖xn – p‖ – ∥∥xn – x̃n – (p – q)
∥∥ + μ

∥∥xn – x̃n – (p – q)
∥∥‖Bxn – Bp‖ (.)

and

‖un – p‖

≤ ‖x̃n – q‖ – ∥∥x̃n – un + (p – q)
∥∥ + μ

∥∥x̃n – un + (p – q)
∥∥‖Bx̃n – Bq‖. (.)

Utilizing (.), (.) and (.), we have

‖ūn – p‖ = ‖ũn – p + ūn – ũn‖

≤ ‖ũn – p‖ + 〈ūn – ũn, ūn – p〉
≤ ‖ũn – p‖ + ‖ūn – ũn‖‖ūn – p‖
≤ ‖un – p‖ + λnαn‖p‖‖ũn – p‖ + ‖ūn – ũn‖‖ūn – p‖
≤ ‖x̃n – q‖ – ∥∥x̃n – un + (p – q)

∥∥ + μ
∥∥x̃n – un + (p – q)

∥∥‖Bx̃n – Bq‖
+ λnαn‖p‖‖ũn – p‖ + ‖ūn – ũn‖‖ūn – p‖

≤ ‖xn – p‖ – ∥∥xn – x̃n – (p – q)
∥∥ + μ

∥∥xn – x̃n – (p – q)
∥∥‖Bxn – Bp‖

–
∥∥x̃n – un + (p – q)

∥∥ + μ
∥∥x̃n – un + (p – q)

∥∥‖Bx̃n – Bq‖
+ λnαn‖p‖‖ũn – p‖ + ‖ūn – ũn‖‖ūn – p‖. (.)

Thus, utilizing Lemma ., from Algorithm . and (.) it follows that

‖xn+ – p‖

≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

≤ βn‖xn – p‖ + (γn + δn)
[
σn‖Qxn – p‖ + ( – σn)‖ūn – p‖]

≤ βn‖xn – p‖ + (γn + δn)
{
σn‖Qxn – p‖ + ( – σn)

[‖xn – p‖ – ∥∥xn – x̃n – (p – q)
∥∥

+ μ
∥∥xn – x̃n – (p – q)

∥∥‖Bxn – Bp‖ –
∥∥x̃n – un + (p – q)

∥∥

+ μ
∥∥x̃n – un + (p – q)

∥∥‖Bx̃n – Bq‖ + λnαn‖p‖‖ũn – p‖
+ ‖ūn – ũn‖‖ūn – p‖]}

≤ ‖xn – p‖ + σn‖Qxn – p‖ – (γn + δn)( – σn)
(∥∥xn – x̃n – (p – q)

∥∥

+
∥∥x̃n – un + (p – q)

∥∥)
+ μ

∥∥xn – x̃n – (p – q)
∥∥‖Bxn – Bp‖ + μ

∥∥x̃n – un + (p – q)
∥∥‖Bx̃n – Bq‖

+ λnαn‖p‖‖ũn – p‖ + ‖ūn – ũn‖‖ūn – p‖,
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which hence implies that

(γn + δn)( – σn)
(∥∥xn – x̃n – (p – q)

∥∥ +
∥∥x̃n – un + (p – q)

∥∥)
≤ ‖xn – p‖ – ‖xn+ – p‖ + σn‖Qxn – p‖ + λnαn‖p‖‖ũn – p‖
+ μ

∥∥xn – x̃n – (p – q)
∥∥‖Bxn – Bp‖ + μ

∥∥x̃n – un + (p – q)
∥∥‖Bx̃n – Bq‖

+ ‖ūn – ũn‖‖ūn – p‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + σn‖Qxn – p‖ + λnαn‖p‖‖ũn – p‖
+ μ

∥∥xn – x̃n – (p – q)
∥∥‖Bxn – Bp‖ + μ

∥∥x̃n – un + (p – q)
∥∥‖Bx̃n – Bq‖

+ ‖ūn – ũn‖‖ūn – p‖.

Since lim infn→∞ δn > , σn → , {λn} ⊂ [a,b], αn → , ‖Bxn –Bp‖ → , ‖Bx̃n –Bq‖ →
, ‖ūn – ũn‖ →  and ‖xn – xn+‖ → , it follows from the boundedness of {xn}, {x̃n}, {un},
{ũn} and {ūn} that

lim
n→∞

∥∥xn – x̃n – (p – q)
∥∥ =  and lim

n→∞
∥∥x̃n – un + (p – q)

∥∥ = .

Consequently, it immediately follows that

lim
n→∞‖xn – un‖ =  and lim

n→∞‖xn – ūn‖ = . (.)

This together with ‖yn – ūn‖ ≤ σn‖Qxn – ūn‖ →  implies that

lim
n→∞‖xn – yn‖ = .

Since

∥∥δn(Syn – xn)
∥∥ =

∥∥γn(xn – yn) + δn(xn – Syn) + γn(yn – xn)
∥∥

≤ ‖xn – xn+‖ + γn‖xn – yn‖,

we have

lim
n→∞‖Syn – xn‖ =  and lim

n→∞‖Syn – yn‖ = .

Step . lim supn→∞〈Qx̄ – x̄,xn – x̄〉 ≤ , where x̄ = PFix(S)∩Ξ∩Γ Qx̄.
Indeed, since {xn} is bounded, there exists a subsequence {xni} of {xn} such that

lim sup
n→∞

〈Qx̄ – x̄,xn – x̄〉 = lim
i→∞〈Qx̄ – x̄,xni – x̄〉. (.)

Also, since H is reflexive and {yn} is bounded, without loss of generality, we may assume
that yni → p̂ weakly for some p̂ ∈ C. First, it is clear from Lemma . and ‖Syn – yn‖ → 
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that p̂ ∈ Fix(S). Now, let us show that p̂ ∈ Ξ . Note that

∥∥xn –G(xn)
∥∥ =

∥∥xn – PC
[
PC(xn –μBxn) –μBPC(xn –μBxn)

]∥∥
= ‖xn – un‖ →  (n→ ∞),

where G : C → C is defined as that in Lemma .. According to Lemma ., we get p̂ ∈ Ξ .
Further, let us show that p̂ ∈ Γ . As a matter of fact, since ‖xn – un‖ → , ‖ũn – un‖ → 
and ‖xn – yn‖ → , we deduce that xni → p̂ weakly and ũni → p̂ weakly. Let

Tv =

⎧⎨
⎩∇f (v) +NCv if v ∈ C,

∅ if v /∈ C,

where NCv = {w ∈ H : 〈v – u,w〉 ≥ ,∀u ∈ C}. Then T is maximal monotone and  ∈ Tv
if and only if v ∈ VI(C,∇f ); see [] for more details. Utilizing the arguments similar to
those of Step  in the proof of Theorem . and the relations

ũn = PC
(
un – λn∇fαn (un)

)
and v ∈ C,

we can derive

〈v – p̂,w〉 ≥ .

Since T is maximal monotone, we have p̂ ∈ T– and hence p̂ ∈VI(C,∇f ). Thus it is clear
that p̂ ∈ Γ . Therefore, p̂ ∈ Fix(S) ∩ Ξ ∩ Γ . Consequently, in terms of Proposition .(i),
we obtain from (.) that

lim sup
n→∞

〈Qx̄ – x̄,xn – x̄〉 = lim
i→∞〈Qx̄ – x̄,xni – x̄〉 = 〈Qx̄ – x̄, p̂ – x̄〉 ≤ .

Step . limn→∞ ‖xn – x̄‖ = .
Indeed, from (.), (.) and (.) it follows that

‖ūn – x̄‖ ≤ ‖ũn – x̄‖ + λnαn‖x̄‖‖ūn – x̄‖
≤ ‖un – x̄‖ + λnαn‖x̄‖

(‖ūn – x̄‖ + ‖ũn – x̄‖)
≤ ‖xn – x̄‖ + λnαn‖x̄‖

(‖ūn – x̄‖ + ‖ũn – x̄‖).
Utilizing the arguments similar to those of Step  in the proof of Theorem ., we can infer
that

〈Qxn – x̄, yn – x̄〉 ≤ ρ‖xn – x̄‖ + 〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖

and

‖xn+ – x̄‖

≤ βn‖xn – x̄‖ + (γn + δn)‖yn – x̄‖
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≤ βn‖xn – x̄‖ + (γn + δn)
[
( – σn)‖ūn – x̄‖ + σn〈Qxn – x̄, yn – x̄〉]

≤ βn‖xn – x̄‖ + (γn + δn)
{
( – σn)

[‖xn – x̄‖

+ λnαn‖x̄‖
(‖ūn – x̄‖ + ‖ũn – x̄‖)] + σn

[
ρ‖xn – x̄‖

+ 〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖
]}

≤ [
 – ( – ρ)(γn + δn)σn

]‖xn – x̄‖

+ ( – ρ)(γn + δn)σn
[〈Qx̄ – x̄,xn – x̄〉 + ‖Qxn – x̄‖‖yn – xn‖]

 – ρ

+ λnαn‖x̄‖
(‖ūn – x̄‖ + ‖ũn – x̄‖).

It is easy to see that all conditions of Lemma . are satisfied. Consequently, we immedi-
ately deduce that ‖xn – x̄‖ →  as n→ ∞.
Finally, from ‖un – xn‖ →  and ‖ũn – xn‖ → , it follows that ‖un – x̄‖ →  and ‖ũn –

x̄‖ → . This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A ∈ B(H,H) and Bi : C → H be βi-inverse strongly monotone for i = , . Let S : C → C
be a k-strictly pseudo-contractive mapping such that Fix(S) ∩ Ξ ∩ Γ �= ∅. For fixed u ∈ C
and x ∈ C given arbitrarily, let {xn}, {un}, {ũn} be the sequences generated iteratively by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un = PC[PC(xn –μBxn) –μBPC(xn –μBxn)],

ũn = PC(un – λn∇fαn (un)),

yn = σnu + ( – σn)PC(ũn – λn∇fαn (ũn)),

xn+ = βnxn + γnyn + δnSyn, ∀n≥ ,

(.)

where μi ∈ (, βi) for i = , , {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {βn}, {γn}, {δn} ⊂

[, ] such that
(i)

∑∞
n= αn <∞;

(ii) βn + γn + δn =  and (γn + δn)k ≤ γn for all n≥ ;
(iii) limn→∞ σn =  and

∑∞
n= σn = ∞;

(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ δn > ;
(v) limn→∞( γn+

–βn+
– γn

–βn
) = ;

(vi)  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ and limn→∞ |λn+ – λn| = .

Then the sequences {xn}, {un}, {ũn} converge strongly to the same point x̄ = PFix(S)∩Ξ∩Γ u
if and only if limn→∞ ‖ũn – un‖ = . Furthermore, (x̄, ȳ) is a solution of GSVI (.), where
ȳ = PC(x̄ –μBx̄).

In addition, utilizing Corollary ., we derive the following result.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let A ∈
B(H,H) and S : C → C be a nonexpansive mapping such that Fix(S) ∩ Γ �= ∅. For fixed
u ∈ C and x ∈ C given arbitrarily, let {xn}, {ũn} be the sequences generated iteratively by

⎧⎨
⎩ũn = PC(xn – λn∇fαn (xn)),

xn+ = βnxn + ( – βn)S[σnu + ( – σn)PC(ũn – λn∇fαn (ũn))], ∀n≥ ,
(.)
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where {αn} ⊂ (,∞), {λn} ⊂ (, 
‖A‖ ) and {σn}, {βn} ⊂ [, ] such that

(i)
∑∞

n= αn <∞;
(ii) limn→∞ σn =  and

∑∞
n= σn = ∞;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iv)  < lim infn→∞ λn ≤ lim supn→∞ λn < 

‖A‖ and limn→∞ |λn+ – λn| = .
Then the sequences {xn}, {ũn} converge strongly to the same point x̄ = PFix(S)∩Γ u if and only
if limn→∞ ‖ũn – xn‖ = .

Proof In Corollary ., put B = B =  and γn = . Then Ξ = C, βn + δn =  for all n ≥ ,
and the iterative scheme (.) is equivalent to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un = xn,

ũn = PC(un – λn∇fαn (un)),

yn = σnu + ( – σn)PC(ũn – λn∇fαn (ũn)),

xn+ = βnxn + δnSyn, ∀n≥ .

This is equivalent to (.). Since S is a nonexpansive mapping, S must be a k-strictly
pseudo-contractive mapping with k = . In this case, it is easy to see that all the conditions
(i)-(vi) in Corollary . are satisfied. Therefore, in terms of Corollary ., we obtain the
desired result. �

Remark . Theorems . and . improve, extend and develop [, Theorem .], [,
Theorem .], [, Theorem .] and [, Theorem .] in the following aspects:
(i) Compared with the relaxed extragradient iterative algorithm in [, Theorem .], our

hybrid viscosity iterative algorithms (i.e., Algorithms . and .) remove the requirement
of boundedness for the domain C in which various mappings are defined.
(ii) Because both [, Theorem .] and [, Theorem .] are weak convergence results

for solving the SFP, beyond question, our results as strong convergence theorems are very
interesting and quite valuable.
(iii) The problemof finding an element of Fix(S)∩Ξ ∩Γ in Theorems . and . ismore

general than the corresponding problems in [, Theorem .] and [, Theorem .],
respectively.
(iv) The hybrid extragradient method for finding an element of Fix(S) ∩ Ξ ∩ VI(C,A)

in [, Theorem .] is extended to develop our hybrid viscosity iterative algorithms (i.e.,
Algorithms . and .) for finding an element of Fix(S)∩ Ξ ∩ Γ .
(v) The proof of our results is very different from that of [, Theorem .] because our

argument technique depends on Lemma ., the restriction on the regularization param-
eter sequence {αn} and the properties of the averaged mappings PC(I – λn∇fαn ) to a great
extent.
(vi) Because Algorithms . and . involve two inverse stronglymonotonemappings B

and B, a k-strictly pseudo-contractive self-mapping S and several parameter sequences,
they are more flexible and more subtle than the corresponding ones in [, Theorem .]
and [, Theorem .], respectively.
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