RESEARCH

Open Access

On residual algebraic torsion extensions of a valuation of a field K to $K(x_1, \ldots, x_n)$

Figen Öke*

*Correspondence: figenoke@gmail.com Department of Mathematics, Faculty of Science, Trakya University, Balkan Campus, Edirne, 22030, Turkey

Abstract

Let *v* be a valuation of a field *K* with a value group G_v and a residue field k_v , *w* be an extension of *v* to K(x). Then *w* is called a residual algebraic torsion extension of *v* to K(x) if k_w/k_v is an algebraic extension and G_w/G_v is a torsion group. In this paper, a residual algebraic torsion extension of *v* to $K(x_1, \ldots, x_n)$ is described and its certain properties are investigated. Also, the existence of a residual algebraic torsion extension extension of a valuation on *K* to $K(x_1, \ldots, x_n)$ with given residue field and value group is studied.

MSC: 12J10; 12J20; 12F20

Keywords: extensions of valuations; residual algebraic torsion extensions; valued fields; value group; residue field

1 Introduction

Let *K* be a field, *v* be a valuation on *K* with a value group G_v and a residue field k_v . The big target is to define all extensions of *v* to $K(x_1, \ldots, x_n)$. Residual transcendental extensions of *v* to K(x) are described by Popescu, Alexandru and Zaharescu in [1, 2]. Residual algebraic torsion extensions of *v* to K(x) are studied for the first time in [3]. A residual transcendental extension of *v* to $K(x_1, \ldots, x_n)$ is defined in [4] by Öke. These studies are summarized in the second section. The paper is aimed to study residual algebraic torsion extensions of *v* to $K(x_1, \ldots, x_n)$ is defined and certain properties of the residual algebraic torsion extensions given in [3] are generalized. In the last section, the existence of an r.a.t. extension of *v* to $K(x_1, \ldots, x_n)$ with given residue field and value group is demonstrated.

2 Preliminaries and some notations

Throughout this paper, v is a valuation of a field K with a value group G_v , a valuation ring O_v and a residue field k_v , \overline{K} is an algebraic closure of K, \overline{v} is a fixed extension of v to \overline{K} . The value group of \overline{v} is the divisible closure of G_v and its residue field is the algebraic closure of k_v . K(x) and $K(x_1, \ldots, x_n)$ are rational function fields over K with one and n variables respectively. For any α in O_v , α^* denotes its natural image in k_v . If $a_1, \ldots, a_n \in \overline{K}$, then the restriction of \overline{v} to $K(a_1, \ldots, a_n)$ will be denoted by $v_{a_1 \cdots a_n}$.

Let *w* be an extension of *v* to K(x). Then *w* is called a residual transcendental (r.t.) extension of *v* if k_w/k_v is a transcendental extension.

© 2013 Öke; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The valuation *w*, which is defined for each $F = \sum_t a_t x^t \in K[x]$ as $w(F) = \inf_t (v(a_t))$ is called Gauss extension of *v* to K(x), its residue field is $k_w = k_v(x^*)$, is the simple transcendental extension of k_v and $G_w = G_v$ [5].

The valuation \overline{w} , which is defined for each $F = \sum_{t} c_t (x - a)^t \in \overline{K}[x]$ as

$$\overline{w}(F) = \inf_{t} \left(\overline{v}(c_t) + t\delta \right) \tag{1}$$

is called a valuation defined by the pair $(a, \delta) \in \overline{K} \times G_{\overline{v}}$ or $(a, \delta) \in \overline{K} \times G_{\overline{v}}$ is called a pair of definitions of *w*. Also, *w* is an r.t. extension of *v*. If $[K(a) : K] \leq [K(b) : K]$ for every $b \in \overline{K}$ such that $\overline{v}(b - a) \geq \delta$, then (a, δ) is called a minimal pair with respect to *K* [2].

If *w* is an r.t. extension of *v* to *K*(*x*), there exists a minimal pair $(a, \delta) \in \overline{K} \times G_{\overline{v}}$ such that *a* is separable over *K*. Two pairs (a_1, δ_1) and (a_2, δ_2) define the same valuation *w* if and only if $\delta_1 = \delta_2$ and $\overline{v}(a_1 - a_2) \ge \delta_1$ [2]. Let $f = \operatorname{Irr}(a, K)$ be the minimal polynomial of *a* with respect to *K* and $\gamma = w(f)$. For each $F \in K[x]$, let $F = F_1 + F_2 f + \cdots + F_n f^n$, where $F_t \in K[x]$, deg $F_t < \operatorname{deg} f, t = 1, \ldots, n$, be the *f*-expansion of *F*. Then *w* is defined as follows:

$$w(F) = \inf \left(v_a(F_t(a)) + t\gamma \right). \tag{2}$$

Then $G_w = G_{v_a} + Z\gamma$. Let e be the smallest non-zero positive integer such that $e\gamma \in G_{v_a}$. Then there exists $h \in K[x]$ such that $\deg h < \deg f$, $v_a(h(a)) = e\gamma$ and $r = f^e/h$ is an element of O_w and $r^* \in k_w$ is transcendental over k_v . k_{v_a} can be identified canonically with the algebraic closure of k_v in k_w and $k_w = k_{v_a}(r^*)$ [2].

Let *w* be an extension of *v* to K(x). *w* is called a residual algebraic (r.a.) extension of *v* if k_w/k_v is an algebraic extension. If *w* is an r.a. extension of *v* to K(x) and G_w/G_v is not a torsion group, then *w* is called a residual algebraic free (r.a.f.) extension of *v*. In this case, the quotient group G_w/G_v is a free abelian group. More precisely, G_w/G_v is isomorphic to *Z* [3].

w is called a residual algebraic torsion (r.a.t) extension of *v* if *w* is an r.a. extension of *v* and G_w/G_v is a torsion group. In this case, $G_v \subseteq G_w \subseteq G_{\overline{v}}$ is satisfied [3].

The order relation on the set of all r.t. extensions of v to K(x) is defined as follows: $w_1 \le w_2 \Leftrightarrow w_1(f) \le w_2(f)$ for all polynomials $f \in K[x]$. If $w_1 \le w_2$ and there exists $f \in K[x]$ such that $w_1(f) < w_2(f)$, then it is written $w_1 < w_2$. Let $(a_1, \delta_1), (a_2, \delta_2) \in \overline{K} \times G_{\overline{v}}$ be minimal pairs of the definition of the r.t. extensions w_1 and w_2 of v to K(x), respectively. Then $w_1 \le w_2$ if and only if $\delta_1 \le \delta_2$ and $\overline{v}(a_1 - a_2) \ge \delta_1$; moreover, $w_1 < w_2$ if and only if $\delta_1 \le \delta_2$ and $v(a_1 - a_2) \ge \delta_1$; moreover, $w_1 < w_2$ if and only if $\delta_1 \le \delta_2$ and $v(a_1 - a_2) \ge \delta_1$; moreover, $w_1 < w_2$ if and only if $\delta_1 \le \delta_2$ and $v(a_1 - a_2) > \delta_1$ [3].

Let *I* be a well-ordered set without the last element and $(w_i)_{i \in I}$ be an ordered system of r.t. extensions of v to K(x), where w_i is defined by a minimal pair $(a_i, \delta_i) \in \overline{K} \times G_{\overline{v}}$ for all $i \in I$. If $w_i \leq w_j$ for all i < j, then $(w_i)_{i \in I}$ is called an ordered system of r.t. extensions of v to K(x).

Then the valuation of K(x) defined as

$$w(f) = \sup_{i} \left(w_i(f) \right) \tag{3}$$

for all $f \in K[x]$ is an extension of v to K(x) and it is called a limit of the ordered system $(w_i)_{i \in I}$. w may not be an r.t. extension of v to K(x) [3].

Using the above studies an r.a.t extension of v to $K(x_1,...,x_n)$ can be defined. For this reason the r.t. extension of v to $K(x_1,...,x_n)$ defined in [4] can be used. An r.t. extension of v to $K(x_1,...,x_n)$ is defined by using r.t. extensions of v to $K(x_m)$ for m = 1,...,n in [4].

Let u_m be an r.t. extension of v to $K(x_m)$ defined by a minimal pair $(a_m, \delta_m) \in \overline{K} \times G_{\overline{v}}$ for m = 1, ..., n, where $[K(a_1, ..., a_n) : K] = \prod_{m=1}^n [K(a_m) : K]$ and $f_m = \operatorname{Irr}(a_m, K)$, $\gamma_m = u_m(f_m)$ for m = 1, ..., n. Each polynomial $F \in K[x_1, ..., x_n]$ can be uniquely written as $F = \sum_{t_1,...,t_n} F_{t_1\cdots t_n} f_1^{t_1} \cdots f_n^{t_n}$, where $F_{t_1\cdots t_n} \in K[x_1, ..., x_n]$, deg_{x_m} $F_{t_1\cdots t_n} < \deg f_m$ for m = 1, ..., n. The valuation w defined as

$$u(F) = \inf_{t_1,\dots,t_n} \left(v_{a_1\cdots a_n} \left(F_{t_1 t_2 \cdots t_n}(a_1,\dots,a_n) \right) + t_1 \gamma_1 + \dots + t_n \gamma_n \right)$$
(4)

is an extension of v to $K(x_1, \ldots, x_n)$. u is an r.t. extension of v which is a common extension of u_1, \ldots, u_n to $K(x_1, \ldots, x_n)$. Then $G_u = G_{v_{a_1\cdots a_n}} + Z\gamma_1 + \cdots + Z\gamma_n$. Let e_m be the smallest positive integer such that $e_m\gamma_m \in G_{v_{a_m}}$, where v_{a_m} is the restriction of \bar{v} to $K(a_m)$. Then there exists $h_m \in K[x_m]$ such that deg $h_m < \deg f_m, v_{a_m}(h(a_m)) = e_m\gamma_m, r_m = f_m^{e_m}/h_m \in O_{u_m}$ and r_m^* is transcendental over k_v for $m = 1, \ldots, n$. $k_{v_{a_1\cdots a_n}}$ can be canonically identified with the algebraic closure of k_v in k_w and $k_u = k_{v_{a_1\cdots a_n}}(r_1^*, \ldots, r_n^*)$ [4].

In the next section, an r.a.t extension of v to $K(x_1, ..., x_n)$ will be defined by using that r.t. extension.

3 A residual algebraic torsion extension of v to $K(x_1, ..., x_n)$

Let u_m be an r.t. extension of v to $K(x_m)$ defined by a minimal pair $(a_m, \delta_m) \in \overline{K} \times G_{\overline{v}}$ for m = 1, ..., n, where $[K(a_1, ..., a_n) : K] = \prod_{m=1}^n [K(a_m) : K]$ and let u be the r.t. extension of v to $K(x_1, ..., x_n)$ defined as in (4). Let u'_m be an r.t. extension of v to $K(x_m)$ defined by a minimal pair $(a'_m, \delta'_m) \in \overline{K} \times G_{\overline{v}}$ for m = 1, ..., n, where $[K(a'_1, ..., a'_n) : K] = \prod_{m=1}^n [K(a'_m) : K]$ and let u' be the r.t. extension of v to $K(x_1, ..., a'_n)$ is the result of v to $K(x_1, ..., x_n)$ defined as in (4). A relation between such kind of r.t. extensions of v to $K(x_1, ..., x_n)$ can be defined so that $u \le u'$ if and only if $u_m \le u'_m$ for m = 1, ..., n. This is an order relation, and if $u \le u'$, then for each polynomial $F \in K[x_1, ..., x_n]$, $u(F) \le u'(F)$ is satisfied. Because, for $F = \sum_{t_1,...,t_n} d_{t_1 \cdots t_n} x_1^{t_1} \cdots x_n^{t_n} \in K[x_1, ..., x_n]$,

$$u(F) = \inf_{t_1,\dots,t_n} \left(\nu(d_{t_1\dots t_n}) + t_1 u_1(x_1) + \dots + t_n u_n(x_n) \right)$$

$$\leq \inf_{t_1,\dots,t_n} \left(\nu(d_{t_1\dots t_n}) + t_1 u_1'(x_1) + \dots + t_n u_n'(x_n) \right) = u'(F).$$

Now, let *I* be a well-ordered set without the last element and $(w_i)_{i \in I}$ be an ordered system of r.t. extensions of v to $K(x_1, \ldots, x_n)$, where w_i is defined as in (4), *i.e.*, w_i is the common extension of w_{im} , where w_{im} is the r.t. extension of v to $K(x_m)$ defined by the minimal pair $(a_{im}, \delta_{im}) \in \overline{K} \times G_{\overline{v}}$, where $[K(a_{i_1}, \ldots, a_{i_n}) : K] = \prod_{m=1}^n [K(a_{i_m}) : K]$ for all $i \in I$. If $w_i \le w_j$ for all i < j, then $(w_i)_{i \in I}$ is an ordered system of r.t. extensions of v to $K(x_1, \ldots, x_n)$. Then the valuation w of $K(x_1, \ldots, x_n)$ defined as

$$w(F) = \sup_{i} \left(w_i(F) \right) \tag{5}$$

for all $F \in K[x_1, ..., x_n]$ is an extension of ν to $K(x_1, ..., x_n)$ and it is called a limit of the ordered system $(w_i)_{i \in I}$.

If w_m is the restriction of w to $K(x_m)$ for m = 1, ..., n, then w_m is the limit of the ordered system $(w_{i_m})_{i \in I}$ of r.t. extensions of v to $K(x_m)$. Also, w is the common extension of $w_1, ..., w_n$ to $K(x_1, ..., x_n)$. Since w_m may not be an r.t. extension of v to $K(x_m)$, then w may not be an r.t. extension of v to $K(x_1, ..., x_n)$.

If $w = \sup_i w_i$ is a residual algebraic torsion extension of v to $K(x_1, ..., x_n)$, then $G_v \subseteq G_w \subseteq G_{\bar{v}}$ is satisfied. Some other properties of w are studied below.

Denote the extension of w_i to $\overline{K}(x_1,...,x_n)$ by \overline{w}_i and the extension of w_{im} to $\overline{K}(x_m)$ by \overline{w}_{im} for m = 1,...,n and for all $i \in I$.

Theorem 3.1 Let $(\overline{w}_i)_{i\in I}$ be an ordered system of r.t. extensions of \overline{v} to $\overline{K}(x_1, \ldots, x_n)$, where \overline{w}_i is defined as in (4), i.e., w_i is the r.t. extension of v to $\overline{K}(x_1, \ldots, x_n)$ which is the common extension of w_{im} for $m = 1, \ldots, n$ and for all $i \in I$. Denote the restriction of \overline{w}_i to $K(x_1, \ldots, x_n)$ by w_i and the restriction of \overline{v} to $K(a_{i_1}, \ldots, a_{i_n})$ by $v_i = v_{a_{i_1} \cdots a_{i_n}}$. Then

- For all i, j ∈ I, i < j, one has w_i < w_j, i.e., (w_i)_{i∈I} is an ordered system of r.t. extensions of v to K(x₁,...,x_n).
- 2. For all $i, j \in I$, i < j, one has $k_{v_i} \subseteq k_{v_j}$ and $G_{v_i} \subseteq G_{v_j}$.
- 3. Suppose that $\overline{w} = \sup_i \overline{w}_i$ and \overline{w} is not an r.t. extension of \overline{v} to $\overline{K}(x_1, \dots, x_n)$ and denote that w is the restriction of \overline{w} to $K(x_1, \dots, x_n)$. Then $w = \sup_i w_i$ and $k_w = \bigcup_i k_{v_i}$ and $G_w = \bigcup_i G_{v_i}$.

Proof For every $i \in I$ and m = 1, ..., n, denote that $f_{i_m} = Irr(a_{i_m}, K)$ and $deg_{x_m}f_{i_m} = n_{i_m}$.

- 1. Since $\overline{w_i} < \overline{w_j}$ for all $i, j \in I$, i < j, we have $w_i \le w_j$. We show that $w_i < w_j$. Assume that $w_i = w_j$. Since w_i is the common extension of w_{i_m} and w_j is the common extension of w_{j_m} for m = 1, ..., n, we have $w_{i_m} = w_{j_m}$ for m = 1, ..., n. Since (a_{i_m}, δ_{i_m}) is a minimal pair of the definition of w_{i_m} , we have $\delta_{i_m} = \delta_{j_m}$ for m = 1, ..., n. But it is a contradiction, because $(\overline{w_{i_m}})_{i \in I}$ is an ordered system of r.t. extensions of \overline{v} to $\overline{K}(x_m)$ and so $\overline{w_{i_m}} < \overline{w_{j_m}}$, *i.e.*, $\delta_{i_m} < \delta_{j_m}$ [3]. Hence $w_{i_m} < w_{j_m}$ for m = 1, ..., n. Since w_i and w_j are common extensions of w_{i_m} and w_{j_m} respectively for m = 1, ..., n and for all $i \in I$, it is concluded that $w_i < w_i$ for all i < j.
- 2. It is enough to study for $B = F(a_{i_1}, \dots, a_{i_n}) \in K[a_{i_1}, \dots, a_{i_n}]$, where $F(x_1, \dots, x_n) \in K[x_1, \dots, x_n]$, $\deg_{x_m} F(x_1, \dots, x_n) < n_{i_m}$. It is seen that $v_i(B) = v_i(F(a_{i_1}, \dots, a_{i_n})) = \overline{v}(F(a_{i_1}, \dots, a_{i_n})) = v_j(F(a_{j_1}, \dots, a_{j_n})) = v_j(B)$ by using the [3, Th. 2.3] and this gives $G_{v_i} \subseteq G_{v_i}$.

Assume that $v_i(B) = 0$. Then $v_j(B) = 0$. Since (a_{i_m}, δ_{i_m}) is a minimal pair of the definition of w_{i_m} for m = 1, ..., n, we have

 $B^{*} = F(a_{i_{1}}, \dots, a_{i_{m-1}}, x_{m}, a_{i_{m+1}}, \dots, a_{i_{n}})^{*} = F(a_{i_{1}}, \dots, a_{i_{m-1}}, a_{i_{m}}, a_{i_{m+1}}, \dots, a_{i_{n}})^{*} \in k_{v_{i}}$ coincides with the $F(a_{j_{1}}, \dots, a_{j_{m-1}}, a_{j_{m}}, a_{j_{m+1}}, \dots, a_{j_{n}})^{*}$ which is the residue of *B* in $k_{v_{j}}$. Hence $k_{v_{i}} \subseteq k_{v_{j}}$ for all $i, j \in I, i < j$.

3. Since $\overline{w} = \sup_i \overline{w}_i$, we have $w = \sup_i w_i$ and w is not an r.t. extension of v to $K(x_1, \ldots, x_n)$. Using [3, Th. 2.3] and the definition of w_{i_m} , the proof can be completed. Take $F(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ such that $\deg_{x_m} F < n_{i_m}$. Since (a_{i_m}, δ_{i_m}) is a minimal pair of the definition of w_{i_m} ,

 $\overline{w}(F(x_1,\ldots,x_n)) = w(F(x_1,\ldots,x_n)) = \overline{v}(F(a_{i_1},\ldots,a_{i_n})) = v_i(F(a_{i_1},\ldots,a_{i_n})).$ This means that $G_{v_i} \subseteq G_w$ for all $i \in I$ and so $\bigcup_i G_{v_i} \subseteq G_w$.

Conversely, let v_i^m be the restriction of \overline{w}_i to $K(a_{i_1}, \ldots, a_{i_{m-1}}, x_m, a_{i_{m+1}}, \ldots, a_{i_n})$ for $m = 1, \ldots, n$ and for all $i \in I$. Since

 $\begin{aligned} v_i^m(P(a_{i_1},\ldots,a_{i_{m-1}},x_m,a_{i_{m+1}},\ldots,a_{i_n})) &= v_i(P(a_{i_1},\ldots,a_{i_m},\ldots,a_{i_n})), \text{ then} \\ w(P(x_1,\ldots,x_n)) &= v_i(P(a_{i_1},\ldots,a_{i_n})) \in G_{v_i} \text{ for every } P(x_1,\ldots,x_n) \in K[x_1,\ldots,x_n]. \text{ This} \\ \text{gives } G_w &\subseteq \bigcup_i G_{v_i}. \\ \text{Now, assume that } \overline{v}(F(a_{i_1},\ldots,a_{i_n})) &= v_i(F(a_{i_1},\ldots,a_{i_m})) = 0. \text{ Then} \\ w(F(x_1,\ldots,x_n)) &= 0 \text{ and since } \deg_{x_m} F(x_1,\ldots,x_n) < n_{i_m}, F(a_1,\ldots,a_n)^*, \text{ which is} \\ v_i\text{-residue of } F(x_1,\ldots,x_n), \text{ coincides with the residue of } F(x_1,\ldots,x_n) \text{ in } k_w. \text{ This shows} \\ k_{v_i} &\subseteq k_w \text{ for all } i \in I, \text{ and then } \bigcup_i k_{v_i} \subseteq k_w. \\ \text{ For the reverse inclusion, let } P(x_1,\ldots,x_n) \in K[x_1,\ldots,x_n] \text{ and } w(P(x_1,\ldots,x_n))) = 0. \\ \text{For } m = 1,\ldots,n, P(a_{i_1},\ldots,a_{i_{m-1}},x_m,a_{i_{m+1}},\ldots,a_{i_n})^* \text{ is equal to} \\ P(a_{i_1},\ldots,a_{i_{m-1}},a_{i_m},a_{i_{m+1}},\ldots,a_{i_n})^* \in k_{v_i} \text{ and so } P(x_1,\ldots,x_n)^* = P(a_{i_1},\ldots,a_{i_n})^* \in k_{v_i}. \\ \text{Hence } k_w \subseteq \bigcup_i k_{v_i}. \\ \end{array}$

The following theorem can be obtained as a result of Theorem 3.1.

Corollary 3.2 Under the above notations, let w be an r.a.t. extension of v to $K(x_1,...,x_n)$. Then the following are satisfied:

- 1. $G_{v_i} \subseteq G_{v_i}$ and $k_{v_i} \subseteq k_{v_i}$ for all $i, j \in I$, i < j.
- 2. $(w_i)_{i \in I}$ is an ordered system of r.t. extensions of v to $K(x_1, ..., x_n)$ and $w = \sup_i w_i$. Moreover, we have $k_w = \bigcup_i k_{v_i}$ and $G_w = \bigcup_i G_{v_i}$.

Proof If w is an r.a.t. extension of v to $K(x_1,...,x_n)$, then \overline{w} is an r.a.t. extension \overline{v} to $\overline{K}(x_1,\ldots,x_n)$ and so \overline{w}_m is an r.a.t. extension of \overline{v} to $\overline{K}(x_m)$ for $m=1,\ldots,n$. We can take $\{\delta_{i_m}\}_{i \in I}$ for m = 1, ..., n as co-final well-ordered subsets of $M_{\overline{w}_m} = \{\overline{w}(x_m - a) | a \in \overline{K}\}$. *I* has no last element because \overline{w}_m is not an r.t. extension of \overline{v} . For every $i \in I$, choose the element $(a_{i_m}, \delta_{i_m}) \in \overline{K} \times G_{\overline{V}}$ such that for $m = 1, \dots, n, \overline{w}(x_m - a_{i_m}) = \delta_{i_m}$ and $[K(a_{i_m}) : K]$ is the smallest possible for δ_{i_m} . This means that if $c_m \in \overline{K}$ such that $\overline{w}(x_m - c_m) = \delta_{i_m}$, then $[K(c_m):K] \ge [K(a_{i_m}):K]$. Then (a_{i_m}, δ_{i_m}) is a minimal pair of the definition of \overline{w}_{i_m} with respect to *K* for m = 1, ..., n. According to [3, Th. 4.1], $\overline{w}_{i_m} < \overline{w}_{j_m}$ if i < j, which means that $(\overline{w}_{i_m})_{i \in I}$ is an ordered system of r.t. extensions of \overline{v} to $\overline{K}(x_m)$ for m = 1, ..., n and $(\overline{w}_{i_m})_{i \in I}$ has a limit $\overline{w}_m = \sup_i \overline{w}_{i_m}$ which is an r.a.t extension of ν to $\overline{K}(x_m)$. For all $i \in I$, take \overline{w}_i as the common extension of \overline{w}_{im} to $K(x_1, \ldots, x_n)$ and \overline{w} as the common extension of \overline{w}_m to $\overline{K}(x_1, \ldots, x_n)$ for $m = 1, \ldots, n$. Denote the restriction of \overline{w}_i to $K(x_1, \ldots, x_n)$ by w_i and denote the restriction of \overline{w} to $K(x_1,...,x_n)$ by w. In the same way as that in the proof of Theorem 3.1, it is seen that $w_i < w_j$ for $i, j \in I$, i < j and $w_i < w$ for all $i \in I$ and $w = \sup_i w_i$. Moreover, $k_w = \bigcup_i k_{v_i}$ and $G_w = \bigcup_i G_{v_i}$ are satisfied.

4 Existence of r.a.t. extensions of valuations of K to $K(x_1,...,x_n)$ with given residue field and value group

It can be concluded from section three and from [3] that if *w* is an r.a.t. extension of *v* to $K(x_1, \ldots, x_n)$, then k_w/k_v is a countable generated infinite algebraic extension and G_w/G_v is a countable infinite torsion group. In this section, the converse is studied.

Theorem 4.1 Let k/k_v be a countably generated infinite algebraic extension and G be an ordered group such that $G_v \subset G$ and G/G_v is a countably infinite torsion group. Then there exists an r.a.t. extension w of v to $K(x_1, ..., x_n)$ such that $k_w \cong k$ and $G_w \cong G$.

Proof Since $k_{\bar{v}}$ is the algebraic closure of k_v , we have $k_v \subseteq k \subseteq k_{\bar{v}}$. Since k/k_v is countably generated, there exists a tower of fields $k_v \subseteq k_1 \subseteq k_2 \subseteq \cdots$ such that $\bigcup_s k_s = k$, and since G/G_v is a countable torsion group, there exists a sequence of subgroups of G such that $G_v = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_s \cdots \subset G$, $G_s \neq G_{s+1}$, G_s/G_v is finite for all s and that $\bigcup_s G_s = G$. According to [6, Th. 3.2], there exists an r.t. extension u_s of v to $K(x_1, \ldots, x_n)$ such that trans deg $k_{u_s}/k_v = n$, the algebraic closure of k_v in k_{u_s} is k_s , $G_{u_s} = G_s$ and if $m \neq m'$, then the restriction of u_s to $K(x_m, x_{m'})$ is not the Gauss extension of the restriction of u_s to $K(x_m)$ for $m, m' = 1, \ldots, n$ and for all s. Denote the restriction of u_s to $K(x_m)$ by u_{s_m} and the algebraic closure of u_s to $K(x_m)$ by k_{s_m} for $m = 1, \ldots, n$ and for all s.

Then $k_{\nu} \subseteq k_{1_m} \subseteq k_{2_m} \subseteq \cdots \subseteq k_{s_m} \subseteq \cdots$ is the tower of finite extensions of k_{ν} for m = 1, ..., n. Denote $G_{u_{s_m}} = G_{s_m}$. $G_{\nu} \subset G_{1_m} \subset G_{2_m} \subset \cdots \subset G_{s_m} \subset \cdots \subset G$ is the sequence of subgroups of G such that $G_{s_m} \neq G_{(s+1)_m}$ and G_{s_m}/G_{ν} is finite for all s and for m = 1, ..., n. Then there exists an r.a.t. extension w_m of ν to $K(x_m)$ such that $k_{w_m} \cong \bigcup_s k_{s_m}$ and $G_{w_m} \cong \bigcup_s G_{s_m}$ [3].

It means that $w_m = \sup_s(u_{s_m})$. Since $x_1, x_2, ..., x_n$ are algebraic independent over K, $k_{w_1}k_{w_2}/k_{w_1}$ is a countable generated infinite algebraic extension and $\langle G_{w_1} \cup G_{w_2} \rangle/G_{w_1}$ is a countable torsion group. Hence there exists an r.a.t. extension v_2 of $w_1 = v_1$ to $K(x_1, x_2)$ such that $k_{v_2} \cong k_{w_1}k_{w_2}$ and $G_{v_2} \cong \langle G_{w_1} \cup G_{w_2} \rangle$. Using the induction on n, it is obtained that there exits an r.a.t. extension $v_n = w$ of v_{n-1} of $K(x_1, ..., x_{n-1})$ to $K(x_1, ..., x_n)$ such that

$$k_w = k_{v_n} \cong k_{w_1} \cdots k_{w_n} = \langle k_{w_1} \cup \cdots \cup k_{w_n} \rangle = \left(\bigcup_{m=1}^n \left(\bigcup_s k_{u_{s_m}} \right) \right) = \bigcup_s k_{u_s}$$

and

$$G_w = G_{v_n} \cong \langle G_{w_1} \cup \cdots \cup G_{w_n} \rangle = \left\langle \bigcup_{m=1}^n \left(\bigcup_s G_{u_{s_m}} \right) \right\rangle = \bigcup_s G_{u_s}.$$

Since v_i is an r.a.t. extension of v_{i-1} for i = 1, ..., n, then $v_n = w$ is an r.a.t. extension of v to $K(x_1, ..., x_n)$.

Theorem 4.2 Let k/k_v be a finite extension, G be an ordered group such that $G_v \subset G$ and G/G_v is finite. Assume that $\operatorname{tr} \operatorname{deg} \tilde{K}/K > 0$. Then there exists an r.a.t. extension of v to $K(x_1, \ldots, x_n)$ such that $k_w \cong k$ and $G_w \cong G$.

Proof Since k/k_v is a finite extension, it can be written that $k = k_v(b_1, ..., b_t)$, where b_r is algebraic over k_v for r = 1, ..., t. It can be taken $t \ge n$, because if t < n, n - t elements can be chosen as equal. Since G/G_v is finite, there exists a sequence of subgroups of G such that $G_v = H_0 \subset H_1 \subset \cdots \subset H_n = G$ and H_{r+1}/H_r is finite for r = 1, ..., n - 1.

Hence there exists an r.a.t. extension w_1 of v to $K(x_1)$ such that $k_{w_1} \cong k_v(b_1)$ and $G_{w_1} \cong H_1$ [3]. Let \tilde{K} be the completion of K with respect to v and \tilde{v} be the extension of v to \tilde{K} . According to [7, Prop. 1], the completion of $K(x_1)$ with respect to w_1 is isomorphic to a field belonging to $F_c(\tilde{\Omega}/\tilde{K})$, where $\tilde{\Omega}$ is the completion of the algebraic closure Ω of \tilde{K} with respect to the unique extension of \tilde{v} to Ω and $F_c(\tilde{\Omega}/\tilde{K})$ is the set of complete fields L such that $\tilde{K} \subseteq L \subseteq \tilde{\Omega}$. Moreover, since tr deg $\tilde{K}/K > 0$, there exists an element $\tilde{a} \in \tilde{K}$ which is transcendental over *K*. That is, there exists a Cauchy sequence $\{a_i\}_{i \in I} \subseteq K$ which converges to \tilde{a} .

Therefore if we denote the completion of $K(x_1)$ with respect to w_1 by $K(x_1)$, then tr deg $K(x_1)/K(x_1) > 0$. Also, H_2/H_1 is finite, then there exists an r.a.t. extension w_2 of w_1 to $K(x_1, x_2)$ such that $k_{w_2} \cong k_v(b_1, b_2)$ and $G_{w_2} \cong H_2$. Using the induction, it is obtained that there exists an r.a.t. extension w_{n-1} of w_{n-2} on $K(x_1, \dots, x_{n-2})$ to $K(x_1, \dots, x_{n-1})$ such that its residue field is $k_{w_{n-1}} = k_v(b_1, \dots, b_{n-1})$ and its value group is $G_{w_{n-1}} = H_{n-1}$. Finally, there exists an r.a.t. extension $w = w_n$ of w_{n-1} to $K(x_1, \dots, x_n)$ such that $k_w \cong k_v(b_n, \dots, b_t) = k$ and $G_w \cong G$.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

Received: 11 December 2012 Accepted: 14 February 2013 Published: 5 March 2013

References

- 1. Alexandru, V, Popescu, N, Zaharescu, A: A theorem of characterization of residual transcendental extensions of a valuation. J. Math. Kyoto Univ. 24(8), 579-592 (1988)
- Alexandru, V, Popescu, N, Zaharescu, A: Minimal pairs of definition of a residual transcendental extension of a valuation. J. Math. Kyoto Univ. 30(2), 207-225 (1990)
- 3. Alexandru, V, Popescu, N, Zaharescu, A: All valuations on K(x). J. Math. Kyoto Univ. 30(2), 281-296 (1990)
- Öke, F: A residual transcendental extension of a valuation on K to K(x1,...,xn). Appl. Math. Comput. 218, 956-958 (2011)
- 5. Bourbaki, N: Algèbre commutative, pp. 375-471. Hermann, Paris (1964)
- 6. Öke, F: On extensions of valuations with given residue field and value group. Mathematika 55, 191-197 (2009)
- 7. lovita, A, Zaharescu, A: Completions of r.a.t. valued fields of rational functions. J. Number Theory 50, 202-205 (1995)

doi:10.1186/1687-1812-2013-46

Cite this article as: \ddot{O} ke: **On residual algebraic torsion extensions of a valuation of a field** K **to** $K(x_1, ..., x_n)$. *Fixed Point Theory and Applications* 2013 **2013**:46.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com