On residual algebraic torsion extensions of a valuation of a field K to $K\left(x_{1}, \ldots, x_{n}\right)$

Figen Öke*

"Correspondence:
figenoke@gmail.com
Department of Mathematics, Faculty of Science, Trakya University, Balkan Campus, Edirne, 22030, Turkey

Abstract

Let v be a valuation of a field K with a value group G_{v} and a residue field k_{v}, w be an extension of v to $K(x)$. Then w is called a residual algebraic torsion extension of v to $K(x)$ if k_{w} / k_{v} is an algebraic extension and G_{w} / G_{v} is a torsion group. In this paper, a residual algebraic torsion extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ is described and its certain properties are investigated. Also, the existence of a residual algebraic torsion extension of a valuation on K to $K\left(x_{1}, \ldots, x_{n}\right)$ with given residue field and value group is studied.

MSC: 12J10; 12J20; 12F20
Keywords: extensions of valuations; residual algebraic torsion extensions; valued fields; value group; residue field

1 Introduction

Let K be a field, v be a valuation on K with a value group G_{v} and a residue field k_{v}. The big target is to define all extensions of v to $K\left(x_{1}, \ldots, x_{n}\right)$. Residual transcendental extensions of v to $K(x)$ are described by Popescu, Alexandru and Zaharescu in [1, 2]. Residual algebraic torsion extensions of v to $K(x)$ are studied for the first time in [3]. A residual transcendental extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ is defined in [4] by Öke. These studies are summarized in the second section. The paper is aimed to study residual algebraic torsion extensions of v to $K\left(x_{1}, \ldots, x_{n}\right)$. In the third section, a residual algebraic torsion extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ is defined and certain properties of the residual algebraic torsion extensions given in [3] are generalized. In the last section, the existence of an r.a.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ with given residue field and value group is demonstrated.

2 Preliminaries and some notations

Throughout this paper, v is a valuation of a field K with a value group G_{v}, a valuation ring O_{v} and a residue field k_{v}, \bar{K} is an algebraic closure of K, \bar{v} is a fixed extension of v to \bar{K}. The value group of \bar{v} is the divisible closure of G_{v} and its residue field is the algebraic closure of k_{v}. $K(x)$ and $K\left(x_{1}, \ldots, x_{n}\right)$ are rational function fields over K with one and n variables respectively. For any α in O_{v}, α^{*} denotes its natural image in k_{v}. If $a_{1}, \ldots, a_{n} \in \bar{K}$, then the restriction of \bar{v} to $K\left(a_{1}, \ldots, a_{n}\right)$ will be denoted by $v_{a_{1} \cdots a_{n}}$.

Let w be an extension of v to $K(x)$. Then w is called a residual transcendental (r.t.) extension of v if k_{w} / k_{v} is a transcendental extension.

[^0]The valuation w, which is defined for each $F=\sum_{t} a_{t} x^{t} \in K[x]$ as $w(F)=\inf _{t}\left(v\left(a_{t}\right)\right)$ is called Gauss extension of v to $K(x)$, its residue field is $k_{w}=k_{v}\left(x^{*}\right)$, is the simple transcendental extension of k_{v} and $G_{w}=G_{v}[5]$.

The valuation \bar{w}, which is defined for each $F=\sum_{t} c_{t}(x-a)^{t} \in \bar{K}[x]$ as

$$
\begin{equation*}
\bar{w}(F)=\inf _{t}\left(\bar{v}\left(c_{t}\right)+t \delta\right) \tag{1}
\end{equation*}
$$

is called a valuation defined by the pair $(a, \delta) \in \bar{K} \times G_{\bar{v}}$ or $(a, \delta) \in \bar{K} \times G_{\bar{v}}$ is called a pair of definitions of w. Also, w is an r.t. extension of v. If $[K(a): K] \leq[K(b): K]$ for every $b \in \bar{K}$ such that $\bar{v}(b-a) \geq \delta$, then (a, δ) is called a minimal pair with respect to K [2].
If w is an r.t. extension of v to $K(x)$, there exists a minimal pair $(a, \delta) \in \bar{K} \times G_{\bar{v}}$ such that a is separable over K. Two pairs $\left(a_{1}, \delta_{1}\right)$ and $\left(a_{2}, \delta_{2}\right)$ define the same valuation w if and only if $\delta_{1}=\delta_{2}$ and $\bar{v}\left(a_{1}-a_{2}\right) \geq \delta_{1}$ [2]. Let $f=\operatorname{Irr}(a, K)$ be the minimal polynomial of a with respect to K and $\gamma=w(f)$. For each $F \in K[x]$, let $F=F_{1}+F_{2} f+\cdots+F_{n} f^{n}$, where $F_{t} \in K[x]$, $\operatorname{deg} F_{t}<\operatorname{deg} f, t=1, \ldots, n$, be the f-expansion of F. Then w is defined as follows:

$$
\begin{equation*}
w(F)=\inf _{t}\left(v_{a}\left(F_{t}(a)\right)+t \gamma\right) . \tag{2}
\end{equation*}
$$

Then $G_{w}=G_{v_{a}}+Z \gamma$. Let e be the smallest non-zero positive integer such that $e \gamma \in G_{v_{a}}$. Then there exists $h \in K[x]$ such that $\operatorname{deg} h<\operatorname{deg} f, v_{a}(h(a))=e \gamma$ and $r=f^{e} / h$ is an element of O_{w} and $r^{*} \in k_{w}$ is transcendental over $k_{v} . k_{v_{a}}$ can be identified canonically with the algebraic closure of k_{v} in k_{w} and $k_{w}=k_{v_{a}}\left(r^{*}\right)$ [2].

Let w be an extension of v to $K(x) . w$ is called a residual algebraic (r.a.) extension of v if k_{w} / k_{v} is an algebraic extension. If w is an r.a. extension of v to $K(x)$ and G_{w} / G_{v} is not a torsion group, then w is called a residual algebraic free (r.a.f.) extension of v. In this case, the quotient group G_{w} / G_{v} is a free abelian group. More precisely, G_{w} / G_{v} is isomorphic to Z [3].
w is called a residual algebraic torsion (r.a.t) extension of v if w is an r.a. extension of v and G_{w} / G_{v} is a torsion group. In this case, $G_{v} \subseteq G_{w} \subseteq G_{\bar{v}}$ is satisfied [3].
The order relation on the set of all r.t. extensions of v to $K(x)$ is defined as follows: $w_{1} \leq$ $w_{2} \Leftrightarrow w_{1}(f) \leq w_{2}(f)$ for all polynomials $f \in K[x]$. If $w_{1} \leq w_{2}$ and there exists $f \in K[x]$ such that $w_{1}(f)<w_{2}(f)$, then it is written $w_{1}<w_{2}$. Let $\left(a_{1}, \delta_{1}\right),\left(a_{2}, \delta_{2}\right) \in \bar{K} \times G_{\bar{v}}$ be minimal pairs of the definition of the r.t. extensions w_{1} and w_{2} of v to $K(x)$, respectively. Then $w_{1} \leq w_{2}$ if and only if $\delta_{1} \leq \delta_{2}$ and $\bar{v}\left(a_{1}-a_{2}\right) \geq \delta_{1}$; moreover, $w_{1}<w_{2}$ if and only if $\delta_{1} \leq \delta_{2}$ and $v\left(a_{1}-a_{2}\right)>\delta_{1}[3]$.
Let I be a well-ordered set without the last element and $\left(w_{i}\right)_{i \in I}$ be an ordered system of r.t. extensions of v to $K(x)$, where w_{i} is defined by a minimal pair $\left(a_{i}, \delta_{i}\right) \in \bar{K} \times G_{\bar{v}}$ for all $i \in I$. If $w_{i} \leq w_{j}$ for all $i<j$, then $\left(w_{i}\right)_{i \in I}$ is called an ordered system of r.t. extensions of v to $K(x)$.

Then the valuation of $K(x)$ defined as

$$
\begin{equation*}
w(f)=\sup _{i}\left(w_{i}(f)\right) \tag{3}
\end{equation*}
$$

for all $f \in K[x]$ is an extension of v to $K(x)$ and it is called a limit of the ordered system $\left(w_{i}\right)_{i \in I} . w$ may not be an r.t. extension of v to $K(x)$ [3].

Using the above studies an r.a.t extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ can be defined. For this reason the r.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ defined in [4] can be used. An r.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ is defined by using r.t. extensions of v to $K\left(x_{m}\right)$ for $m=1, \ldots, n$ in [4].
Let u_{m} be an r.t. extension of v to $K\left(x_{m}\right)$ defined by a minimal pair $\left(a_{m}, \delta_{m}\right) \in \bar{K} \times G_{\bar{v}}$ for $m=1, \ldots, n$, where $\left[K\left(a_{1}, \ldots, a_{n}\right): K\right]=\prod_{m=1}^{n}\left[K\left(a_{m}\right): K\right]$ and $f_{m}=\operatorname{Irr}\left(a_{m}, K\right), \gamma_{m}=$ $u_{m}\left(f_{m}\right)$ for $m=1, \ldots, n$. Each polynomial $F \in K\left[x_{1}, \ldots, x_{n}\right]$ can be uniquely written as $F=$ $\sum_{t_{1}, \ldots, t_{n}} F_{t_{1} \cdots t_{n}} f_{1}^{t_{1}} \cdots f_{n}^{t_{n}}$, where $F_{t_{1} \cdots t_{n}} \in K\left[x_{1}, \ldots, x_{n}\right]$, $\operatorname{deg}_{x_{m}} F_{t_{1} \cdots t_{n}}<\operatorname{deg} f_{m}$ for $m=1, \ldots, n$.

The valuation w defined as

$$
\begin{equation*}
u(F)=\inf _{t_{1}, \ldots, t_{n}}\left(v_{a_{1} \cdots a_{n}}\left(F_{t_{1} t_{2} \cdots t_{n}}\left(a_{1}, \ldots, a_{n}\right)\right)+t_{1} \gamma_{1}+\cdots+t_{n} \gamma_{n}\right) \tag{4}
\end{equation*}
$$

is an extension of v to $K\left(x_{1}, \ldots, x_{n}\right) . u$ is an r.t. extension of v which is a common extension of u_{1}, \ldots, u_{n} to $K\left(x_{1}, \ldots, x_{n}\right)$. Then $G_{u}=G_{v_{a_{1} \cdots a_{n}}}+Z \gamma_{1}+\cdots+Z \gamma_{n}$. Let e_{m} be the smallest positive integer such that $e_{m} \gamma_{m} \in G_{v_{a_{m}}}$, where $v_{a_{m}}$ is the restriction of \bar{v} to $K\left(a_{m}\right)$. Then there exists $h_{m} \in K\left[x_{m}\right]$ such that $\operatorname{deg} h_{m}<\operatorname{deg} f_{m}, v_{a_{m}}\left(h\left(a_{m}\right)\right)=e_{m} \gamma_{m}, r_{m}=f_{m}^{e_{m}} / h_{m} \in O_{u_{m}}$ and r_{m}^{*} is transcendental over k_{v} for $m=1, \ldots, n . k_{v_{a_{1} \cdots a_{n}}}$ can be canonically identified with the algebraic closure of k_{v} in k_{w} and $k_{u}=k_{v_{a_{1} \ldots a_{n}}}\left(r_{1}^{*}, \ldots, r_{n}^{*}\right)$ [4].

In the next section, an r.a.t extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ will be defined by using that r.t. extension.

3 A residual algebraic torsion extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$

Let u_{m} be an r.t. extension of v to $K\left(x_{m}\right)$ defined by a minimal pair $\left(a_{m}, \delta_{m}\right) \in \bar{K} \times G_{\bar{v}}$ for $m=1, \ldots, n$, where $\left[K\left(a_{1}, \ldots, a_{n}\right): K\right]=\prod_{m=1}^{n}\left[K\left(a_{m}\right): K\right]$ and let u be the r.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ defined as in (4). Let u_{m}^{\prime} be an r.t. extension of v to $K\left(x_{m}\right)$ defined by a minimal pair $\left(a_{m}^{\prime}, \delta_{m}^{\prime}\right) \in \bar{K} \times G_{\bar{v}}$ for $m=1, \ldots, n$, where $\left[K\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right): K\right]=\prod_{m=1}^{n}\left[K\left(a_{m}^{\prime}\right): K\right]$ and let u^{\prime} be the r.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ defined as in (4). A relation between such kind of r.t. extensions of v to $K\left(x_{1}, \ldots, x_{n}\right)$ can be defined so that $u \leq u^{\prime}$ if and only if $u_{m} \leq u_{m}^{\prime}$ for $m=1, \ldots, n$. This is an order relation, and if $u \leq u^{\prime}$, then for each polynomial $F \in K\left[x_{1}, \ldots, x_{n}\right], u(F) \leq u^{\prime}(F)$ is satisfied. Because, for $F=\sum_{t_{1}, \ldots, t_{n}} d_{t_{1} \cdots t_{n}} x_{1}^{t_{1}} \cdots x_{n}^{t_{n}} \in$ $K\left[x_{1}, \ldots, x_{n}\right]$,

$$
\begin{aligned}
u(F) & =\inf _{t_{1}, \ldots, t_{n}}\left(v\left(d_{t_{1} \cdots t_{n}}\right)+t_{1} u_{1}\left(x_{1}\right)+\cdots+t_{n} u_{n}\left(x_{n}\right)\right) \\
& \leq \inf _{t_{1}, \ldots, t_{n}}\left(v\left(d_{t_{1} \cdots t_{n}}\right)+t_{1} u_{1}^{\prime}\left(x_{1}\right)+\cdots+t_{n} u_{n}^{\prime}\left(x_{n}\right)\right)=u^{\prime}(F) .
\end{aligned}
$$

Now, let I be a well-ordered set without the last element and $\left(w_{i}\right)_{i \in I}$ be an ordered system of r.t. extensions of v to $K\left(x_{1}, \ldots, x_{n}\right)$, where w_{i} is defined as in (4), i.e., w_{i} is the common extension of $w_{i_{m}}$, where $w_{i_{m}}$ is the r.t. extension of v to $K\left(x_{m}\right)$ defined by the minimal pair $\left(a_{i_{m}}, \delta_{i_{m}}\right) \in \bar{K} \times G_{\bar{v}}$, where $\left[K\left(a_{i_{1}}, \ldots, a_{i_{n}}\right): K\right]=\prod_{m=1}^{n}\left[K\left(a_{i_{m}}\right): K\right]$ for all $i \in I$. If $w_{i} \leq w_{j}$ for all $i<j$, then $\left(w_{i}\right)_{i \in I}$ is an ordered system of r.t. extensions of v to $K\left(x_{1}, \ldots, x_{n}\right)$. Then the valuation w of $K\left(x_{1}, \ldots, x_{n}\right)$ defined as

$$
\begin{equation*}
w(F)=\sup _{i}\left(w_{i}(F)\right) \tag{5}
\end{equation*}
$$

for all $F \in K\left[x_{1}, \ldots, x_{n}\right]$ is an extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ and it is called a limit of the ordered system $\left(w_{i}\right)_{i \in I}$.

If w_{m} is the restriction of w to $K\left(x_{m}\right)$ for $m=1, \ldots, n$, then w_{m} is the limit of the ordered system $\left(w_{i_{m}}\right)_{i \in I}$ of r.t. extensions of v to $K\left(x_{m}\right)$. Also, w is the common extension of w_{1}, \ldots, w_{n} to $K\left(x_{1}, \ldots, x_{n}\right)$. Since w_{m} may not be an r.t. extension of v to $K\left(x_{m}\right)$, then w may not be an r.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$.
If $w=\sup _{i} w_{i}$ is a residual algebraic torsion extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$, then $G_{v} \subseteq$ $G_{w} \subseteq G_{\bar{v}}$ is satisfied. Some other properties of w are studied below.
Denote the extension of w_{i} to $\bar{K}\left(x_{1}, \ldots, x_{n}\right)$ by \bar{w}_{i} and the extension of $w_{i_{m}}$ to $\bar{K}\left(x_{m}\right)$ by $\bar{w}_{i_{m}}$ for $m=1, \ldots, n$ and for all $i \in I$.

Theorem 3.1 Let $\left(\bar{w}_{i}\right)_{i \in I}$ be an ordered system of r.t. extensions of \bar{v} to $\bar{K}\left(x_{1}, \ldots, x_{n}\right)$, where \bar{w}_{i} is defined as in (4), i.e., w_{i} is the r.t. extension of v to $\bar{K}\left(x_{1}, \ldots, x_{n}\right)$ which is the common extension of $w_{i_{m}}$ for $m=1, \ldots, n$ and for all $i \in I$. Denote the restriction of \bar{w}_{i} to $K\left(x_{1}, \ldots, x_{n}\right)$ by w_{i} and the restriction of \bar{v} to $K\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$ by $v_{i}=v_{a_{i_{1}} \cdots a_{i_{n}}}$. Then

1. For all $i, j \in I, i<j$, one has $w_{i}<w_{j}$, i.e., $\left(w_{i}\right)_{i \in I}$ is an ordered system of r.t. extensions of v to $K\left(x_{1}, \ldots, x_{n}\right)$.
2. For all $i, j \in I, i<j$, one has $k_{v_{i}} \subseteq k_{v_{j}}$ and $G_{v_{i}} \subseteq G_{v_{j}}$.
3. Suppose that $\bar{w}=\sup _{i} \bar{w}_{i}$ and \bar{w} is not an r.t. extension of \bar{v} to $\bar{K}\left(x_{1}, \ldots, x_{n}\right)$ and denote that w is the restriction of \bar{w} to $K\left(x_{1}, \ldots, x_{n}\right)$. Then $w=\sup _{i} w_{i}$ and $k_{w}=\bigcup_{i} k_{v_{i}}$ and $G_{w}=\bigcup_{i} G_{v_{i}}$.

Proof For every $i \in I$ and $m=1, \ldots, n$, denote that $f_{i_{m}}=\operatorname{Irr}\left(a_{i_{m}}, K\right)$ and $\operatorname{deg}_{x_{m}} f_{i_{m}}=n_{i_{m}}$.

1. Since $\bar{w}_{i}<\bar{w}_{j}$ for all $i, j \in I, i<j$, we have $w_{i} \leq w_{j}$. We show that $w_{i}<w_{j}$. Assume that $w_{i}=w_{j}$. Since w_{i} is the common extension of $w_{i_{m}}$ and w_{j} is the common extension of $w_{j_{m}}$ for $m=1, \ldots, n$, we have $w_{i_{m}}=w_{j_{m}}$ for $m=1, \ldots, n$. Since $\left(a_{i_{m}}, \delta_{i_{m}}\right)$ is a minimal pair of the definition of $w_{i_{m}}$, we have $\delta_{i_{m}}=\delta_{j_{m}}$ for $m=1, \ldots, n$. But it is a contradiction, because $\left(\bar{w}_{i_{m}}\right)_{i \in I}$ is an ordered system of r.t. extensions of \bar{v} to $\bar{K}\left(x_{m}\right)$ and so $\bar{w}_{i_{m}}<\bar{w}_{j_{m}}$, i.e., $\delta_{i_{m}}<\delta_{j_{m}}[3]$. Hence $w_{i_{m}}<w_{j_{m}}$ for $m=1, \ldots, n$. Since w_{i} and w_{j} are common extensions of $w_{i_{m}}$ and $w_{j_{m}}$ respectively for $m=1, \ldots, n$ and for all $i \in I$, it is concluded that $w_{i}<w_{j}$ for all $i<j$.
2. It is enough to study for $B=F\left(a_{i_{1}}, \ldots, a_{i_{n}}\right) \in K\left[a_{i_{1}}, \ldots, a_{i_{n}}\right]$, where
$F\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right], \operatorname{deg}_{x_{m}} F\left(x_{1}, \ldots, x_{n}\right)<n_{i_{m}}$.
It is seen that $v_{i}(B)=v_{i}\left(F\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)\right)=\bar{v}\left(F\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)\right)=v_{j}\left(F\left(a_{j_{1}}, \ldots, a_{j_{n}}\right)\right)=v_{j}(B)$ by using the [3, Th. 2.3] and this gives $G_{\nu_{i}} \subseteq G_{v_{j}}$.
Assume that $v_{i}(B)=0$. Then $v_{j}(B)=0$. Since $\left(a_{i_{m}}, \delta_{i_{m}}\right)$ is a minimal pair of the definition of $w_{i_{m}}$ for $m=1, \ldots, n$, we have $B^{*}=F\left(a_{i_{1}}, \ldots, a_{i_{m-1}}, x_{m}, a_{i_{m+1}}, \ldots, a_{i_{n}}\right)^{*}=F\left(a_{i_{1}}, \ldots, a_{i_{m-1}}, a_{i_{m}}, a_{i_{m+1}}, \ldots, a_{i_{n}}\right)^{*} \in k_{v_{i}}$ coincides with the $F\left(a_{j_{1}}, \ldots, a_{j_{m-1}}, a_{j_{m}}, a_{j_{m+1}}, \ldots, a_{j_{n}}\right)^{*}$ which is the residue of B in $k_{\nu_{j}}$. Hence $k_{\nu_{i}} \subseteq k_{\nu_{j}}$ for all $i, j \in I, i<j$.
3. Since $\bar{w}=\sup _{i} \bar{w}_{i}$, we have $w=\sup _{i} w_{i}$ and w is not an r.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$. Using [3, Th. 2.3] and the definition of $w_{i_{m}}$, the proof can be completed. Take $F\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right]$ such that $\operatorname{deg}_{x_{m}} F<n_{i_{m}}$. Since $\left(a_{i_{m}}, \delta_{i_{m}}\right)$ is a minimal pair of the definition of $w_{i_{m}}$,
$\bar{w}\left(F\left(x_{1}, \ldots, x_{n}\right)\right)=w\left(F\left(x_{1}, \ldots, x_{n}\right)\right)=\bar{v}\left(F\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)\right)=v_{i}\left(F\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)\right)$. This means that $G_{\nu_{i}} \subseteq G_{w}$ for all $i \in I$ and so $\bigcup_{i} G_{v_{i}} \subseteq G_{w}$.
Conversely, let v_{i}^{m} be the restriction of \bar{w}_{i} to $K\left(a_{i_{1}}, \ldots, a_{i_{m-1}}, x_{m}, a_{i_{m+1}}, \ldots, a_{i_{n}}\right)$ for $m=1, \ldots, n$ and for all $i \in I$. Since
$v_{i}^{m}\left(P\left(a_{i_{1}}, \ldots, a_{i_{m-1}}, x_{m}, a_{i_{m+1}}, \ldots, a_{i_{n}}\right)\right)=v_{i}\left(P\left(a_{i_{1}}, \ldots, a_{i_{m}}, \ldots, a_{i_{n}}\right)\right)$, then
$w\left(P\left(x_{1}, \ldots, x_{n}\right)\right)=v_{i}\left(P\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)\right) \in G_{v_{i}}$ for every $P\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right]$. This
gives $G_{w} \subseteq \bigcup_{i} G_{v_{i}}$.

Now, assume that $\bar{v}\left(F\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)\right)=v_{i}\left(F\left(a_{i_{1}}, \ldots, a_{i_{m}}\right)\right)=0$. Then $w\left(F\left(x_{1}, \ldots, x_{n}\right)\right)=0$ and since $\operatorname{deg}_{x_{m}} F\left(x_{1}, \ldots, x_{n}\right)<n_{i_{m}}, F\left(a_{1}, \ldots, a_{n}\right)^{*}$, which is v_{i}-residue of $F\left(x_{1}, \ldots, x_{n}\right)$, coincides with the residue of $F\left(x_{1}, \ldots, x_{n}\right)$ in k_{w}. This shows $k_{v_{i}} \subseteq k_{w}$ for all $i \in I$, and then $\bigcup_{i} k_{v_{i}} \subseteq k_{w}$.
For the reverse inclusion, let $P\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right]$ and $w\left(P\left(x_{1}, \ldots, x_{n}\right)\right)=0$.
For $m=1, \ldots, n, P\left(a_{i_{1}}, \ldots, a_{i_{m-1}}, x_{m}, a_{i_{m+1}}, \ldots, a_{i_{n}}\right)^{*}$ is equal to $P\left(a_{i_{1}}, \ldots, a_{i_{m-1}}, a_{i_{m}}, a_{i_{m+1}}, \ldots, a_{i_{n}}\right)^{*} \in k_{v_{i}}$ and so $P\left(x_{1}, \ldots, x_{n}\right)^{*}=P\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)^{*} \in k_{v_{i}}$. Hence $k_{w} \subseteq \bigcup_{i} k_{v_{i}}$.

The following theorem can be obtained as a result of Theorem 3.1.

Corollary 3.2 Under the above notations, let w be an r.a.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$. Then the following are satisfied:

1. $G_{v_{i}} \subseteq G_{v_{j}}$ and $k_{v_{i}} \subseteq k_{v_{j}}$ for all $i, j \in I, i<j$.
2. $\left(w_{i}\right)_{i \in I}$ is an ordered system of r.t. extensions of v to $K\left(x_{1}, \ldots, x_{n}\right)$ and $w=\sup _{i} w_{i}$.

Moreover, we have $k_{w}=\bigcup_{i} k_{v_{i}}$ and $G_{w}=\bigcup_{i} G_{v_{i}}$.

Proof If w is an r.a.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$, then \bar{w} is an r.a.t. extension \bar{v} to $\bar{K}\left(x_{1}, \ldots, x_{n}\right)$ and so \bar{w}_{m} is an r.a.t. extension of \bar{v} to $\bar{K}\left(x_{m}\right)$ for $m=1, \ldots, n$. We can take $\left\{\delta_{i_{m}}\right\}_{i \in I}$ for $m=1, \ldots, n$ as co-final well-ordered subsets of $M_{\bar{w}_{m}}=\left\{\bar{w}\left(x_{m}-a\right) \mid a \in \bar{K}\right\}$. I has no last element because \bar{w}_{m} is not an r.t. extension of \bar{v}. For every $i \in I$, choose the element $\left(a_{i_{m}}, \delta_{i_{m}}\right) \in \bar{K} \times G_{\bar{v}}$ such that for $m=1, \ldots, n, \bar{w}\left(x_{m}-a_{i_{m}}\right)=\delta_{i_{m}}$ and $\left[K\left(a_{i_{m}}\right): K\right]$ is the smallest possible for $\delta_{i_{m}}$. This means that if $c_{m} \in \bar{K}$ such that $\bar{w}\left(x_{m}-c_{m}\right)=\delta_{i_{m}}$, then $\left[K\left(c_{m}\right): K\right] \geq\left[K\left(a_{i_{m}}\right): K\right]$. Then $\left(a_{i_{m}}, \delta_{i_{m}}\right)$ is a minimal pair of the definition of $\bar{w}_{i_{m}}$ with respect to K for $m=1, \ldots, n$. According to [3, Th. 4.1], $\bar{w}_{i_{m}}<\bar{w}_{j_{m}}$ if $i<j$, which means that $\left(\bar{w}_{i_{m}}\right)_{i \in I}$ is an ordered system of r.t. extensions of \bar{v} to $\bar{K}\left(x_{m}\right)$ for $m=1, \ldots, n$ and $\left(\bar{w}_{i_{m}}\right)_{i \in I}$ has a limit $\bar{w}_{m}=\sup _{i} \bar{w}_{i_{m}}$ which is an r.a.t extension of v to $\bar{K}\left(x_{m}\right)$. For all $i \in I$, take \bar{w}_{i} as the common extension of $\bar{w}_{i_{m}}$ to $K\left(x_{1}, \ldots, x_{n}\right)$ and \bar{w} as the common extension of \bar{w}_{m} to $\bar{K}\left(x_{1}, \ldots, x_{n}\right)$ for $m=1, \ldots, n$. Denote the restriction of \bar{w}_{i} to $K\left(x_{1}, \ldots, x_{n}\right)$ by w_{i} and denote the restriction of \bar{w} to $K\left(x_{1}, \ldots, x_{n}\right)$ by w. In the same way as that in the proof of Theorem 3.1, it is seen that $w_{i}<w_{j}$ for $i, j \in I, i<j$ and $w_{i}<w$ for all $i \in I$ and $w=\sup _{i} w_{i}$. Moreover, $k_{w}=\bigcup_{i} k_{v_{i}}$ and $G_{w}=\bigcup_{i} G_{v_{i}}$ are satisfied.

4 Existence of r.a.t. extensions of valuations of K to $K\left(x_{1}, \ldots, x_{n}\right)$ with given residue field and value group

It can be concluded from section three and from [3] that if w is an r.a.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$, then k_{w} / k_{v} is a countable generated infinite algebraic extension and G_{w} / G_{v} is a countable infinite torsion group. In this section, the converse is studied.

Theorem 4.1 Let k / k_{v} be a countably generated infinite algebraic extension and G be an ordered group such that $G_{v} \subset G$ and G / G_{v} is a countably infinite torsion group. Then there exists an r.a.t. extension w of v to $K\left(x_{1}, \ldots, x_{n}\right)$ such that $k_{w} \cong k$ and $G_{w} \cong G$.

Proof Since $k_{\bar{v}}$ is the algebraic closure of k_{v}, we have $k_{v} \subseteq k \subseteq k_{\bar{v}}$. Since k / k_{v} is countably generated, there exists a tower of fields $k_{v} \subseteq k_{1} \subseteq k_{2} \subseteq \cdots$ such that $\bigcup_{s} k_{s}=k$, and since G / G_{ν} is a countable torsion group, there exists a sequence of subgroups of G such that $G_{v}=$ $G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{s} \cdots \subset G, G_{s} \neq G_{s+1}, G_{s} / G_{v}$ is finite for all s and that $\bigcup_{s} G_{s}=G$. According to [6, Th. 3.2], there exists an r.t. extension u_{s} of v to $K\left(x_{1}, \ldots, x_{n}\right)$ such that trans deg $k_{u_{s}} / k_{v}=n$, the algebraic closure of k_{v} in $k_{u_{s}}$ is $k_{s}, G_{u_{s}}=G_{s}$ and if $m \neq m^{\prime}$, then the restriction of u_{s} to $K\left(x_{m}, x_{m^{\prime}}\right)$ is not the Gauss extension of the restriction of u_{s} to $K\left(x_{m}\right)$ for $m, m^{\prime}=1, \ldots, n$ and for all $s . k_{u_{s}}=k_{s}\left(z_{1}, \ldots, z_{n}\right)$, where z_{m} is transcendental over k_{s} for $m=$ $1, \ldots, n$ and for all s. Denote the restriction of u_{s} to $K\left(x_{m}\right)$ by $u_{s_{m}}$ and the algebraic closure of k_{v} in $k_{u_{s_{m}}}$ by $k_{s_{m}}$ for $m=1, \ldots, n$ and for all s. Then $k_{u_{s m}}=k_{s_{m}}\left(z_{m}\right), z_{m}$ is transcendental over $k_{s_{m}}$ for $m=1, \ldots, n$ and for all s.
Then $k_{v} \subseteq k_{1_{m}} \subseteq k_{2_{m}} \subseteq \cdots \subseteq k_{s_{m}} \subseteq \cdots$ is the tower of finite extensions of k_{v} for $m=$ $1, \ldots, n$. Denote $G_{u_{s m}}=G_{s_{m}} . G_{v} \subset G_{1_{m}} \subset G_{2_{m}} \subset \cdots \subset G_{s_{m}} \subset \cdots \subset G$ is the sequence of subgroups of G such that $G_{s_{m}} \neq G_{(s+1)_{m}}$ and $G_{s_{m}} / G_{v}$ is finite for all s and for $m=1, \ldots, n$. Then there exists an r.a.t. extension w_{m} of v to $K\left(x_{m}\right)$ such that $k_{w_{m}} \cong \bigcup_{s} k_{s_{m}}$ and $G_{w_{m}} \cong$ $\bigcup_{s} G_{s_{m}}[3]$.

It means that $w_{m}=\sup _{s}\left(u_{s_{m}}\right)$. Since $x_{1}, x_{2}, \ldots, x_{n}$ are algebraic independent over K, $k_{w_{1}} k_{w_{2}} / k_{w_{1}}$ is a countable generated infinite algebraic extension and $\left\langle G_{w_{1}} \cup G_{w_{2}}\right\rangle / G_{w_{1}}$ is a countable torsion group. Hence there exists an r.a.t. extension v_{2} of $w_{1}=v_{1}$ to $K\left(x_{1}, x_{2}\right)$ such that $k_{v_{2}} \cong k_{w_{1}} k_{w_{2}}$ and $G_{v_{2}} \cong\left\langle G_{w_{1}} \cup G_{w_{2}}\right\rangle$. Using the induction on n, it is obtained that there exits an r.a.t. extension $v_{n}=w$ of v_{n-1} of $K\left(x_{1}, \ldots, x_{n-1}\right)$ to $K\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
k_{w}=k_{v_{n}} \cong k_{w_{1}} \cdots k_{w_{n}}=\left\langle k_{w_{1}} \cup \cdots \cup k_{w_{n}}\right\rangle=\left\langle\bigcup_{m=1}^{n}\left(\bigcup_{s} k_{u_{s} m}\right)\right\rangle=\bigcup_{s} k_{u_{s}}
$$

and

$$
G_{w}=G_{v_{n}} \cong\left\langle G_{w_{1}} \cup \cdots \cup G_{w_{n}}\right\rangle=\left\langle\bigcup_{m=1}^{n}\left(\bigcup_{s} G_{u_{s_{m}}}\right)\right\rangle=\bigcup_{s} G_{u_{s}} .
$$

Since v_{i} is an r.a.t. extension of v_{i-1} for $i=1, \ldots, n$, then $v_{n}=w$ is an r.a.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$.

Theorem 4.2 Let k / k_{v} be a finite extension, G be an ordered group such that $G_{v} \subset G$ and G / G_{v} is finite. Assume that $\operatorname{tr} \operatorname{deg} \tilde{K} / K>0$. Then there exists an r.a.t. extension of v to $K\left(x_{1}, \ldots, x_{n}\right)$ such that $k_{w} \cong k$ and $G_{w} \cong G$.

Proof Since k / k_{v} is a finite extension, it can be written that $k=k_{v}\left(b_{1}, \ldots, b_{t}\right)$, where b_{r} is algebraic over k_{v} for $r=1, \ldots, t$. It can be taken $t \geq n$, because if $t<n, n-t$ elements can be chosen as equal. Since G / G_{v} is finite, there exists a sequence of subgroups of G such that $G_{v}=H_{0} \subset H_{1} \subset \cdots \subset H_{n}=G$ and H_{r+1} / H_{r} is finite for $r=1, \ldots, n-1$.

Hence there exists an r.a.t. extension w_{1} of v to $K\left(x_{1}\right)$ such that $k_{w_{1}} \cong k_{v}\left(b_{1}\right)$ and $G_{w_{1}} \cong H_{1}$ [3]. Let \tilde{K} be the completion of K with respect to v and \tilde{v} be the extension of v to \tilde{K}. According to [7, Prop. 1], the completion of $K\left(x_{1}\right)$ with respect to w_{1} is isomorphic to a field belonging to $F_{c}(\tilde{\Omega} / \tilde{K})$, where $\tilde{\Omega}$ is the completion of the algebraic closure Ω of \tilde{K} with respect to the unique extension of $\overline{\tilde{v}}$ to Ω and $F_{c}(\tilde{\Omega} / \tilde{K})$ is the set of complete fields L such that $\tilde{K} \subseteq L \subseteq \tilde{\Omega}$. Moreover, since $\operatorname{tr} \operatorname{deg} \tilde{K} / K>0$, there exists an element $\tilde{a} \in \tilde{K}$
which is transcendental over K. That is, there exists a Cauchy sequence $\left\{a_{i}\right\}_{i \in I} \subseteq K$ which converges to \tilde{a}.
Therefore if we denote the completion of $K\left(x_{1}\right)$ with respect to w_{1} by $K\left(x_{1}\right)$, then $\operatorname{tr} \operatorname{deg} K\left(x_{1}\right) / K\left(x_{1}\right)>0$. Also, H_{2} / H_{1} is finite, then there exists an r.a.t. extension w_{2} of w_{1} to $K\left(x_{1}, x_{2}\right)$ such that $k_{w_{2}} \cong k_{v}\left(b_{1}, b_{2}\right)$ and $G_{w_{2}} \cong H_{2}$. Using the induction, it is obtained that there exists an r.a.t. extension w_{n-1} of w_{n-2} on $K\left(x_{1}, \ldots, x_{n-2}\right)$ to $K\left(x_{1}, \ldots, x_{n-1}\right)$ such that its residue field is $k_{w_{n-1}}=k_{v}\left(b_{1}, \ldots, b_{n-1}\right)$ and its value group is $G_{w_{n-1}}=H_{n-1}$. Finally, there exists an r.a.t. extension $w=w_{n}$ of w_{n-1} to $K\left(x_{1}, \ldots, x_{n}\right)$ such that $k_{w} \cong k_{v}\left(b_{n}, \ldots, b_{t}\right)=k$ and $G_{w} \cong G$.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

Dedicated to Professor Hari M Srivastava.
Received: 11 December 2012 Accepted: 14 February 2013 Published: 5 March 2013

References

1. Alexandru, V, Popescu, N, Zaharescu, A: A theorem of characterization of residual transcendental extensions of a valuation. J. Math. Kyoto Univ. 24(8), 579-592 (1988)
2. Alexandru, V, Popescu, N, Zaharescu, A: Minimal pairs of definition of a residual transcendental extension of a valuation. J. Math. Kyoto Univ. 30(2), 207-225 (1990)
3. Alexandru, V, Popescu, N, Zaharescu, A: All valuations on K(x). J. Math. Kyoto Univ. 30(2), 281-296 (1990)
4. Öke, F: A residual transcendental extension of a valuation on K to $K\left(x_{1}, \ldots, x_{n}\right)$. Appl. Math. Comput. 218, 956-958 (2011)
5. Bourbaki, N: Algèbre commutative, pp. 375-471. Hermann, Paris (1964)
6. Öke, F: On extensions of valuations with given residue field and value group. Mathematika 55, 191-197 (2009)
7. Iovita, A, Zaharescu, A: Completions of r.a.t. valued fields of rational functions. J. Number Theory 50, 202-205 (1995)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: © 2013 Öke; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

