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Abstract
PSL(2,R) is the most frequently studied subgroup of the Möbius transformations. By
adding anti-automorphisms

G′ =
{a′z + b′

c′z + d′ : a
′,b′, c′,d′ ∈ R,a′d′ – b′c′ = –1

}

to the group PSL(2,R), the group G = PSL(2,R)∪ G′ is obtained. The elements of this
group correspond to matrices of GL(2,R). In this study, we consider the relationships
between fixed points of the elements of the group G and eigenvectors of matrices
corresponding to the elements of this group.
MSC: Primary 20H10; 15A18
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1 Introduction
Let C∞ =C∪{∞} be the extended complex plane. AMöbius transformation is a function
f of the form

f (z) =
az + b
cz + d

,

where a,b, c,d ∈C and ad – bc �= . Each Möbius transformation is a meromorphic bijec-
tion of C∞ onto itself and is called an automorphism of C∞.
Möbius transformations form a group with respect to composition. If T is a Möbius

transformation, then the composition T ◦R is called an anti-automorphism of C∞, where
R(z) = –z. The union of automorphisms and anti-automorphisms also form a group under
the composition of functions.
If coefficients of Möbius transformations are taken as real numbers, we obtain the most

frequently studied subgroup of this group:

PSL(,R) =
{
az + b
cz + d

: a,b, c,d ∈R,ad – bc = 
}
.

By adding anti-automorphismsG′ = { a′z+b′
c′z+d′ : a′,b′, c′,d′ ∈R,a′d′ – b′c′ = –} to the group

PSL(,R), the groupG = PSL(,R)∪G′ is obtained. The elements of this group correspond
to the matrices of GL(,R). If we take T(z) ∈ G, then T(z) has the matrix presentation
T = ±( a b

c d

) ∈GL(,R).
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The fixed points of automorphisms and anti-automorphisms of the extended complex
plane have especially been of great interest in many fields of mathematics, for example,
in number theory, functional analysis, theory of complex functions, geometry and group
theory (see [–] and references therein).
In [], Beardon gave some relationships between the fixed points of Möbius maps and

the lines of the eigenvectors of their corresponding matrices. So, these studies include the
transformations of PSL(,R). In this study, we investigate similar relationships for trans-
formations of G′. Thus we complete the problem for the group G.

2 Preliminaries
In this section we give brief information about complex lines and fixed points of the trans-
formations of G.

Definition  [] A complex line is a one-dimensional subspace of the vector space C,t of
complex column vectors (z, z)t . A complex line L is the set of complex scalar multiples
of some non-zero point in C

,t , and so it is of the form

L =
{
r
(
z
z

)
: r ∈C

}
.

If z �= , we can form the quotients rz
rz

of the coordinates of the non-zero points on the
line L in Definition  and the common value of all of these quotients is the slope z

z
of L.

The single complex line whose slope is not defined is

L(∞) =
{
r
(



)
: r ∈C

}
(.)

and, by convention, we say that this line has slope ∞. Given a complex number w, there is
a unique complex line L(w) with slope w, namely

L(w) =
{
r
(
w


)
: r ∈C

}
. (.)

Theorem  [] Let f be a Möbius map with corresponding matrix A. Then f (w) = w if and
only if L(w) is a line of eigenvectors of A.

Here we mention types of the elements in the groupG briefly. For each T ∈ G, the point
z ∈C∞ is called a fixed point ofT ifT(z) = z, and the trace ofT(z) is defined by tr(T) = a+d.
There is a relation between the fixed points and the trace of a transformation of G. Thus
we can determine fixed points location in C∞ with the trace.
If T(z) ∈ PSL(,R), then the number of fixed points of T(z) is at most two. Also, if
(i) | tr(T)| > , then there are two fixed points in R∪ {∞} and T(z) is called a

hyperbolic element.
(ii) | tr(T)| = , then there is one fixed point in R∪ {∞} and T(z) is called a parabolic

element.
(iii) | tr(T)| < , then there are two conjugate fixed points in C∪ {∞} and T(z) is called

an elliptic element.
If T(z) ∈G′ , then it has two fixed points or the set of fixed points is a circle. Also, if
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(iv) tr(T) �= , then there are two distinct fixed points on the R∪ {∞} and T(z) is called
a glide reflection.

(v) tr(T) = , then the set of the fixed points is a circle and T(z) is called a reflection.
For more information, one can consult the references [] and [].

Nowwe find the fixed points of the glide reflections and reflections in the groupG. Some
straightforward computations show that the fixed points of T(z) are

x, =
a – d ± √

(a + d) + 
c

(.)

and these points lie on R ∪ {∞} for any T(z) = az+b
cz+d ∈ G with tr(T) �= . For any T(z) =

az+b
cz+d ∈ G with tr(T) = , the fixed points of T(z) form a circle centered at M( ac , ) and of
radius r = 

|c| .

3 Eigenvectors of thematrices corresponding to the transformations in the
group G

IfT(z) ∈ PSL(,R), then the connection between fixed points ofT(z) and lines of eigenvec-
tors for the matrix T corresponding to T(z) is explained by Theorem . Now we consider
the transformations of the group G which belong to G′ .
Let T(z) ∈ G′ be any transformation with the corresponding matrix T = ±( a b

c d

) ∈
GL(,R). The characteristic polynomial for this matrix is

λ – (trT)λ –  = . (.)

We use the eigenvector representation
( k
k

)
for the matrix T . First we begin with the

glide reflections.

3.1 Glide reflections
We will show that the fixed points of a glide reflection T(z) correspond to the two lines
of eigenvectors for the matrix T corresponding to T(z). In the following two lemmas, we
determine the eigenvalues and eigenvectors of the matrices which correspond to the glide
reflections.

Lemma  Let the matrix T =
( a b
c d

)
correspond to any glide reflection. The eigenvalues of T

are

λ, =
a + d ± √

(a + d) + 


, (.)

and the eigenvectors of T are

(
k
k

)
=

( a–d±
√

(a+d)+
c r
r

)
. (.)

Proof It is easy to compute the eigenvalues by the condition a + d �=  and (.). For an
eigenvalue λ, we obtain the eigenvector by the following equation

(
a b
c d

)(
k
k

)
= λ

(
k
k

)
.
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Thus we have (a–λ)k + bk =  and ck + (d–λ)k = . If we choose k = r as a parameter,
we find the eigenvector as

( λ–d
c r
r

)
. Therefore we obtain the eigenvectors as

(
k
k

)
=

( a–d±
√

(a+d)+
c r
r

)
. �

Theorem Let T(z) be a glide reflectionmap in the group G with correspondingmatrix T .
Then T(w) = w if and only if L(w) is a line of eigenvectors of T .

Proof Let T(z) be a glide reflection map in the group G with a corresponding matrix T .

For glide reflections, the lines with slope w, where w = a–d±
√

(a+d)+
c is a fixed point of

T(z), are

L(w) =
{
r
( a–d±

√
(a+d)+
c


)
: r ∈C

}
. (.)

Then T maps L(w) to L(w′) if and only if T(w) = w′. Thus, w is a fixed point of T(z) if
and only if T maps L(w) to itself, and so if and only if each non-zero point on L(w) is an
eigenvector of T . �

Example  By (.) we find the fixed points of the glide reflectionT =
(  
 

)
as x = ±√

. By
(.) we find the eigenvalues as λ, = ±√

. Hence, by Lemma , we obtain the following
eigenvectors

(√
r
r

)
and

(
–
√
r
r

)

respectively. We have the slopes w =
√
 and w = –

√
.

3.2 Reflections
Recall that we have tr(T) =  for any reflection transformation.

Lemma  Let the matrix T =
( a b
c d

)
correspond to any reflection. The eigenvalues of T are

λ, = ±.

Proof By (.), if we use the condition tr(T) = , the result is obtained. �

First we begin the case c = . For this case, the set of fixed points is a circle with radius
∞ (that is, a line on the complex plane).

Lemma  Let the matrix T =
( a b
c d

)
correspond to any reflection with c = .We have

T =

(
 b
 –

)
or T =

(
– b
 

)
.

Proof The proof is easy by the facts that ad – bc = – (a,b, c,d ∈R) and tr(T) = . �
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Lemma 
(i) For the matrix T =

(  b
 –

)
, we have the eigenvalues λ =  and λ = – and the

eigenvectors

(
r


)
and

(
– b

 r
r

)
, (.)

respectively.
(ii) For the matrix T =

( – b
 

)
, we have the eigenvalues λ =  and λ = – and the

eigenvectors

( b
 r
r

)
and

(
r


)
, (.)

respectively.

Proof It is easy to compute the eigenvalues λ =  and λ = – by the condition a+d =  and
(.). For these eigenvalues, we obtain the eigenvectors by the following equation

(
 b
 –

)(
k
k

)
= λ

(
k
k

)
.

If we choose k = r as a parameter, we find the eigenvectors as
( r

)
and

(
– b
 r
r

)
. The second

part of the proof can be obtained similarly. �

In the first part of Lemma , we have the slopes as w = ∞ and w = – b
 . In the second

part, we have w = b
 and w = ∞.

Lemma 
(i) The matrix T =

(  b
 –

)
represents the reflection T(z) = z+b

– . The set of the fixed points
of this reflection is a circle with radius ∞, that is, the line x = – b

 .
(ii) The matrix T =

( – b
 

)
represents the reflection T(z) = –z + b. The set of the fixed

points of this reflection is the circle x = b
 .

Proof The proof follows by straightforward computations. �

In the following theorem, we explain the relationship between fixed points of the reflec-
tions with c =  and eigenvectors of the matrices corresponding to those reflections.

Theorem  Let T(z) be a reflection map in the group G with c =  and let T be the matrix
corresponding to T(z). Then L(∞) and L(± b

 ) are the lines of the eigenvectors of the matrix
T and the set of the fixed points of the reflection T(z) is the line x = ± b

 .

Proof The proof follows by Lemma , Lemma  and Lemma . �

Finally, we consider the reflections with c �= . Lemma  can be proven in a similar way
as Lemma .
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Lemma  Let the matrix T =
( a b
c d

)
correspond to any reflection with c �= . We have the

following eigenvectors for the eigenvalues λ =  and λ = –

( –d
c r
r

)
and

(
– d+

c r
r

)
, (.)

respectively.

In Lemma , we have the slopes as w = –d
c and w = – d+

c . In the following theorem, we
explain the relationship between the set of fixed points of the reflections with c �=  and
eigenvectors of matrices corresponding to those reflections.

Theorem  Let T(z) be a reflection map in the group G with c �=  and let T be the corre-
sponding matrix of T(z). If L(w) and L(w) are the lines of the eigenvectors of the matrix
T , then the set of the fixed points of the reflection T(z) is the circle centered at M(w+w

 , )
and of radius |w–w|

 .

Proof For the slopes w = –d
c and w = – d+

c , we have

w +w


=
a
c

and

|w –w|


=

|c| .

Then the proof follows by Lemma . �

Example  The fixed point set of the reflection T =
(  –
 –

)
is a circle. By Theorem , we

find the equation of this circle. By Lemma , eigenvectors of the matrix T are

(
r
r

)
and

(
r
r

)
.

Then we have w =  and w = . Thus the fixed point set is a circle centered at
M(w+w

 , ) =M(, ) and of radius |w–w|
 = |–|

 = .
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