RESEARCH

Fixed Point Theory and Applications a SpringerOpen Journal

Open Access

Approximating fixed points of α -nonexpansive mappings in uniformly convex Banach spaces and CAT(0) spaces

Eskandar Naraghirad¹, Ngai-Ching Wong^{2*} and Jen-Chih Yao^{3,4}

*Correspondence: wong@math.nsysu.edu.tw ²Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan Full list of author information is available at the end of the article

Abstract

An existence theorem for a fixed point of an α -nonexpansive mapping of a nonempty bounded, closed and convex subset of a uniformly convex Banach space has been recently established by Aoyama and Kohsaka with a non-constructive argument. In this paper, we show that appropriate Ishikawa iterate algorithms ensure weak and strong convergence to a fixed point of such a mapping. Our theorems are also extended to CAT(0) spaces.

AMS Subject Classification: 54E40; 54H25; 47H10; 37C25

Keywords: α -nonexpansive mapping; fixed point; Ishihawa iteration algorithm; uniformly convex Banach space; CAT(0) spaces

1 Introduction

The purpose of this paper is to study fixed point theorems of α -nonexpansive mappings of CAT(0) spaces. A metric space *X* is a CAT(0) space if it is geodesically connected, and if every geodesic triangle in *X* is at least as 'thin' as its comparison triangle in the Euclidean plane (see Section 4 for the precise definition). Our approach is to prove firstly weak and strong convergence theorems for Ishikawa iterations of α -nonexpansive mappings in uniformly convex Banach spaces. Then, we extend the results to CAT(0) spaces.

Here are the details. Let *E* be a (real) Banach space and let *C* be a nonempty subset of *E*. Let $T : C \to E$ be a mapping. Denote by F(T) the set of fixed points of *T*, *i.e.*, $F(T) = \{x \in C : Tx = x\}$. We say that *T* is *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for all *x*, *y* in *C*, and that *T* is *quasi-nonexpansive* if $F(T) \neq \emptyset$ and $||Tx - y|| \le ||x - y||$ for all *x* in *C* and *y* in *F*(*T*).

The concept of nonexpansivity of a map *T* from a convex set *C* into *C* plays an important role in the study of the *Mann-type iteration* given by

$$x_{n+1} = \beta_n T x_n + (1 - \beta_n) x_n, \quad x_1 \in C.$$
(1.1)

Here, $\{\beta_n\}$ is a real sequence in [0,1] satisfying some appropriate conditions, which is usually called a *control sequence*. A more general iteration scheme is the *Ishikawa iteration* given by

$$\begin{cases} y_n = \beta_n T x_n + (1 - \beta_n) x_n, \\ x_{n+1} = \gamma_n T y_n + (1 - \gamma_n) x_n, \end{cases}$$
(1.2)

© 2013 Naraghirad et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

where the sequences { β_n } and { γ_n } satisfy some appropriate conditions. In particular, when all $\beta_n = 0$, the Ishikawa iteration (1.2) becomes the standard Mann iteration (1.1). Let *T* be nonexpansive and let *C* be a nonempty closed and convex subset of a uniformly convex Banach space *E* satisfying the Opial property. Takahashi and Kim [1] proved that, for any initial data x_1 in *C*, the sequence { x_n } of iterations defined by the Ishikawa iteration (1.2) converges weakly to a fixed point of *T*, with appropriate choices of control sequences { β_n } and { γ_n }.

Following Aoyama and Kohsaka [2], a mapping $T: C \to E$ is said to be α -nonexpansive for some real number $\alpha < 1$ if

$$||Tx - Ty||^{2} \le \alpha ||Tx - y||^{2} + \alpha ||Ty - x||^{2} + (1 - 2\alpha) ||x - y||^{2}, \quad \forall x, y \in C.$$

Clearly, 0-nonexpansive maps are exactly nonexpansive maps. Moreover, *T* is Lipschitz continuous whenever $\alpha \leq 0$. An example of a discontinuous α -nonexpansive mapping (with $\alpha > 0$) has been given in [2]. See also Example 3.6(b).

An existence theorem for a fixed point of an α -nonexpansive mapping T of a nonempty bounded, closed and convex subset C of a uniformly convex Banach space E has been recently established by Aoyama and Kohsaka [2] with a non-constructive argument. In Section 3, we show that, under mild conditions on the control sequences $\{\beta_n\}$ and $\{\gamma_n\}$, the fixed point set F(T) is nonempty if and only if the sequence $\{x_n\}$ obtained by the Ishikawa iteration (1.2) is bounded and $\liminf_{n\to\infty} ||Tx_n - x_n|| = 0$. In this case, $\{x_n\}$ converges weakly or strongly to a fixed point of T.

In Section 5, we establish the existence result of an α -nonexpansive mapping in a CAT(0)-space in parallel to [2]. We then extend the convergence theorems obtained in Section 3 to the case of CAT(0) spaces, as we planned.

2 Preliminaries

Let *E* be a (real) Banach space with the norm $\|\cdot\|$ and the dual space E° . Denote by $x_n \to x$ the strong convergence of a sequence $\{x_n\}$ to *x* in *E* and by $x_n \to x$ the weak convergence. The modulus δ of the convexity of *E* is defined by

$$\delta(\epsilon) = \inf\left\{1 - \frac{\|x + y\|}{2} : \|x\| \le 1, \|y\| \le 1, \|x - y\| \ge \epsilon\right\}$$

for every ϵ with $0 \le \epsilon \le 2$. A Banach space *E* is said to be *uniformly convex* if $\delta(\epsilon) > 0$ for every $0 < \epsilon \le 2$. Let $S = \{x \in E : ||x|| = 1\}$. The norm of *E* is said to be *Gâteaux differentiable* if for each *x*, *y* in *S*, the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{2.1}$$

exists. In this case, *E* is called *smooth*. If the limit (2.1) is attained uniformly in *x*, *y* in *S*, then *E* is called *uniformly smooth*. A Banach space *E* is said to be *strictly convex* if $\|\frac{x+y}{2}\| < 1$ whenever $x, y \in S$ and $x \neq y$. It is well-known that *E* is uniformly convex if and only if E^* is uniformly smooth. It is also known that if *E* is reflexive, then *E* is strictly convex if and only if E^* is smooth; for more details, see [3].

A Banach space *E* is said to satisfy the *Opial property* [4] if, for every weakly convergent sequence $x_n \rightharpoonup x$ in *E*, we have

$$\limsup_{n\to\infty} \|x_n - x\| < \limsup_{n\to\infty} \|x_n - y\|$$

for all *y* in *E* with $y \neq x$. It is well known that all Hilbert spaces, all finite dimensional Banach spaces and the Banach spaces l^p $(1 \le p < \infty)$ satisfy the Opial property, while the uniformly convex spaces $L_p[0, 2\pi]$ $(p \neq 2)$ do not; see, for example, [4–6].

Let $\{x_n\}$ be a bounded sequence in a Banach space *E*. For any *x* in *E*, we set

$$r(x, \{x_n\}) = \limsup_{n \to \infty} ||x - x_n||.$$

The *asymptotic radius* of $\{x_n\}$ relative to a nonempty closed and convex subset *C* of *E* is defined by

$$r(C, \{x_n\}) = \inf\{r(x, \{x_n\}) : x \in C\}.$$

The *asymptotic center* of $\{x_n\}$ relative to *C* is the set

$$A(C, \{x_n\}) = \{x \in C : r(x, \{x_n\}) = r(C, \{x_n\})\}.$$

It is well known that if *E* is uniformly convex, then $A(C, \{x_n\})$ consists of exactly one point; see [7, 8].

Lemma 2.1 Let C be a nonempty subset of a Banach space E. Let $T : C \to E$ be an α -nonexpansive mapping for some $\alpha < 1$ such that $F(T) \neq \emptyset$. Then T is quasi-nonexpansive. Moreover, F(T) is norm closed.

Proof Let $x \in C$ and $z \in F(T)$. Then we have

$$\|Tx - z\|^{2} = \|Tx - Tz\|^{2}$$

$$\leq \alpha \|Tx - z\|^{2} + \alpha \|Tz - x\|^{2} + (1 - 2\alpha) \|x - z\|^{2}$$

$$= \alpha \|Tx - z\|^{2} + \alpha \|z - x\|^{2} + (1 - 2\alpha) \|x - z\|^{2}$$

$$= \alpha \|Tx - z\|^{2} + (1 - \alpha) \|x - z\|^{2}.$$

Therefore,

$$||Tx - z|| \le ||x - z||.$$

This inequality ensures the closedness of F(T).

Lemma 2.2 Let C be a nonempty subset of a Banach space E. Let $T : C \to E$ be an α -nonexpansive mapping for some $\alpha < 1$. Then the following assertions hold.

$$\|x - Ty\|^{2} \leq \frac{1 + \alpha}{1 - \alpha} \|x - Tx\|^{2} + \frac{2}{1 - \alpha} (\alpha \|x - y\| + \|Tx - Ty\|) \|x - Tx\| + \|x - y\|^{2},$$

$$\forall x, y \in C.$$

(ii) If $\alpha < 0$, then

$$\|x - Ty\|^{2} \le \|x - Tx\|^{2} + \frac{2}{1 - \alpha} \left[(-\alpha) \|Tx - y\| + \|Tx - Ty\| \right] \|x - Tx\| + \|x - y\|^{2},$$

$$\forall x, y \in C.$$

Proof (i) Observe

$$\begin{aligned} \|x - Ty\|^{2} &= \|x - Tx + Tx - Ty\|^{2} \\ &\leq \left(\|x - Tx\| + \|Tx - Ty\|\right)^{2} \\ &= \|x - Tx\|^{2} + \|Tx - Ty\|^{2} + 2\|x - Tx\|\|Tx - Ty\| \\ &\leq \|x - Tx\|^{2} + \alpha\|Tx - y\|^{2} + \alpha\|x - Ty\|^{2} + (1 - 2\alpha)\|x - y\|^{2} \\ &+ 2\|x - Tx\|\|Tx - Ty\| \\ &\leq \|x - Tx\|^{2} + \alpha(\|Tx - x\| + \|x - y\|)^{2} \\ &+ \alpha\|x - Ty\|^{2} + (1 - 2\alpha)\|x - y\|^{2} + 2\|x - Tx\|\|Tx - Ty\| \\ &\leq \|x - Tx\|^{2} + \alpha\|Tx - x\|^{2} + \alpha\|x - y\|^{2} \\ &+ 2\alpha\|Tx - x\|\|x - y\| + \alpha\|x - Ty\|^{2} \\ &+ (1 - 2\alpha)\|x - y\|^{2} + 2\|x - Tx\|\|Tx - Ty\| \\ &= (1 + \alpha)\|x - Tx\|^{2} + 2\alpha\|Tx - x\|\|x - y\| + \alpha\|x - Ty\|^{2} \\ &+ (1 - \alpha)\|x - y\|^{2} + 2\|x - Tx\|\|Tx - Ty\|. \end{aligned}$$

This implies that

$$\|x - Ty\|^{2} \leq \frac{1 + \alpha}{1 - \alpha} \|x - Tx\|^{2} + \frac{2}{1 - \alpha} (\alpha \|x - y\| + \|Tx - Ty\|) \|x - Tx\| + \|x - y\|^{2}.$$

(ii) Observe

$$\begin{aligned} \|x - Ty\|^2 &= \|x - Tx + Tx - Ty\|^2 \\ &\leq \left(\|x - Tx\| + \|Tx - Ty\|\right)^2 \\ &= \|x - Tx\|^2 + \|Tx - Ty\|^2 + 2\|x - Tx\|\|Tx - Ty\| \\ &\leq \|x - Tx\|^2 + \alpha\|Tx - y\|^2 + \alpha\|x - Ty\|^2 + (1 - 2\alpha)\|x - y\|^2 \\ &+ 2\|x - Tx\|\|Tx - Ty\| \\ &= \|x - Tx\|^2 + \alpha\|Tx - y\|^2 + \alpha\|x - Ty\|^2 \\ &+ (1 - \alpha)\|x - y\|^2 - \alpha\|x - y\|^2 + 2\|x - Tx\|\|Tx - Ty\| \end{aligned}$$

$$\leq \|x - Tx\|^{2} + \alpha \|Tx - y\|^{2} + \alpha \|x - Ty\|^{2} + (1 - \alpha)\|x - y\|^{2} - \alpha [\|x - Tx\|^{2} + \|Tx - y\|^{2} + 2\|x - Tx\|\|Tx - y\|] + 2\|x - Tx\|\|Tx - Ty\| = (1 - \alpha)\|x - Tx\|^{2} + \alpha \|x - Ty\|^{2} + (1 - \alpha)\|x - y\|^{2} - 2\alpha \|x - Tx\|\|Tx - y\| + 2\|x - Tx\|\|Tx - Ty\| = (1 - \alpha)\|x - Tx\|^{2} + \alpha \|x - Ty\|^{2} + (1 - \alpha)\|x - y\|^{2} + 2[(-\alpha)\|Tx - y\| + \|Tx - Ty\|]\|x - Tx\|.$$

This implies that

$$\|x - Ty\|^{2} \le \|x - Tx\|^{2} + \frac{2}{1 - \alpha} \left[(-\alpha) \|Tx - y\| + \|Tx - Ty\| \right] \|x - Tx\| + \|x - y\|^{2}.$$

Proposition 2.3 (Demiclosedness principle) Let C be a subset of a Banach space E with the Opial property. Let $T : C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. If $\{x_n\}$ converges weakly to z and $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$, then Tz = z. That is, I - T is demiclosed at zero, where I is the identity mapping on E.

Proof Since $\{x_n\}$ converges weakly to z and $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$, both $\{x_n\}$ and $\{Tx_n\}$ are bounded. Let $M_1 = \sup\{||x_n||, ||Tx_n||, ||z||, ||Tz|| : n \in \mathbb{N}\} < \infty$. If $0 \le \alpha < 1$, then in view of Lemma 2.2(i),

$$\begin{split} \|x_n - Tz\|^2 \\ &\leq \frac{1+\alpha}{1-\alpha} \|x_n - Tx_n\|^2 + \frac{2}{1-\alpha} (\alpha \|x_n - z\| + \|Tx_n - Tz\|) \|x_n - Tx_n\| + \|x_n - z\|^2 \\ &\leq \frac{1+\alpha}{1-\alpha} \|x_n - Tx_n\|^2 + \frac{4M_1(1+\alpha)}{1-\alpha} \|x_n - Tx_n\| + \|x_n - z\|^2. \end{split}$$

If α < 0, then in view of Lemma 2.2(ii),

$$||x_n - Tz||^2$$

$$\leq ||x_n - Tx_n||^2 + \frac{2}{1 - \alpha} [(-\alpha)||Tx_n - z|| + ||Tx_n - Tz||] ||x_n - Tx_n|| + ||x_n - z||^2$$

$$\leq ||x_n - Tx_n||^2 + 4M_1 ||x_n - Tx_n|| + ||x_n - z||^2.$$

These relations imply

$$\limsup_{n\to\infty} \|x_n - Tz\| \leq \limsup_{n\to\infty} \|x_n - z\|.$$

From the Opial property, we obtain Tz = z.

The following result has been proved in [9].

Lemma 2.4 Let r > 0 be a fixed real number. If E is a uniformly convex Banach space, then there exists a continuous strictly increasing convex function $g : [0, +\infty) \rightarrow [0, +\infty)$ with

g(0) = 0 such that

$$\|\lambda x + (1-\lambda)y\|^{2} \le \lambda \|x\|^{2} + (1-\lambda)\|y\|^{2} - \lambda(1-\lambda)g(\|x-y\|)$$

for all *x*, *y* in $B_r(0) = \{u \in E : ||u|| \le r\}$ and $\lambda \in [0,1]$.

Recently, Aoyama and Kohsaka [2] proved the following fixed point theorem for α -nonexpansive mappings of Banach spaces.

Lemma 2.5 Let C be a nonempty closed and convex subset of a uniformly convex Banach space E. Let $T : C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. Then the following conditions are equivalent.

- (i) There exists x in C such that $\{T^n x\}_{n=1}^{\infty}$ is bounded.
- (ii) $F(T) \neq \emptyset$.

3 Fixed point and convergence theorems in Banach spaces

Lemma 3.1 Let C be a nonempty closed and convex subset of a Banach space E. Let T : $C \rightarrow C$ be an α -nonexpansive mapping for some $\alpha < 1$. Let a sequence $\{x_n\}$ with x_1 in C be defined by the Ishikawa iteration (1.2) such that $\{\beta_n\}$ and $\{\gamma_n\}$ are arbitrary sequences in [0,1]. Suppose that the fixed point set F(T) contains an element z. Then the following assertions hold.

- (1) $\max\{\|x_{n+1} z\|, \|y_n z\|\} \le \|x_n z\|$ for all n = 1, 2, ...
- (2) $\lim_{n\to\infty} ||x_n z||$ exists.
- (3) $\lim_{n\to\infty} d(x_n, F(T))$ exists, where d(x, F(T)) denotes the distance from x to F(T).

Proof In view of Lemma 2.1, we conclude that

$$\|y_n - z\| = \|\beta_n T x_n + (1 - \beta_n) x_n - z\|$$

$$\leq \beta_n \|T x_n - z\| + (1 - \beta_n) \|x_n - z\|$$

$$\leq \beta_n \|x_n - z\| + (1 - \beta_n) \|x_n - z\|$$

$$= \|x_n - z\|.$$

Consequently,

$$\|x_{n+1} - z\| = \|\gamma_n T y_n + (1 - \gamma_n) x_n - z\|$$

$$\leq \gamma_n \|T y_n - z\| + (1 - \gamma_n) \|x_n - z\|$$

$$\leq \gamma_n \|y_n - z\| + (1 - \gamma_n) \|x_n - z\|$$

$$\leq \gamma_n \|x_n - z\| + (1 - \gamma_n) \|x_n - z\|$$

$$= \|x_n - z\|.$$

This implies that $\{||x_n - z||\}$ is a bounded and nonincreasing sequence. Thus, $\lim_{n\to\infty} ||x_n - z||$ exists.

In the same manner, we see that $\{d(x_n, F(T))\}$ is also a bounded nonincreasing real sequence, and thus converges.

Theorem 3.2 Let C be a nonempty closed and convex subset of a uniformly convex Banach space E. Let $T : C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. Let $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in [0,1] and let $\{x_n\}$ be a sequence with x_1 in C defined by the Ishikawa iteration (1.2).

- 1. If $\{x_n\}$ is bounded and $\liminf_{n\to\infty} ||Tx_n x_n|| = 0$, then the fixed point set $F(T) \neq \emptyset$.
- 2. Assume $F(T) \neq \emptyset$. Then $\{x_n\}$ is bounded, and the following hold.
 - Case 1: $0 < \alpha < 1$.
 - (a) $\liminf_{n\to\infty} ||Tx_n x_n|| = 0$ when $\limsup_{n\to\infty} \gamma_n(1 \gamma_n) > 0$.
 - (b) $\lim_{n\to\infty} ||Tx_n x_n|| = 0$ when $\liminf_{n\to\infty} \gamma_n(1 \gamma_n) > 0$.

Case 2: $\alpha \leq 0$.

(a) $\liminf_{n\to\infty} ||Tx_n - x_n|| = 0$ when

$$\begin{cases} \liminf_{n \to \infty} \gamma_n (1 - \gamma_n) > 0, \\ \inf_{n \to \infty} \beta_n < 1, \end{cases} \quad or \quad \begin{cases} \limsup_{n \to \infty} \gamma_n (1 - \gamma_n) > 0, \\ \limsup_{n \to \infty} \beta_n < 1. \end{cases}$$

(b) $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$ when $\liminf_{n\to\infty} \gamma_n(1 - \gamma_n) > 0$ and $\limsup_{n\to\infty} \beta_n < 1$.

Proof Assume that $\{x_n\}$ is bounded and $\liminf_{n\to\infty} ||Tx_n - x_n|| = 0$. There is a bounded subsequence $\{Tx_{n_k}\}$ of $\{Tx_n\}$ such that $\lim_{k\to\infty} ||Tx_{n_k} - x_{n_k}|| = 0$. Suppose $A(C, \{x_{n_k}\}) = \{z\}$. Let $M_1 = \sup\{||x_{n_k}||, ||Tx_{n_k}||, ||Tz|| : k \in \mathbb{N}\} < \infty$. If $0 \le \alpha < 1$, then, by Lemma 2.2(i), we have

$$\begin{split} \|x_{n_{k}} - Tz\|^{2} \\ &\leq \frac{1+\alpha}{1-\alpha} \|x_{n_{k}} - Tx_{n_{k}}\|^{2} + \frac{2}{1-\alpha} (\alpha \|x_{n_{k}} - z\| + \|Tx_{n_{k}} - Tz\|) \|x_{n_{k}} - Tx_{n_{k}}\| + \|x_{n_{k}} - z\|^{2} \\ &\leq \frac{1+\alpha}{1-\alpha} \|x_{n_{k}} - Tx_{n_{k}}\|^{2} + \frac{4M_{1}(1+\alpha)}{1-\alpha} \|Tx_{n_{k}} - x_{n_{k}}\| + \|x_{n_{k}} - z\|^{2}. \end{split}$$

This implies that

$$\begin{split} \limsup_{k \to \infty} \|x_{n_k} - Tz\|^2 \\ &\leq \frac{1 + \alpha}{1 - \alpha} \limsup_{k \to \infty} \|x_{n_k} - Tx_{n_k}\|^2 + \frac{4M_1(1 + \alpha)}{1 - \alpha} \limsup_{k \to \infty} \|Tx_{n_k} - x_{n_k}\| \\ &+ \limsup_{k \to \infty} \|x_{n_k} - z\|^2 \\ &= \limsup_{k \to \infty} \|x_{n_k} - z\|^2. \end{split}$$

If α < 0, then, by Lemma 2.2(ii), we have

$$\begin{aligned} \|x_{n_k} - Tz\|^2 \\ &\leq \|x_{n_k} - Tx_{n_k}\|^2 + \frac{2}{1-\alpha} \left((-\alpha) \|Tx_{n_k} - z\| + \|Tx_{n_k} - Tz\| \right) \|x_{n_k} - Tx_{n_k}\| + \|x_{n_k} - z\|^2 \\ &\leq \frac{1+\alpha}{1-\alpha} \|x_{n_k} - Tx_{n_k}\|^2 + \frac{4M_1(1+\alpha)}{1-\alpha} \|Tx_{n_k} - x_{n_k}\| + \|x_{n_k} - z\|^2. \end{aligned}$$

This implies again that

$$\begin{split} \limsup_{k \to \infty} \|x_{n_k} - Tz\|^2 \\ &\leq \frac{1+\alpha}{1-\alpha} \limsup_{k \to \infty} \|x_{n_k} - Tx_{n_k}\|^2 + \frac{4M_1(1+\alpha)}{1-\alpha} \limsup_{k \to \infty} \|Tx_{n_k} - x_{n_k}\| \\ &+ \limsup_{k \to \infty} \|x_{n_k} - z\|^2 \\ &= \limsup_{k \to \infty} \|x_{n_k} - z\|^2. \end{split}$$

Thus, we have in all cases

$$r(Tz, \{x_{n_k}\}) = \limsup_{n \to \infty} ||x_{n_k} - Tz||$$

$$\leq \limsup_{n \to \infty} ||x_{n_k} - z||$$

$$= r(z, \{x_{n_k}\}).$$

This means that $Tz \in A(C, \{x_{n_k}\})$. By the uniform convexity of *E*, we conclude that Tz = z.

Conversely, let $F(T) \neq \emptyset$ and let $z \in F(T)$. It follows from Lemma 3.1 that $\lim_{n\to\infty} ||x_n - z||$ exists and hence $\{x_n\}$ is bounded. In view of Lemmas 2.1 and 2.4, we obtain a continuous strictly increasing convex function $g : [0, +\infty) \rightarrow [0, +\infty)$ with g(0) = 0 such that

$$\begin{aligned} \|x_{n+1} - z\|^{2} &= \left\|\gamma_{n}Ty_{n} + (1 - \gamma_{n})x_{n} - z\right\|^{2} \\ &\leq \gamma_{n}\|Ty_{n} - z\|^{2} + (1 - \gamma_{n})\|x_{n} - z\|^{2} - \gamma_{n}(1 - \gamma_{n})g(\|Ty_{n} - x_{n}\|) \\ &\leq \gamma_{n}\|y_{n} - z\|^{2} + (1 - \gamma_{n})\|x_{n} - z\|^{2} - \gamma_{n}(1 - \gamma_{n})g(\|Ty_{n} - x_{n}\|) \\ &\leq \gamma_{n}\|x_{n} - z\|^{2} + (1 - \gamma_{n})\|x_{n} - z\|^{2} - \gamma_{n}(1 - \gamma_{n})g(\|Ty_{n} - x_{n}\|) \\ &= \|x_{n} - z\|^{2} - \gamma_{n}(1 - \gamma_{n})g(\|Ty_{n} - x_{n}\|). \end{aligned}$$
(3.1)

In view of (3.1), we conclude by applying Lemma 3.1 that

$$\gamma_n(1-\gamma_n)g\big(\|Ty_n-x_n\|\big) \leq \|x_n-z\|^2 - \|x_{n+1}-z\|^2$$

$$\to 0, \quad \text{as } n \to \infty.$$

It follows that

$$\liminf_{n\to\infty} g(\|Ty_n - x_n\|) = 0 \quad \text{whenever } \limsup_{n\to\infty} \gamma_n(1-\gamma_n) > 0$$

From the property of *g*, we deduce that

$$\liminf_{n \to \infty} \|Ty_n - x_n\| = 0 \quad \text{in case } \limsup_{n \to \infty} \gamma_n (1 - \gamma_n) > 0.$$
(3.2)

In the same manner, we also obtain that

$$\lim_{n \to \infty} \|Ty_n - x_n\| = 0 \quad \text{in case } \liminf_{n \to \infty} \gamma_n (1 - \gamma_n) > 0.$$
(3.3)

On the other hand, from (1.2) we get

$$Tx_n - y_n = (1 - \beta_n)(Tx_n - x_n), \qquad x_n - y_n = \beta_n(x_n - Tx_n).$$
(3.4)

Observing (3.4), we see that the assertions about the case $\alpha \leq 0$ follow from (3.2) and (3.3).

In what follows, we discuss the case $0 < \alpha < 1$. Assume first $\liminf_{n\to\infty} \gamma_n(1-\gamma_n) > 0$. By Lemma 2.1 and (3.3), we see that $M_2 := \sup\{\|Tx_n\|, \|Ty_n\| : n \in \mathbb{N}\} < \infty$. Since *T* is α -nonexpansive, in view of (3.4), we obtain

$$\|Tx_{n} - x_{n}\|^{2}$$

$$= \|Tx_{n} - Ty_{n} + Ty_{n} - x_{n}\|^{2}$$

$$\leq (\|Tx_{n} - Ty_{n}\| + \|Ty_{n} - x_{n}\|)^{2}$$

$$= \|Tx_{n} - Ty_{n}\|^{2} + \|Ty_{n} - x_{n}\|^{2} + 2\|Tx_{n} - Ty_{n}\|\|Ty_{n} - x_{n}\|$$

$$\leq \alpha \|Tx_{n} - y_{n}\|^{2} + \alpha \|Ty_{n} - x_{n}\|^{2} + (1 - 2\alpha)\|x_{n} - y_{n}\|^{2} + \|Ty_{n} - x_{n}\|^{2}$$

$$+ 4M_{2}\|Ty_{n} - x_{n}\|$$

$$\leq \alpha \|(1 - \beta_{n})(Tx_{n} - x_{n})\|^{2} + (\alpha + 1)\|Ty_{n} - x_{n}\|^{2} + (1 - 2\alpha)\|\beta_{n}(x_{n} - Tx_{n})\|^{2}$$

$$+ 4M_{2}\|Ty_{n} - x_{n}\|$$

$$\leq [\alpha(1 - \beta_{n})^{2} + (1 - 2\alpha)\beta_{n}^{2}]\|Tx_{n} - x_{n}\|^{2} + (\alpha + 1)\|Ty_{n} - x_{n}\|^{2}$$

$$+ 4M_{2}\|Ty_{n} - x_{n}\|.$$
(3.5)

Case (i): If $0 < \alpha < \frac{1}{2}$, then (3.5) becomes

$$\|Tx_n - x_n\|^2$$

$$\leq \left[\alpha(1 - \beta_n)^2 + (1 - 2\alpha)\beta_n^2\right] \|Tx_n - x_n\|^2 + (\alpha + 1)\|Ty_n - x_n\|^2 + 4M_2\|Ty_n - x_n\|$$

$$= (1 - \alpha)\|Tx_n - x_n\|^2 + (\alpha + 1)\|Ty_n - x_n\|^2 + 4M_2\|Ty_n - x_n\|,$$

since all β_n are in [0,1]. We then derive from (3.3) that

$$\|Tx_n - x_n\|^2 \le \frac{1+\alpha}{\alpha} \|Ty_n - x_n\|^2 + \frac{4M_2}{\alpha} \|Ty_n - x_n\| \to 0, \quad \text{as } n \to \infty.$$
(3.6)

Case (ii): If $\frac{1}{2} \le \alpha < 1$, then (3.5) becomes

$$\|Tx_n - x_n\|^2$$

$$\leq \left[\alpha(1 - \beta_n)^2 + (1 - 2\alpha)\beta_n^2\right] \|Tx_n - x_n\|^2 + (\alpha + 1)\|Ty_n - x_n\|^2 + 4M_2\|Ty_n - x_n\|$$

$$\leq \alpha \|Tx_n - x_n\|^2 + (\alpha + 1)\|Ty_n - x_n\|^2 + 4M_2\|Ty_n - x_n\|.$$

We then derive from (3.3) again that

$$\|Tx_n - x_n\|^2 \le \frac{1+\alpha}{1-\alpha} \|Ty_n - x_n\|^2 + \frac{4M_2}{1-\alpha} \|Ty_n - x_n\| \to 0, \quad \text{as } n \to \infty.$$
(3.7)

Finally, we assume $\limsup_{n\to\infty} \gamma_n(1-\gamma_n) > 0$ instead. By (3.2) we have subsequences $\{x_{n_k}\}$ and $\{y_{n_k}\}$ of $\{x_n\}$ and $\{y_n\}$, respectively, such that

$$\lim_{k\to\infty}\|Ty_{n_k}-x_{n_k}\|=0.$$

Replacing M_2 by the number $\sup\{||Tx_{n_k}||, ||Ty_{n_k}|| : k \in \mathbb{N}\} < \infty$ and dealing with the subsequences $\{x_{n_k}\}$ and $\{y_{n_k}\}$ in (3.6) and (3.7), we will arrive at the desired conclusion that $\lim_{k\to\infty} ||Tx_{n_k} - x_{n_k}|| = 0$. This gives $\liminf_{n\to\infty} ||Tx_n - x_n|| = 0$.

Theorem 3.3 Let C be a nonempty closed and convex subset of a uniformly convex Banach space E with the Opial property. Let $T : C \to C$ be an α -nonexpansive mapping with a nonempty fixed point set F(T) for some $\alpha < 1$. Let $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in [0,1] and let $\{x_n\}$ be a sequence with x_1 in C defined by the Ishikawa iteration (1.2).

Assume that $\liminf_{n\to\infty} \gamma_n(1-\gamma_n) > 0$, and assume, in addition, $\limsup_{n\to\infty} \beta_n < 1$ if $\alpha \leq 0$. Then $\{x_n\}$ converges weakly to a fixed point of T.

Proof It follows from Theorem 3.2 that $\{x_n\}$ is bounded and $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$. The uniform convexity of *E* implies that *E* is reflexive; see, for example, [3]. Then there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \rightarrow p \in C$ as $i \rightarrow \infty$. In view of Proposition 2.3, we conclude that $p \in F(T)$. We claim that $x_n \rightarrow p$ as $n \rightarrow \infty$. Suppose on the contrary that there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ of $\{x_n\}$ converging weakly to some *q* in *C* with $p \neq q$. By Proposition 2.3, we see that $q \in F(T)$. Lemma 3.1 says that $\lim_{n\to\infty} ||x_n - z||$ exists for all *z* in *F*(*T*). The Opial property then implies

$$\lim_{n \to \infty} \|x_n - p\| = \lim_{i \to \infty} \|x_{n_i} - p\| < \lim_{i \to \infty} \|x_{n_i} - q\|$$
$$= \lim_{n \to \infty} \|x_n - q\| = \lim_{j \to \infty} \|x_{n_j} - q\|$$
$$< \lim_{j \to \infty} \|x_{n_j} - p\| = \lim_{n \to \infty} \|x_n - p\|.$$

This is a contradiction. Thus p = q, and the desired assertion follows.

Theorem 3.4 Let C be a nonempty compact and convex subset of a uniformly convex Banach space E. Let $T : C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. Let $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in [0,1].

When $0 < \alpha < 1$, we assume $\limsup_{n\to\infty} \gamma_n(1-\gamma_n) > 0$. When $\alpha \le 0$, we assume either

 $\begin{cases} \liminf_{n \to \infty} \gamma_n (1 - \gamma_n) > 0, \\ \liminf_{n \to \infty} \beta_n < 1, \end{cases} \quad or \quad \begin{cases} \limsup_{n \to \infty} \gamma_n (1 - \gamma_n) > 0, \\ \limsup_{n \to \infty} \beta_n < 1. \end{cases}$

Let $\{x_n\}$ be a sequence with x_1 in C defined by the Ishikawa iteration (1.2). Then $\{x_n\}$ converges strongly to a fixed point z of T.

Proof Since *C* is bounded, it follows from Lemma 2.5 that the fixed point set F(T) of *T* is nonempty. In view of Theorem 3.2, the sequence $\{x_n\}$ is bounded and $\liminf_{n\to\infty} ||Tx_n - x_n|| = 0$. By the compactness of *C*, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converging strongly to some *z* in *C*, and $\lim_{k\to\infty} ||Tx_{n_k} - x_{n_k}|| = 0$. In particular, $\{Tx_{n_k}\}$ is bounded. Let

 $M_3 = \sup\{\|x_{n_k}\|, \|Tx_{n_k}\|, \|Z\|, \|TZ\| : k \in \mathbb{N}\} < \infty$. If $0 \le \alpha < 1$, then, in view of Lemma 2.2(i), we obtain

$$\begin{aligned} \|x_{n_{k}} - Tz\|^{2} \\ &\leq \frac{1+\alpha}{1-\alpha} \|x_{n_{k}} - Tx_{n_{k}}\|^{2} + \frac{2}{1-\alpha} (\alpha \|x_{n_{k}} - z\| + \|Tx_{n_{k}} - Tz\|) \|x_{n_{k}} - Tx_{n_{k}}\| + \|x_{n_{k}} - z\|^{2} \\ &\leq \frac{1+\alpha}{1-\alpha} \|x_{n_{k}} - Tx_{n_{k}}\|^{2} + \frac{4M_{3}(1+\alpha)}{1-\alpha} \|Tx_{n_{k}} - x_{n_{k}}\| + \|x_{n_{k}} - z\|^{2}. \end{aligned}$$

Therefore,

$$\begin{split} \limsup_{k \to \infty} \|x_{n_k} - Tz\|^2 \\ &\leq \frac{1+\alpha}{1-\alpha} \limsup_{k \to \infty} \|x_{n_k} - Tx_{n_k}\|^2 + \frac{4M_3(1+\alpha)}{1-\alpha} \limsup_{k \to \infty} \|Tx_{n_k} - x_{n_k}\| \\ &+ \limsup_{k \to \infty} \|x_{n_k} - z\|^2. \end{split}$$

If $\alpha < 0$, then, in view of Lemma 2.2(ii), we obtain

$$\begin{split} \|x_{n_k} - Tz\|^2 \\ &\leq \|x_{n_k} - Tx_{n_k}\|^2 + \frac{2}{1-\alpha} \Big[(-\alpha) \|Tx_{n_k} - z\| + \|Tx_{n_k} - Tz\| \Big] \|x_{n_k} - Tx_{n_k}\| + \|x_{n_k} - z\|^2 \\ &\leq \|x_{n_k} - Tx_{n_k}\|^2 + \frac{4M_3(1-\alpha)}{1-\alpha} \|Tx_{n_k} - x_{n_k}\| + \|x_{n_k} - z\|^2. \end{split}$$

Therefore,

$$\begin{split} \limsup_{k \to \infty} \|x_{n_k} - Tz\|^2 \\ \leq \limsup_{k \to \infty} \|x_{n_k} - Tx_{n_k}\|^2 + 4M_3 \limsup_{k \to \infty} \|Tx_{n_k} - x_{n_k}\| + \limsup_{k \to \infty} \|x_{n_k} - z\|^2. \end{split}$$

It follows that $\lim_{k\to\infty} ||x_{n_k} - Tz|| = 0$. Thus we have Tz = z. By Lemma 3.1, $\lim_{n\to\infty} ||x_n - z||$ exists. Therefore, z is the strong limit of the sequence $\{x_n\}$.

Let *C* be a nonempty closed and convex subset of a Banach space *E*. A mapping $T : C \rightarrow C$ is said to satisfy *condition* (I) [10] if

there exists a nondecreasing function $f:[0,\infty)\to [0,\infty)$ with f(0)=0 and f(r)>0 for all r>0 such that

$$d(x, Tx) \ge f(d(x, F(T))), \quad \forall x \in C.$$

Using Theorem 3.2, we can prove the following result.

Theorem 3.5 Let C be a nonempty closed and convex subset of a uniformly convex Banach space E. Let $T : C \rightarrow C$ be an α -nonexpansive mapping with a nonempty fixed point set

F(*T*) for some $\alpha < 1$. Let $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in [0,1]. When $0 < \alpha < 1$, we assume $\limsup_{n \to \infty} \gamma_n(1 - \gamma_n) > 0$. When $\alpha \le 0$, we assume either

$$\begin{cases} \liminf_{n \to \infty} \gamma_n (1 - \gamma_n) > 0, \\ \liminf_{n \to \infty} \beta_n < 1, \end{cases} \quad or \quad \begin{cases} \limsup_{n \to \infty} \gamma_n (1 - \gamma_n) > 0, \\ \limsup_{n \to \infty} \beta_n < 1. \end{cases}$$

Let $\{x_n\}$ be a sequence with x_1 in C defined by the Ishikawa iteration (1.2). If T satisfies condition (I), then $\{x_n\}$ converges strongly to a fixed point z of T.

Proof It follows from Theorem 3.2 that

$$\liminf_{n\to\infty}\|Tx_n-x_n\|=0.$$

Therefore, there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$\lim_{k\to\infty}\|Tx_{n_k}-x_{n_k}\|=0.$$

Since *T* satisfies condition (I), with respect to the sequence $\{x_{n_k}\}$, we obtain

$$\lim_{k\to\infty}d(x_{n_k},F(T))=0.$$

This implies that, there exist a subsequence of $\{x_{n_k}\}$, denoted also by $\{x_{n_k}\}$, and a sequence $\{z_k\}$ in F(T) such that

$$d(x_{n_k}, z_k) < \frac{1}{2^k}, \quad \forall k \in \mathbb{N}.$$
(3.8)

In view of Lemma 3.1, we have

$$||x_{n_{k+1}} - z_k|| \le ||x_{n_k} - z_k|| < \frac{1}{2^k}, \quad \forall k \in \mathbb{N}$$

This implies

$$\begin{aligned} \|z_{k+1} - z_k\| &\leq \|z_{k+1} - x_{n_{k+1}}\| + \|x_{n_{k+1}} - z_k\| \\ &\leq \frac{1}{2^{(k+1)}} + \frac{1}{2^k} \\ &< \frac{1}{2^{(k-1)}}, \quad \forall k = 1, 2, \dots. \end{aligned}$$

Consequently, $\{z_k\}$ is a Cauchy sequence in F(T). Due to the closedness of F(T) in E (see Lemma 2.1), we deduce that $\lim_{k\to\infty} z_k = z$ for some z in F(T). It follows from (3.8) that $\lim_{k\to\infty} x_{n_k} = z$. By Lemma 3.1, we see that $\lim_{n\to\infty} ||x_n - z||$ exists. This forces $\lim_{n\to\infty} ||x_n - z|| = 0$.

The following examples explain why we need to impose some conditions on the control sequences in previous theorems.

Examples 3.6 (a) Let $T : [-1,1] \rightarrow [-1,1]$ be defined by Tx = -x. Then T is a 0-nonexpansive (*i.e.*, nonexpansive) mapping. Setting all $\beta_n = 1$, the Ishikawa iteration (1.2) provides a sequence

$$x_{n+1} = \gamma_n T^2 x_n + (1 - \gamma_n) x_n = x_n, \quad \forall n = 1, 2, \dots,$$

no matter how we choose $\{\gamma_n\}$. Unless $x_1 = 0$, we can never reach the unique fixed point 0 of *T* via $\{x_n\}$.

(b) Let $T : [0, 4] \rightarrow [0, 4]$ be defined by

$$Tx = \begin{cases} 0 & \text{if } x \neq 4, \\ 2 & \text{if } x = 4. \end{cases}$$

Then *T* is a $\frac{1}{2}$ -nonexpansive mapping. Indeed, for any *x* in [0, 4) and *y* = 4, we have

$$|Tx - Ty|^2 = 4 \le 8 + \frac{1}{2}|x - 2|^2 = \frac{1}{2}|Tx - y|^2 + \frac{1}{2}|x - Ty|^2.$$

The other cases can be verified similarly. It is worth mentioning that *T* is neither nonexpansive nor continuous. Setting all $\beta_n = 1$, the Ishikawa iteration (1.2) provides a sequence

$$x_{n+1} = \gamma_n T^2 x_n + (1 - \gamma_n) x_n, \quad \forall n = 1, 2, \dots$$

For any arbitrary starting point x_1 in [0, 4], we have $T^2x_n = 0$ and

$$\begin{aligned} x_{n+1} &= (1 - \gamma_n) x_n \\ &= (1 - \gamma_1)(1 - \gamma_2) \cdots (1 - \gamma_n) x_1 \\ &= \prod_{k=1}^n (1 - \gamma_k) x_1, \quad \forall n = 1, 2, \dots. \end{aligned}$$

Consider two possible choices of the values of γ_n :

Case 1. If we set $\gamma_n = \frac{1}{2}$, $\forall n = 1, 2, ...$, then $\lim_{n \to \infty} \gamma_n (1 - \gamma_n) = 1/4 > 0$ and $x_n \to 0$, the unique fixed point of *T*.

Case 2. If we set $\gamma_n = \frac{1}{(n+1)^2}$, $\forall n = 1, 2, ...$, then $\lim_{n \to \infty} \gamma_n (1 - \gamma_n) = 0$ and $x_n = \frac{n+2}{2n+2}x_1 \rightarrow x_1/2$. Unless $x_1 = 0$, we can never reach the unique fixed point 0 of *T* via x_n .

4 An existence result in CAT(0) spaces

Let (X, d) be a metric space. A *geodesic path* joining x to y in X (or briefly, a *geodesic* from x to y) is a map c from a closed interval $[0, l] \subset \mathbb{R}$ into X such that c(0) = x, c(l) = y, and d(c(t), c(t')) = |t - t'| for all t, t' in [0, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is called a *geodesic* (or *metric*) *segment* joining x and y. When it is unique, this geodesic is denoted by [x, y]. The space (X, d) is said to be a *geodesic space* if every two points of X are joined by a geodesic, and X is said to be a *uniquely geodesic* if there exists exactly one geodesic joining x and y for each x, y in X. A subset Y of X is said to be *convex* if Y includes every geodesic segment joining any two of its points.

A geodesic triangle $\Delta(x_1, x_2, x_3)$ in a geodesic space (X, d) consists of three points x_1, x_2, x_3 in X (the vertices of Δ), together with a geodesic segment between each pair of vertices (the edges of Δ). A *comparison triangle* for a geodesic triangle $\Delta(x_1, x_2, x_3)$ in a geodesic space (X, d) is a triangle $\overline{\Delta}(x_1, x_2, x_3) := \Delta(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ in the Euclidean plane \mathbb{E}^2 together with a one-to-one correspondence $x \mapsto \overline{x}$ from Δ onto $\overline{\Delta}$ such that it is an isometry on each of the three segments. A geodesic space X is said to be a CAT(0) *space* if all geodesic triangles Δ satisfy the CAT(0) *inequality*:

 $d(x,y) \leq d_{\mathbb{E}^2}(\bar{x},\bar{y}), \quad \forall x,y \in \Delta.$

It is easy to see that a CAT(0) space is uniquely geodesic.

It is well known that any complete, simply connected Riemannian manifold having nonpositive sectional curvature is a CAT(0) space. Other examples include inner product spaces, \mathbb{R} -trees (see, for example, [11]), Euclidean building (see, for example, [12]), and the complex Hilbert ball with a hyperbolic metric (see, for example, [8]). For a thorough discussion on other spaces and on the fundamental role they play in geometry, see, for example, [12–14].

We collect some properties of CAT(0) spaces. For more details, we refer the readers to [15–17].

Lemma 4.1 [16] Let (X, d) be a CAT(0) space. Then the following assertions hold. (i) For x, y in X and t in [0,1], there exists a unique point z in [x, y] such that

$$d(x,z) = td(x,y)$$
 and $d(y,z) = (1-t)d(x,y).$ (4.1)

We use the notation $(1 - t)x \oplus ty$ for the unique point z satisfying (4.1). (ii) For x, y in X and t in [0,1], we have

$$d((1-t)x \oplus ty, z) \leq (1-t)d(x, z) + td(y, z).$$

The notion of asymptotic centers in a Banach space can be extended to a CAT(0) space as well by simply replacing the distance defined by $\|\cdot - \cdot\|$ with the one defined by the metric $d(\cdot, \cdot)$. In particular, in a CAT(0) space, $A(C, \{x_n\})$ consists of exactly one point whenever *C* is a closed and convex set and $\{x_n\}$ is a bounded sequence; see [18, Proposition 7].

Definition 4.2 [19, 20] A sequence $\{x_n\}$ in a CAT(0) space X is said to Δ -converge to x in X if x is the unique asymptotic center of $\{x_{n_k}\}$ for every subsequence $\{x_{n_k}\}$ of $\{x_n\}$. In this case, we write Δ -lim_{$n\to\infty$} $x_n = x$, and we call x the Δ -limit of $\{x_n\}$.

Lemma 4.3 [19] Every bounded sequence in a complete CAT(0) space X has a Δ -convergent subsequence.

Lemma 4.4 [21] Let C be a closed and convex subset of a complete CAT(0) space X. If $\{x_n\}$ is a bounded sequence in C, then the asymptotic center of $\{x_n\}$ is in C.

Lemma 4.5 [22] Let X be a complete CAT(0) space and let $x \in X$. Suppose that $0 < b \le t_n \le c < 1$ and $x_n, y_n \in X$ for n = 1, 2, ... If for some $r \ge 0$ we have

$$\limsup_{n\to\infty} d(x_n,x) \leq r, \qquad \limsup_{n\to\infty} d(y_n,x) \leq r, \quad and \quad \lim_{n\to\infty} d(t_nx_n \oplus (1-t_n)y_n,x) = r,$$

then $\lim_{n\to\infty} d(x_n, y_n) = 0$.

.

Recall that the *Ishikawa iteration* in CAT(0) spaces is described as follows: For any initial point x_1 in *C*, we define the iterates $\{x_n\}$ by

$$\begin{cases} y_n = \beta_n T x_n \oplus (1 - \beta_n) x_n, \\ x_{n+1} = \gamma_n T y_n \oplus (1 - \gamma_n) x_n, \end{cases}$$

$$(4.2)$$

where the sequences $\{\beta_n\}$ and $\{\gamma_n\}$ satisfy some appropriate conditions.

We introduce the notion of α -nonexpansive mappings of CAT(0) spaces.

Definition 4.6 Let *C* be a nonempty subset of a CAT(0) space *X* and let $\alpha < 1$. A mapping $T : C \to X$ is said to be α -nonexpansive if

$$d(Tx, Ty)^2 \leq \alpha d(Tx, y)^2 + \alpha d(x, Ty)^2 + (1 - 2\alpha)d(x, y)^2, \quad \forall x, y \in C.$$

The following is the CAT(0) counterpart to Lemma 2.5. However, we do not know if the compactness assumption can be removed from the negative α case.

Lemma 4.7 Let C be a nonempty closed and convex subset of a complete CAT(0) space X. Let $T: C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. In the case $0 \le \alpha < 1$, we have $F(T) \ne \emptyset$ if and only if $\{T^n x\}_{n=1}^{\infty}$ is bounded for some x in C. If C is compact, we always have $F(T) \ne \emptyset$.

Proof Assume first that $0 \le \alpha < 1$. The necessity is obvious. We verify the sufficiency. Suppose that $\{T^n x\}_{n=1}^{\infty}$ is bounded for some x in C. Set $x_n := T^n x$ for n = 1, 2, ... By the boundedness of $\{x_n\}_{n=1}^{\infty}$, there exists z in X such that $A(C, \{x_n\}) = \{z\}$. It follows from Lemma 4.4 that $z \in C$. Furthermore, we have

$$d(x_n, Tz)^2 \le \alpha d(x_n, z)^2 + \alpha d(x_{n-1}, Tz)^2 + (1 - 2\alpha) d(x_{n-1}, z)^2, \quad \forall n = 1, 2, \dots, d(x_{n-1}, z)^2$$

This implies

$$\limsup_{n \to \infty} d(x_n, Tz)^2$$

$$\leq \alpha \limsup_{n \to \infty} d(x_n, z)^2 + \alpha \limsup_{n \to \infty} d(x_{n-1}, Tz)^2 + (1 - 2\alpha) \limsup_{n \to \infty} d(x_{n-1}, z)^2.$$

Thus,

$$\limsup_{n\to\infty} d(x_n, Tz) \leq \limsup_{n\to\infty} d(x_n, z).$$

Consequently, $Tz \in A(\{x_n\}) = \{z\}$, ensuring that $F(T) \neq \emptyset$.

Next, we assume $\alpha < 0$ and *C* is compact. In particular, *T* is continuous and the sequence of $x_n := T^n x$ for any *x* in *C* is bounded. In what follows, we adapt the arguments in [2] with slight modifications.

Let μ be a Banach limit, *i.e.*, μ is a bounded unital positive linear functional of ℓ_{∞} such that $\mu \circ s = \mu$. Here, *s* is the left shift operator on ℓ_{∞} . We write $\mu_n a_n$ for the value of $\mu(a)$ with $a = (a_n)$ in ℓ_{∞} as usual. In particular, $\mu_n a_{n+1} = \mu(s(a)) = \mu(a) = \mu_n a_n$. As showed in [2, Lemmas 3.1 and 3.2], we have

$$\mu_n d(x_n, Ty)^2 \le \mu_n d(x_n, y)^2, \quad \forall y \in C,$$
(4.3)

and

$$g(y) := \mu_n d(x_n, y)^2$$

defines a continuous function from *C* into \mathbb{R} .

By compactness, there exists *y* in *C* such that $g(y) = \inf g(C)$. Suppose that there is another *z* in *C* such that g(z) = g(y). Let *m* be the midpoint in the geodesic segment joining *y* to *z*. In view of Lemma 4.1, we see that *g* is convex. Thus, g(m) = g(y) too. Observing the comparison triangles in \mathbb{E}^2 , we have

$$d(x_n, y)^2 + d(x_n, z)^2 \ge 2d(x_n, m)^2 + \frac{1}{2}d(y, z)^2, \quad \forall n = 1, 2, \dots$$

Consequently,

$$\mu_n d(x_n, y)^2 + \mu_n d(x_n, z)^2 \ge 2\mu_n d(x_n, m)^2 + \frac{1}{2}\mu_n d(y, z)^2.$$

This amounts to say

$$g(y) + g(z) \ge 2g(m) + \frac{1}{2}d(y,z)^2.$$

Since g(y) = g(z) = g(m), we have y = z. Finally, it follows from (4.3) that $g(Ty) \le g(y) = \inf g(C)$. By uniqueness, we have $Ty = y \in F(T)$.

The proofs of the following results are similar to those in Sections 2 and 3.

Lemma 4.8 Let C be a nonempty subset of a CAT(0) space X. Let $T : C \to X$ be an α -nonexpansive mapping for some $\alpha < 1$ such that $F(T) \neq \emptyset$. Then T is quasi-nonexpansive.

Lemma 4.9 Let C be a nonempty closed and convex subset of a CAT(0) space X. Let T : $C \rightarrow X$ be an α -nonexpansive mapping for some $\alpha < 1$. Then the following assertions hold. (i) If $0 \le \alpha < 1$, then

$$d(x,Ty)^2 \leq \frac{1+\alpha}{1-\alpha}d(x,Tx)^2 + \frac{2}{1-\alpha}(\alpha d(x,y) + d(Tx,Ty))d(x,Tx) + d(x,y)^2, \quad \forall x,y \in C.$$

(ii) If $\alpha < 0$, then

$$d(x,Ty)^2 \leq d(x,Tx)^2 + \frac{2}{1-\alpha} \Big[(-\alpha)d(Tx,y) + d(Tx,Ty) \Big] d(x,Tx) + d(x,y)^2, \quad \forall x,y \in C.$$

Lemma 4.10 Let *C* be a nonempty closed and convex subset of a CAT(0) space *X*. Let $T: C \rightarrow C$ be an α -nonexpansive mapping for some $\alpha < 1$. Let a sequence $\{x_n\}$ with x_1 in *C* be defined by (4.2) such that $\{\beta_n\}$ and $\{\gamma_n\}$ are arbitrary sequences in [0,1]. Let $z \in F(T)$. Then the following assertions hold:

- (1) $\max\{d(x_{n+1}, z), d(y_n, z)\} \le d(x_n, z)$ for n = 1, 2, ...
- (2) $\lim_{n\to\infty} d(x_n, z)$ exists.
- (3) $\lim_{n\to\infty} d(x_n, F(T))$ exists.

Lemma 4.11 [15] Let C be a nonempty convex subset of a CAT(0) space X and let $T : C \rightarrow C$ be a quasi-nonexpansive map whose fixed point set is nonempty. Then F(T) is closed, convex and hence contractible.

The following result is deduced from Lemmas 4.8 and 4.11.

Lemma 4.12 Let C be a nonempty convex subset of a CAT(0) space X and let $T : C \to C$ be an α -nonexpansive mapping with a nonempty fixed point set F(T) for some $\alpha < 1$. Then F(T) is closed, convex, and hence contractible.

Lemma 4.13 Let C be a nonempty closed and convex subset of a complete CAT(0) space X and let $T: C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. If $\{x_n\}$ is a sequence in C such that $d(Tx_n, x_n) \to 0$ and Δ -lim_{$n\to\infty$} $x_n = z$ for some z in X, then $z \in C$ and Tz = z.

Proof It follows from Lemma 4.4 that $z \in C$.

Let $0 \le \alpha < 1$. By Lemma 4.9(i), we deduce that

$$d(x_n, Tz)^2 \leq \frac{1+\alpha}{1-\alpha} d(x_n, Tx_n)^2 + \frac{2}{1-\alpha} (\alpha d(x_n, z) + d(Tx_n, Tz)) d(x_n, Tx_n) + d(x_n, z)^2$$

for all *n* in \mathbb{N} . Thus we have

$$\limsup_{n\to\infty} d(x_n, Tz) \leq \limsup_{n\to\infty} d(x_n, z).$$

Let α < 0. Then, by Lemma 4.9(ii), we have

$$d(x_n, Tz)^2 \le d(x_n, Tx_n)^2 + \frac{2}{1-\alpha} \Big[(-\alpha)d(Tx_n, z) + d(Tx_n, Tz) \Big] d(x_n, Tx_n) + d(x_n, z)^2$$

for all *n* in \mathbb{N} . This implies again that

 $\limsup_{n\to\infty} d(x_n, Tz) \leq \limsup_{n\to\infty} d(x_n, z).$

By the uniqueness of asymptotic centers, Tz = z.

5 Fixed point and convergence theorems in CAT(0) spaces

In this section, we extend our results in Section 3 to CAT(0) spaces.

Theorem 5.1 Let *C* be a nonempty closed and convex subset of a complete CAT(0) space *X* and let $T: C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. Let $\{\beta_n\}$ and $\{\gamma_n\}$ be

sequences in [0,1] such that $0 < \liminf_{k\to\infty} \gamma_{n_k} \le \limsup_{k\to\infty} \gamma_{n_k} < 1$ for a subsequence $\{\gamma_{n_k}\}$ of $\{\gamma_n\}$. In the case $\alpha \le 0$, we assume also that $\limsup_{k\to\infty} \beta_{n_k} < 1$. Let $\{x_n\}$ be a sequence with x_1 in C defined by (4.2). Then the fixed point set $F(T) \ne \emptyset$ if and only if $\{x_n\}$ is bounded and $\lim_{k\to\infty} d(Tx_{n_k}, x_{n_k}) = 0$.

Proof Suppose that $F(T) \neq \emptyset$ and z in F(T) is arbitrarily chosen. By Lemma 4.10, $\lim_{n\to\infty} d(x_n, z)$ exists and $\{x_n\}$ is bounded. Let

$$\lim_{n \to \infty} d(x_n, z) = l.$$
(5.1)

It follows from Lemmas 4.8 and 4.1(ii) that

$$d(Ty_n, z) \leq d(y_n, z)$$

= $d(\beta_n Tx_n \oplus (1 - \beta_n)x_n, z)$
 $\leq \beta_n d(Tx_n, z) + (1 - \beta_n)d(x_n, z)$
 $\leq \beta_n d(x_n, z) + (1 - \beta_n)d(x_n, z)$
= $d(x_n, z).$

Thus, we have

$$\limsup_{n \to \infty} d(Ty_n, z) \le \limsup_{n \to \infty} d(y_n, z) \le \limsup_{n \to \infty} d(x_n, z) = l.$$
(5.2)

On the other hand, it follows from (4.2) and (5.1) that

$$\lim_{n \to \infty} d(\gamma_n T y_n \oplus (1 - \gamma_n) x_n, z) = \lim_{n \to \infty} d(x_{n+1}, z) = l.$$
(5.3)

In view of (5.1)-(5.3) and Lemma 4.5, we conclude that

$$\lim_{k\to\infty}d(Ty_{n_k},x_{n_k})=0.$$

By simply replacing $\|\cdot - \cdot\|$ with $d(\cdot, \cdot)$ in the proof of Theorem 3.2, we have the desired result $\lim_{k\to\infty} d(Tx_{n_k}, x_{n_k}) = 0$. The proof in the converse direction follows similarly. \Box

Theorem 5.2 Let C be a nonempty closed and convex subset of a complete CAT(0) space X and let $T: C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. Let $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in [0,1] such that $0 < \liminf_{k\to\infty} \gamma_{n_k} \leq \limsup_{k\to\infty} \gamma_{n_k} < 1$ for a subsequence $\{\gamma_{n_k}\}$ of $\{\gamma_n\}$. In the case $\alpha \leq 0$, we assume also that $\limsup_{k\to\infty} \beta_{n_k} < 1$. Let $\{x_n\}$ be a sequence with x_1 in C defined by (4.2). If $F(T) \neq \emptyset$, then $\{x_{n_k}\}$ Δ -converges to a fixed point of T.

Proof It follows from Theorem 5.1 that $\{x_n\}$ is bounded and $\lim_{k\to\infty} d(Tx_{n_k}, x_{n_k}) = 0$. Denote by $\omega_w(x_{n_k}) := \bigcup A(C, \{u_n\})$, where the union is taken over all subsequences $\{u_n\}$ of $\{x_{n_k}\}$. We prove that $\omega_w(x_{n_k}) \subset F(T)$. Let $u \in \omega_w(x_{n_k})$. Then there exists a subsequence $\{u_n\}$ of $\{x_{n_k}\}$ such that $A(C, \{u_n\}) = \{u\}$. In view of Lemmas 4.3 and 4.4, there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that Δ -lim_{$n\to\infty$} $v_n = v$ for some v in C. Since $\lim_{n\to\infty} d(Tv_n, v_n) = 0$,

Lemma 4.13 implies that $v \in F(T)$. By Lemma 4.10, $\lim_{n\to\infty} d(x_n, v)$ exists. We claim that u = v. For else, the uniqueness of asymptotic centers implies that

$$\limsup_{n \to \infty} d(v_n, v) < \limsup_{n \to \infty} d(v_n, u) \le \limsup_{n \to \infty} d(u_n, u)$$
$$< \limsup_{n \to \infty} d(u_n, v) = \limsup_{n \to \infty} d(x_n, v) = \limsup_{n \to \infty} d(v_n, v),$$

which is a contradiction. Thus, we have $u = v \in F(T)$ and hence $\omega_w(x_{n_k}) \subset F(T)$.

Now, we prove that $\{x_{n_k}\}$ Δ -converges to a fixed point of T. It suffices to show that $\omega_w(x_{n_k})$ consists of exactly one point. Let $\{u_n\}$ be a subsequence of $\{x_{n_k}\}$. In view of Lemmas 4.3 and 4.4, there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that Δ -lim_{$n\to\infty$} $v_n = v$ for some v in C. Let $A(C, \{u_n\}) = \{u\}$ and $A(C, \{x_{n_k}\}) = \{x\}$. By the argument mentioned above, we have u = v and $v \in F(T)$. We show that x = v. If it is not the case, then the uniqueness of asymptotic centers implies that

$$\limsup_{n \to \infty} d(v_n, v) < \limsup_{n \to \infty} d(v_n, x) \le \limsup_{n \to \infty} d(x_n, x)$$
$$< \limsup_{n \to \infty} d(x_n, v) = \limsup_{n \to \infty} d(v_n, v),$$

which is a contradiction. Thus we have the desired result.

Theorem 5.3 Let C be a nonempty compact convex subset of a complete CAT(0) space X and let $T: C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. Let $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in [0,1] such that $0 < \liminf_{k\to\infty} \gamma_{n_k} \le \limsup_{k\to\infty} \gamma_{n_k} < 1$ for a subsequence $\{\gamma_{n_k}\}$ of $\{\gamma_n\}$. In the case $\alpha \le 0$, we assume also that $\limsup_{k\to\infty} \beta_{n_k} < 1$. Let $\{x_n\}$ be a sequence with x_1 in C defined by (4.2). Then $\{x_n\}$ converges in metric to a fixed point of T.

Proof Using Lemmas 4.7 and 4.9 and replacing $\|\cdot - \cdot\|$ with $d(\cdot, \cdot)$ in the proof of Theorem 3.4, we conclude the desired result.

As in the proof of Theorem 3.5, we can verify the following result.

Theorem 5.4 Let C be a nonempty compact convex subset of a complete CAT(0) space X and let $T: C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. Let $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in [0,1] such that $0 < \liminf_{k\to\infty} \gamma_{n_k} \le \limsup_{k\to\infty} \gamma_{n_k} < 1$ for a subsequence $\{\gamma_{n_k}\}$ of $\{\gamma_n\}$. In the case $\alpha \le 0$, we assume also that $\limsup_{k\to\infty} \beta_{n_k} < 1$. Let $\{x_n\}$ be a sequence with x_1 in C defined by (4.2). If T satisfies condition (I), then $\{x_n\}$ converges in metric to a fixed point of T.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contribute equally to this work. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Yasouj University, Yasouj, 75918, Iran. ²Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan. ³Center of Fundamental Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. ⁴Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

The authors would like to thank the referees for their careful reading and valuable suggestions. This research was partially supported by the Grants NSC 99-2115-M-110-007-MY3 (for N.-C. Wong) and NSC 99-2221-E-037-007-MY3 (for J.-C. Yao).

Received: 4 December 2012 Accepted: 21 February 2013 Published: 14 March 2013

References

- 1. Takahashi, W, Kim, GE: Approximating fixed points of nonexpansive mappings in Banach spaces. Math. Jpn. 48, 1-9 (1998)
- Aoyama, K, Kohsaka, F: Fixed point theorem for α-nonexpansive mappings in Banach spaces. Nonlinear Anal. 74, 4387-4391 (2011)
- Takahashi, W: Nonlinear Functional Analysis, Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)
- Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 595-597 (1967)
- van Dulst, D: Equivalent norms and the fixed point property for nonexpansive mappings. J. Lond. Math. Soc. 25, 139-144 (1982)
- Gossez, JP, Lami Dozo, E: Some geometric properties related to the fixed point theory for nonexpansive mappings. Pac. J. Math. 40, 565-573 (1972)
- 7. Goebel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)
- 8. Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)
- 9. Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138 (1991)
- Senter, HF, Dotson, WG: Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 44, 375-380 (1974)
- 11. Bridson, M, Haefliger, A: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)
- 12. Abramenko, P, Brown, KS: Buildings, Theory and Applications. Graduate Texts in Mathematics, vol. 248. Springer, New York (2008)
- Burago, D, Burago, Y, Ivanov, S: A course in metric geometry. In: Graduate Studies in Math., p. 33. Amer. Math. Soc., Providence (2001)
- 14. Gromov, M: Metric structures for Riemannian and non-Riemannian spaces. In: Progress in Mathematics, vol. 152. Birkhäuser, Boston (1999)
- 15. Chaoha, P, Phon-on, A: A note on fixed point sets in CAT(0) spaces. J. Math. Anal. Appl. 320, 983-987 (2006)
- Dhompongsa, S, Panyanak, B: On Δ-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56, 2572-2579 (2008)
- 17. Nanjaras, B, Panyanak, B, Phuengrattana, W: Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces. Nonlinear Anal. Hybrid Syst. 4, 25-31 (2010)
- Dhompongsa, S, Kirk, WA, Sims, B: Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal. 65, 762-772 (2006)
- 19. Kirk, WA, Panyanak, B: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689-3696 (2008)
- 20. Lim, TC: Remarks on fixed point theorems. Proc. Am. Math. Soc. 60, 179-182 (1976)
- Dhompongsa, S, Kirk, WA, Panyanak, B: Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal. 8, 35-45 (2007)
- 22. Laokul, T, Panyanak, B: Approximating fixed points of nonexpansive mappings in CAT(0) spaces. Int. J. Math. Anal. (Ruse) 3(25-28), 1305-1315 (2009)

doi:10.1186/1687-1812-2013-57

Cite this article as: Naraghirad et al.: Approximating fixed points of α -nonexpansive mappings in uniformly convex Banach spaces and CAT(0) spaces. Fixed Point Theory and Applications 2013 2013:57.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com