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Abstract
An existence theorem for a fixed point of an α-nonexpansive mapping of a
nonempty bounded, closed and convex subset of a uniformly convex Banach space
has been recently established by Aoyama and Kohsaka with a non-constructive
argument. In this paper, we show that appropriate Ishikawa iterate algorithms ensure
weak and strong convergence to a fixed point of such a mapping. Our theorems are
also extended to CAT(0) spaces.
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1 Introduction
The purpose of this paper is to study fixed point theorems of α-nonexpansive mappings
of CAT() spaces. Ametric space X is a CAT() space if it is geodesically connected, and if
every geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean
plane (see Section  for the precise definition). Our approach is to prove firstly weak and
strong convergence theorems for Ishikawa iterations of α-nonexpansive mappings in uni-
formly convex Banach spaces. Then, we extend the results to CAT() spaces.
Here are the details. Let E be a (real) Banach space and let C be a nonempty subset of E.

Let T : C → E be a mapping. Denote by F(T) the set of fixed points of T , i.e., F(T) = {x ∈
C : Tx = x}. We say that T is nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y in C, and that
T is quasi-nonexpansive if F(T) �= ∅ and ‖Tx – y‖ ≤ ‖x – y‖ for all x in C and y in F(T).
The concept of nonexpansivity of amapT from a convex setC intoC plays an important

role in the study of theMann-type iteration given by

xn+ = βnTxn + ( – βn)xn, x ∈ C. (.)

Here, {βn} is a real sequence in [, ] satisfying some appropriate conditions, which is usu-
ally called a control sequence. A more general iteration scheme is the Ishikawa iteration
given by

⎧⎨
⎩
yn = βnTxn + ( – βn)xn,

xn+ = γnTyn + ( – γn)xn,
(.)
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where the sequences {βn} and {γn} satisfy some appropriate conditions. In particular, when
all βn = , the Ishikawa iteration (.) becomes the standardMann iteration (.). Let T be
nonexpansive and let C be a nonempty closed and convex subset of a uniformly convex
Banach space E satisfying the Opial property. Takahashi and Kim [] proved that, for any
initial data x in C, the sequence {xn} of iterations defined by the Ishikawa iteration (.)
converges weakly to a fixed point of T , with appropriate choices of control sequences {βn}
and {γn}.
Following Aoyama and Kohsaka [], a mapping T : C → E is said to be α-nonexpansive

for some real number α <  if

‖Tx – Ty‖ ≤ α‖Tx – y‖ + α‖Ty – x‖ + ( – α)‖x – y‖, ∀x, y ∈ C.

Clearly, -nonexpansive maps are exactly nonexpansive maps. Moreover, T is Lipschitz
continuous whenever α ≤ . An example of a discontinuous α-nonexpansive mapping
(with α > ) has been given in []. See also Example .(b).
An existence theorem for a fixed point of an α-nonexpansive mapping T of a nonempty

bounded, closed and convex subset C of a uniformly convex Banach space E has been
recently established by Aoyama and Kohsaka [] with a non-constructive argument. In
Section , we show that, undermild conditions on the control sequences {βn} and {γn}, the
fixed point set F(T) is nonempty if and only if the sequence {xn} obtained by the Ishikawa
iteration (.) is bounded and lim infn→∞ ‖Txn–xn‖ = . In this case, {xn} convergesweakly
or strongly to a fixed point of T .
In Section , we establish the existence result of an α-nonexpansive mapping in a

CAT()-space in parallel to []. We then extend the convergence theorems obtained in
Section  to the case of CAT() spaces, as we planned.

2 Preliminaries
Let E be a (real) Banach space with the norm ‖ · ‖ and the dual space E*. Denote by xn → x
the strong convergence of a sequence {xn} to x in E and by xn ⇀ x the weak convergence.
The modulus δ of the convexity of E is defined by

δ(ε) = inf

{
 –

‖x + y‖


: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

for every ε with  ≤ ε ≤ . A Banach space E is said to be uniformly convex if δ(ε) >  for
every  < ε ≤ . Let S = {x ∈ E : ‖x‖ = }. The norm of E is said to beGâteaux differentiable
if for each x, y in S, the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists. In this case, E is called smooth. If the limit (.) is attained uniformly in x, y in S,
then E is called uniformly smooth. A Banach space E is said to be strictly convex if ‖ x+y

 ‖ < 
whenever x, y ∈ S and x �= y. It is well-known that E is uniformly convex if and only if E*

is uniformly smooth. It is also known that if E is reflexive, then E is strictly convex if and
only if E* is smooth; for more details, see [].
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A Banach space E is said to satisfy theOpial property [] if, for every weakly convergent
sequence xn ⇀ x in E, we have

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖

for all y in E with y �= x. It is well known that all Hilbert spaces, all finite dimensional
Banach spaces and the Banach spaces lp ( ≤ p < ∞) satisfy the Opial property, while the
uniformly convex spaces Lp[, π ] (p �= ) do not; see, for example, [–].
Let {xn} be a bounded sequence in a Banach space E. For any x in E, we set

r
(
x, {xn}

)
= lim sup

n→∞
‖x – xn‖.

The asymptotic radius of {xn} relative to a nonempty closed and convex subset C of E is
defined by

r
(
C, {xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ C

}
.

The asymptotic center of {xn} relative to C is the set

A
(
C, {xn}

)
=

{
x ∈ C : r

(
x, {xn}

)
= r

(
C, {xn}

)}
.

It is well known that if E is uniformly convex, then A(C, {xn}) consists of exactly one point;
see [, ].

Lemma . Let C be a nonempty subset of a Banach space E. Let T : C → E be an α-
nonexpansive mapping for some α <  such that F(T) �= ∅. Then T is quasi-nonexpansive.
Moreover, F(T) is norm closed.

Proof Let x ∈ C and z ∈ F(T). Then we have

‖Tx – z‖ = ‖Tx – Tz‖

≤ α‖Tx – z‖ + α‖Tz – x‖ + ( – α)‖x – z‖

= α‖Tx – z‖ + α‖z – x‖ + ( – α)‖x – z‖

= α‖Tx – z‖ + ( – α)‖x – z‖.

Therefore,

‖Tx – z‖ ≤ ‖x – z‖.

This inequality ensures the closedness of F(T). �

Lemma . Let C be a nonempty subset of a Banach space E. Let T : C → E be an α-
nonexpansive mapping for some α < . Then the following assertions hold.

http://www.fixedpointtheoryandapplications.com/content/2013/1/57
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(i) If  ≤ α < , then

‖x – Ty‖ ≤  + α

 – α
‖x – Tx‖ + 

 – α

(
α‖x – y‖ + ‖Tx – Ty‖)‖x – Tx‖ + ‖x – y‖,

∀x, y ∈ C.

(ii) If α < , then

‖x – Ty‖ ≤ ‖x – Tx‖ + 
 – α

[
(–α)‖Tx – y‖ + ‖Tx – Ty‖]‖x – Tx‖ + ‖x – y‖,

∀x, y ∈ C.

Proof (i) Observe

‖x – Ty‖ = ‖x – Tx + Tx – Ty‖

≤ (‖x – Tx‖ + ‖Tx – Ty‖)
= ‖x – Tx‖ + ‖Tx – Ty‖ + ‖x – Tx‖‖Tx – Ty‖
≤ ‖x – Tx‖ + α‖Tx – y‖ + α‖x – Ty‖ + ( – α)‖x – y‖

+ ‖x – Tx‖‖Tx – Ty‖
≤ ‖x – Tx‖ + α

(‖Tx – x‖ + ‖x – y‖)
+ α‖x – Ty‖ + ( – α)‖x – y‖ + ‖x – Tx‖‖Tx – Ty‖

≤ ‖x – Tx‖ + α‖Tx – x‖ + α‖x – y‖

+ α‖Tx – x‖‖x – y‖ + α‖x – Ty‖

+ ( – α)‖x – y‖ + ‖x – Tx‖‖Tx – Ty‖
= ( + α)‖x – Tx‖ + α‖Tx – x‖‖x – y‖ + α‖x – Ty‖

+ ( – α)‖x – y‖ + ‖x – Tx‖‖Tx – Ty‖.

This implies that

‖x – Ty‖ ≤  + α

 – α
‖x – Tx‖ + 

 – α

(
α‖x – y‖ + ‖Tx – Ty‖)‖x – Tx‖ + ‖x – y‖.

(ii) Observe

‖x – Ty‖ = ‖x – Tx + Tx – Ty‖

≤ (‖x – Tx‖ + ‖Tx – Ty‖)
= ‖x – Tx‖ + ‖Tx – Ty‖ + ‖x – Tx‖‖Tx – Ty‖
≤ ‖x – Tx‖ + α‖Tx – y‖ + α‖x – Ty‖ + ( – α)‖x – y‖

+ ‖x – Tx‖‖Tx – Ty‖
= ‖x – Tx‖ + α‖Tx – y‖ + α‖x – Ty‖

+ ( – α)‖x – y‖ – α‖x – y‖ + ‖x – Tx‖‖Tx – Ty‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/57
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≤ ‖x – Tx‖ + α‖Tx – y‖ + α‖x – Ty‖

+ ( – α)‖x – y‖ – α
[‖x – Tx‖ + ‖Tx – y‖ + ‖x – Tx‖‖Tx – y‖]

+ ‖x – Tx‖‖Tx – Ty‖
= ( – α)‖x – Tx‖ + α‖x – Ty‖

+ ( – α)‖x – y‖ – α‖x – Tx‖‖Tx – y‖ + ‖x – Tx‖‖Tx – Ty‖
= ( – α)‖x – Tx‖ + α‖x – Ty‖

+ ( – α)‖x – y‖ + 
[
(–α)‖Tx – y‖ + ‖Tx – Ty‖]‖x – Tx‖.

This implies that

‖x – Ty‖ ≤ ‖x – Tx‖ + 
 – α

[
(–α)‖Tx – y‖ + ‖Tx – Ty‖]‖x – Tx‖ + ‖x – y‖. �

Proposition . (Demiclosedness principle) Let C be a subset of a Banach space E with
the Opial property. Let T : C → C be an α-nonexpansive mapping for some α < . If {xn}
converges weakly to z and limn→∞ ‖Txn – xn‖ = , then Tz = z. That is, I –T is demiclosed
at zero, where I is the identity mapping on E.

Proof Since {xn} converges weakly to z and limn→∞ ‖Txn – xn‖ = , both {xn} and {Txn}
are bounded. Let M = sup{‖xn‖,‖Txn‖,‖z‖,‖Tz‖ : n ∈ N} < ∞. If  ≤ α < , then in view
of Lemma .(i),

‖xn – Tz‖

≤  + α

 – α
‖xn – Txn‖ + 

 – α

(
α‖xn – z‖ + ‖Txn – Tz‖)‖xn – Txn‖ + ‖xn – z‖

≤  + α

 – α
‖xn – Txn‖ + M( + α)

 – α
‖xn – Txn‖ + ‖xn – z‖.

If α < , then in view of Lemma .(ii),

‖xn – Tz‖

≤ ‖xn – Txn‖ + 
 – α

[
(–α)‖Txn – z‖ + ‖Txn – Tz‖]‖xn – Txn‖ + ‖xn – z‖

≤ ‖xn – Txn‖ + M‖xn – Txn‖ + ‖xn – z‖.

These relations imply

lim sup
n→∞

‖xn – Tz‖ ≤ lim sup
n→∞

‖xn – z‖.

From the Opial property, we obtain Tz = z. �

The following result has been proved in [].

Lemma . Let r >  be a fixed real number. If E is a uniformly convex Banach space, then
there exists a continuous strictly increasing convex function g : [, +∞) → [, +∞) with

http://www.fixedpointtheoryandapplications.com/content/2013/1/57
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g() =  such that

∥∥λx + ( – λ)y
∥∥ ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)g

(‖x – y‖)

for all x, y in Br() = {u ∈ E : ‖u‖ ≤ r} and λ ∈ [, ].

Recently, Aoyama and Kohsaka [] proved the following fixed point theorem for α-
nonexpansive mappings of Banach spaces.

Lemma . Let C be a nonempty closed and convex subset of a uniformly convex Banach
space E. Let T : C → C be an α-nonexpansive mapping for some α < . Then the following
conditions are equivalent.

(i) There exists x in C such that {Tnx}∞n= is bounded.
(ii) F(T) �= ∅.

3 Fixed point and convergence theorems in Banach spaces
Lemma . Let C be a nonempty closed and convex subset of a Banach space E. Let T :
C → C be an α-nonexpansive mapping for some α < . Let a sequence {xn} with x in C
be defined by the Ishikawa iteration (.) such that {βn} and {γn} are arbitrary sequences
in [, ]. Suppose that the fixed point set F(T) contains an element z. Then the following
assertions hold.
() max{‖xn+ – z‖,‖yn – z‖} ≤ ‖xn – z‖ for all n = , , . . . .
() limn→∞ ‖xn – z‖ exists.
() limn→∞ d(xn,F(T)) exists, where d(x,F(T)) denotes the distance from x to F(T).

Proof In view of Lemma ., we conclude that

‖yn – z‖ =
∥∥βnTxn + ( – βn)xn – z

∥∥
≤ βn‖Txn – z‖ + ( – βn)‖xn – z‖
≤ βn‖xn – z‖ + ( – βn)‖xn – z‖
= ‖xn – z‖.

Consequently,

‖xn+ – z‖ =
∥∥γnTyn + ( – γn)xn – z

∥∥
≤ γn‖Tyn – z‖ + ( – γn)‖xn – z‖
≤ γn‖yn – z‖ + ( – γn)‖xn – z‖
≤ γn‖xn – z‖ + ( – γn)‖xn – z‖
= ‖xn – z‖.

This implies that {‖xn–z‖} is a bounded and nonincreasing sequence. Thus, limn→∞ ‖xn–
z‖ exists.
In the same manner, we see that {d(xn,F(T))} is also a bounded nonincreasing real se-

quence, and thus converges. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/57
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Theorem. Let C be a nonempty closed and convex subset of a uniformly convex Banach
space E. Let T : C → C be an α-nonexpansive mapping for some α < . Let {βn} and {γn} be
sequences in [, ] and let {xn} be a sequence with x in C defined by the Ishikawa iteration
(.).
. If {xn} is bounded and lim infn→∞ ‖Txn – xn‖ = , then the fixed point set F(T) �= ∅.
. Assume F(T) �= ∅. Then {xn} is bounded, and the following hold.

Case :  < α < .
(a) lim infn→∞ ‖Txn – xn‖ =  when lim supn→∞ γn( – γn) > .
(b) limn→∞ ‖Txn – xn‖ =  when lim infn→∞ γn( – γn) > .

Case : α ≤ .
(a) lim infn→∞ ‖Txn – xn‖ =  when

⎧⎨
⎩
lim infn→∞ γn( – γn) > ,

lim infn→∞ βn < ,
or

⎧⎨
⎩
lim supn→∞ γn( – γn) > ,

lim supn→∞ βn < .

(b) limn→∞ ‖Txn – xn‖ =  when lim infn→∞ γn( – γn) >  and
lim supn→∞ βn < .

Proof Assume that {xn} is bounded and lim infn→∞ ‖Txn – xn‖ = . There is a bounded
subsequence {Txnk } of {Txn} such that limk→∞ ‖Txnk – xnk‖ = . Suppose A(C, {xnk }) = {z}.
LetM = sup{‖xnk‖,‖Txnk‖,‖z‖,‖Tz‖ : k ∈N} < ∞. If  ≤ α < , then, by Lemma .(i), we
have

‖xnk – Tz‖

≤  + α

 – α
‖xnk – Txnk‖ +


 – α

(
α‖xnk – z‖ + ‖Txnk – Tz‖)‖xnk – Txnk‖ + ‖xnk – z‖

≤  + α

 – α
‖xnk – Txnk‖ +

M( + α)
 – α

‖Txnk – xnk‖ + ‖xnk – z‖.

This implies that

lim sup
k→∞

‖xnk – Tz‖

≤  + α

 – α
lim sup
k→∞

‖xnk – Txnk‖ +
M( + α)

 – α
lim sup
k→∞

‖Txnk – xnk‖

+ lim sup
k→∞

‖xnk – z‖

= lim sup
k→∞

‖xnk – z‖.

If α < , then, by Lemma .(ii), we have

‖xnk – Tz‖

≤ ‖xnk – Txnk‖ +


 – α

(
(–α)‖Txnk – z‖ + ‖Txnk – Tz‖)‖xnk – Txnk‖ + ‖xnk – z‖

≤  + α

 – α
‖xnk – Txnk‖ +

M( + α)
 – α

‖Txnk – xnk‖ + ‖xnk – z‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/57
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This implies again that

lim sup
k→∞

‖xnk – Tz‖

≤  + α

 – α
lim sup
k→∞

‖xnk – Txnk‖ +
M( + α)

 – α
lim sup
k→∞

‖Txnk – xnk‖

+ lim sup
k→∞

‖xnk – z‖

= lim sup
k→∞

‖xnk – z‖.

Thus, we have in all cases

r
(
Tz, {xnk }

)
= lim sup

n→∞
‖xnk – Tz‖

≤ lim sup
n→∞

‖xnk – z‖

= r
(
z, {xnk }

)
.

This means that Tz ∈ A(C, {xnk }). By the uniform convexity of E, we conclude that Tz = z.
Conversely, let F(T) �= ∅ and let z ∈ F(T). It follows fromLemma . that limn→∞ ‖xn–z‖

exists and hence {xn} is bounded. In view of Lemmas . and ., we obtain a continuous
strictly increasing convex function g : [, +∞)→ [, +∞) with g() =  such that

‖xn+ – z‖ =
∥∥γnTyn + ( – γn)xn – z

∥∥

≤ γn‖Tyn – z‖ + ( – γn)‖xn – z‖ – γn( – γn)g
(‖Tyn – xn‖

)
≤ γn‖yn – z‖ + ( – γn)‖xn – z‖ – γn( – γn)g

(‖Tyn – xn‖
)

≤ γn‖xn – z‖ + ( – γn)‖xn – z‖ – γn( – γn)g
(‖Tyn – xn‖

)
= ‖xn – z‖ – γn( – γn)g

(‖Tyn – xn‖
)
. (.)

In view of (.), we conclude by applying Lemma . that

γn( – γn)g
(‖Tyn – xn‖

) ≤ ‖xn – z‖ – ‖xn+ – z‖

→ , as n→ ∞.

It follows that

lim inf
n→∞ g

(‖Tyn – xn‖
)
=  whenever lim sup

n→∞
γn( – γn) > .

From the property of g , we deduce that

lim inf
n→∞ ‖Tyn – xn‖ =  in case lim sup

n→∞
γn( – γn) > . (.)

In the same manner, we also obtain that

lim
n→∞‖Tyn – xn‖ =  in case lim inf

n→∞ γn( – γn) > . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/57
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On the other hand, from (.) we get

Txn – yn = ( – βn)(Txn – xn), xn – yn = βn(xn – Txn). (.)

Observing (.), we see that the assertions about the case α ≤  follow from (.) and (.).
In what follows, we discuss the case  < α < . Assume first lim infn→∞ γn( – γn) > .

By Lemma . and (.), we see that M := sup{‖Txn‖,‖Tyn‖ : n ∈ N} < ∞. Since T is α-
nonexpansive, in view of (.), we obtain

‖Txn – xn‖

= ‖Txn – Tyn + Tyn – xn‖

≤ (‖Txn – Tyn‖ + ‖Tyn – xn‖
)

= ‖Txn – Tyn‖ + ‖Tyn – xn‖ + ‖Txn – Tyn‖‖Tyn – xn‖
≤ α‖Txn – yn‖ + α‖Tyn – xn‖ + ( – α)‖xn – yn‖ + ‖Tyn – xn‖

+ M‖Tyn – xn‖
≤ α

∥∥( – βn)(Txn – xn)
∥∥ + (α + )‖Tyn – xn‖ + ( – α)

∥∥βn(xn – Txn)
∥∥

+ M‖Tyn – xn‖
≤ [

α( – βn) + ( – α)β
n
]‖Txn – xn‖ + (α + )‖Tyn – xn‖

+ M‖Tyn – xn‖. (.)

Case (i): If  < α < 
 , then (.) becomes

‖Txn – xn‖

≤ [
α( – βn) + ( – α)β

n
]‖Txn – xn‖ + (α + )‖Tyn – xn‖ + M‖Tyn – xn‖

= ( – α)‖Txn – xn‖ + (α + )‖Tyn – xn‖ + M‖Tyn – xn‖,

since all βn are in [, ]. We then derive from (.) that

‖Txn – xn‖ ≤  + α

α
‖Tyn – xn‖ + M

α
‖Tyn – xn‖ → , as n→ ∞. (.)

Case (ii): If 
 ≤ α < , then (.) becomes

‖Txn – xn‖

≤ [
α( – βn) + ( – α)β

n
]‖Txn – xn‖ + (α + )‖Tyn – xn‖ + M‖Tyn – xn‖

≤ α‖Txn – xn‖ + (α + )‖Tyn – xn‖ + M‖Tyn – xn‖.

We then derive from (.) again that

‖Txn – xn‖ ≤  + α

 – α
‖Tyn – xn‖ + M

 – α
‖Tyn – xn‖ → , as n→ ∞. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/57
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Finally, we assume lim supn→∞ γn(–γn) >  instead. By (.) we have subsequences {xnk }
and {ynk } of {xn} and {yn}, respectively, such that

lim
k→∞

‖Tynk – xnk‖ = .

Replacing M by the number sup{‖Txnk‖,‖Tynk‖ : k ∈ N} < ∞ and dealing with the sub-
sequences {xnk } and {ynk } in (.) and (.), we will arrive at the desired conclusion that
limk→∞ ‖Txnk – xnk‖ = . This gives lim infn→∞ ‖Txn – xn‖ = . �

Theorem. Let C be a nonempty closed and convex subset of a uniformly convex Banach
space E with the Opial property. Let T : C → C be an α-nonexpansive mapping with a
nonempty fixed point set F(T) for some α < . Let {βn} and {γn} be sequences in [, ] and
let {xn} be a sequence with x in C defined by the Ishikawa iteration (.).
Assume that lim infn→∞ γn( – γn) > , and assume, in addition, lim supn→∞ βn <  if

α ≤ . Then {xn} converges weakly to a fixed point of T .

Proof It follows from Theorem . that {xn} is bounded and limn→∞ ‖Txn – xn‖ = . The
uniform convexity of E implies that E is reflexive; see, for example, []. Then there exists a
subsequence {xni} of {xn} such that xni ⇀ p ∈ C as i → ∞. In view of Proposition ., we
conclude that p ∈ F(T). We claim that xn ⇀ p as n → ∞. Suppose on the contrary that
there exists a subsequence {xnj} of {xn} converging weakly to some q in C with p �= q. By
Proposition ., we see that q ∈ F(T). Lemma . says that limn→∞ ‖xn – z‖ exists for all z
in F(T). The Opial property then implies

lim
n→∞‖xn – p‖ = lim

i→∞‖xni – p‖ < lim
i→∞‖xni – q‖

= lim
n→∞‖xn – q‖ = lim

j→∞‖xnj – q‖
< lim

j→∞‖xnj – p‖ = lim
n→∞‖xn – p‖.

This is a contradiction. Thus p = q, and the desired assertion follows. �

Theorem . Let C be a nonempty compact and convex subset of a uniformly convex Ba-
nach space E. Let T : C → C be an α-nonexpansive mapping for some α < . Let {βn} and
{γn} be sequences in [, ].
When  < α < , we assume lim supn→∞ γn( – γn) > .When α ≤ , we assume either

⎧⎨
⎩
lim infn→∞ γn( – γn) > ,

lim infn→∞ βn < ,
or

⎧⎨
⎩
lim supn→∞ γn( – γn) > ,

lim supn→∞ βn < .

Let {xn} be a sequence with x in C defined by the Ishikawa iteration (.). Then {xn} con-
verges strongly to a fixed point z of T .

Proof Since C is bounded, it follows from Lemma . that the fixed point set F(T) of T is
nonempty. In view of Theorem ., the sequence {xn} is bounded and lim infn→∞ ‖Txn –
xn‖ = . By the compactness of C, there exists a subsequence {xnk } of {xn} converging
strongly to some z in C, and limk→∞ ‖Txnk – xnk‖ = . In particular, {Txnk } is bounded. Let
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M = sup{‖xnk‖,‖Txnk‖,‖z‖,‖Tz‖ : k ∈N} < ∞. If  ≤ α < , then, in view of Lemma .(i),
we obtain

‖xnk – Tz‖

≤  + α

 – α
‖xnk – Txnk‖ +


 – α

(
α‖xnk – z‖ + ‖Txnk – Tz‖)‖xnk – Txnk‖ + ‖xnk – z‖

≤  + α

 – α
‖xnk – Txnk‖ +

M( + α)
 – α

‖Txnk – xnk‖ + ‖xnk – z‖.

Therefore,

lim sup
k→∞

‖xnk – Tz‖

≤  + α

 – α
lim sup
k→∞

‖xnk – Txnk‖ +
M( + α)

 – α
lim sup
k→∞

‖Txnk – xnk‖

+ lim sup
k→∞

‖xnk – z‖.

If α < , then, in view of Lemma .(ii), we obtain

‖xnk – Tz‖

≤ ‖xnk – Txnk‖ +


 – α

[
(–α)‖Txnk – z‖ + ‖Txnk – Tz‖]‖xnk – Txnk‖ + ‖xnk – z‖

≤ ‖xnk – Txnk‖ +
M( – α)

 – α
‖Txnk – xnk‖ + ‖xnk – z‖.

Therefore,

lim sup
k→∞

‖xnk – Tz‖

≤ lim sup
k→∞

‖xnk – Txnk‖ + M lim sup
k→∞

‖Txnk – xnk‖ + lim sup
k→∞

‖xnk – z‖.

It follows that limk→∞ ‖xnk –Tz‖ = . Thus we have Tz = z. By Lemma ., limn→∞ ‖xn– z‖
exists. Therefore, z is the strong limit of the sequence {xn}. �

Let C be a nonempty closed and convex subset of a Banach space E. A mapping T : C →
C is said to satisfy condition (I) [] if

there exists a nondecreasing function f : [,∞) → [,∞) with f () =  and f (r) > 
for all r >  such that

d(x,Tx)≥ f
(
d
(
x,F(T)

))
, ∀x ∈ C.

Using Theorem ., we can prove the following result.

Theorem. Let C be a nonempty closed and convex subset of a uniformly convex Banach
space E. Let T : C → C be an α-nonexpansive mapping with a nonempty fixed point set
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F(T) for some α < . Let {βn} and {γn} be sequences in [, ]. When  < α < , we assume
lim supn→∞ γn( – γn) > .When α ≤ , we assume either

⎧⎨
⎩
lim infn→∞ γn( – γn) > ,

lim infn→∞ βn < ,
or

⎧⎨
⎩
lim supn→∞ γn( – γn) > ,

lim supn→∞ βn < .

Let {xn} be a sequence with x in C defined by the Ishikawa iteration (.). If T satisfies
condition (I), then {xn} converges strongly to a fixed point z of T .

Proof It follows from Theorem . that

lim inf
n→∞ ‖Txn – xn‖ = .

Therefore, there is a subsequence {xnk } of {xn} such that

lim
k→∞

‖Txnk – xnk‖ = .

Since T satisfies condition (I), with respect to the sequence {xnk }, we obtain

lim
k→∞

d
(
xnk ,F(T)

)
= .

This implies that, there exist a subsequence of {xnk }, denoted also by {xnk }, and a sequence
{zk} in F(T) such that

d(xnk , zk) <

k

, ∀k ∈N. (.)

In view of Lemma ., we have

‖xnk+ – zk‖ ≤ ‖xnk – zk‖ < 
k

, ∀k ∈N.

This implies

‖zk+ – zk‖ ≤ ‖zk+ – xnk+‖ + ‖xnk+ – zk‖

≤ 
(k+)

+

k

<


(k–)
, ∀k = , , . . . .

Consequently, {zk} is a Cauchy sequence in F(T). Due to the closedness of F(T) in E (see
Lemma .), we deduce that limk→∞ zk = z for some z in F(T). It follows from (.) that
limk→∞ xnk = z. By Lemma., we see that limn→∞ ‖xn–z‖ exists. This forces limn→∞ ‖xn–
z‖ = . �

The following examples explain why we need to impose some conditions on the control
sequences in previous theorems.
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Examples . (a) Let T : [–, ] → [–, ] be defined by Tx = –x. Then T is a -
nonexpansive (i.e., nonexpansive) mapping. Setting all βn = , the Ishikawa iteration (.)
provides a sequence

xn+ = γnTxn + ( – γn)xn = xn, ∀n = , , . . . ,

no matter how we choose {γn}. Unless x = , we can never reach the unique fixed point 
of T via {xn}.
(b) Let T : [, ] → [, ] be defined by

Tx =

⎧⎨
⎩
 if x �= ,

 if x = .

Then T is a 
 -nonexpansive mapping. Indeed, for any x in [, ) and y = , we have

|Tx – Ty| = ≤  +


|x – | = 


|Tx – y| + 


|x – Ty|.

The other cases can be verified similarly. It is worth mentioning that T is neither nonex-
pansive nor continuous. Setting all βn = , the Ishikawa iteration (.) provides a sequence

xn+ = γnTxn + ( – γn)xn, ∀n = , , . . . .

For any arbitrary starting point x in [, ], we have Txn =  and

xn+ = ( – γn)xn

= ( – γ)( – γ) · · · ( – γn)x

=
n∏
k=

( – γk)x, ∀n = , , . . . .

Consider two possible choices of the values of γn:
Case . If we set γn = 

 , ∀n = , , . . . , then limn→∞ γn( – γn) = / >  and xn → , the
unique fixed point of T .
Case . If we set γn = 

(n+) , ∀n = , , . . . , then limn→∞ γn( – γn) =  and xn = n+
n+x →

x/. Unless x = , we can never reach the unique fixed point  of T via xn.

4 An existence result in CAT(0) spaces
Let (X,d) be a metric space. A geodesic path joining x to y in X (or briefly, a geodesic from
x to y) is a map c from a closed interval [, l] ⊂ R into X such that c() = x, c(l) = y, and
d(c(t), c(t′)) = |t – t′| for all t, t′ in [, l]. In particular, c is an isometry and d(x, y) = l. The
image α of c is called a geodesic (or metric) segment joining x and y. When it is unique,
this geodesic is denoted by [x, y]. The space (X,d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be a uniquely geodesic if there exists
exactly one geodesic joining x and y for each x, y in X. A subset Y of X is said to be convex
if Y includes every geodesic segment joining any two of its points.

http://www.fixedpointtheoryandapplications.com/content/2013/1/57


Naraghirad et al. Fixed Point Theory and Applications 2013, 2013:57 Page 14 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/57

A geodesic triangle 
(x,x,x) in a geodesic space (X,d) consists of three points x, x,
x in X (the vertices of 
), together with a geodesic segment between each pair of vertices
(the edges of 
). A comparison triangle for a geodesic triangle 
(x,x,x) in a geodesic
space (X,d) is a triangle 
̄(x,x,x) := 
(x̄, x̄, x̄) in the Euclidean planeE together with
a one-to-one correspondence x → x̄ from 
 onto 
̄ such that it is an isometry on each of
the three segments. A geodesic spaceX is said to be aCAT() space if all geodesic triangles

 satisfy the CAT() inequality:

d(x, y) ≤ dE (x̄, ȳ), ∀x, y ∈ 
.

It is easy to see that a CAT() space is uniquely geodesic.
It is well known that any complete, simply connected Riemannianmanifold having non-

positive sectional curvature is a CAT() space. Other examples include inner product
spaces, R-trees (see, for example, []), Euclidean building (see, for example, []), and
the complex Hilbert ball with a hyperbolic metric (see, for example, []). For a thorough
discussion on other spaces and on the fundamental role they play in geometry, see, for
example, [–].
We collect some properties of CAT() spaces. For more details, we refer the readers to

[–].

Lemma . [] Let (X,d) be a CAT() space. Then the following assertions hold.
(i) For x, y in X and t in [, ], there exists a unique point z in [x, y] such that

d(x, z) = td(x, y) and d(y, z) = ( – t)d(x, y). (.)

We use the notation ( – t)x⊕ ty for the unique point z satisfying (.).
(ii) For x, y in X and t in [, ], we have

d
(
( – t)x⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z).

The notion of asymptotic centers in a Banach space can be extended to aCAT() space as
well by simply replacing the distance defined by ‖ ·– · ‖ with the one defined by the metric
d(·, ·). In particular, in a CAT() space, A(C, {xn}) consists of exactly one point whenever
C is a closed and convex set and {xn} is a bounded sequence; see [, Proposition ].

Definition . [, ] A sequence {xn} in a CAT() space X is said to 
-converge to x in
X if x is the unique asymptotic center of {xnk } for every subsequence {xnk } of {xn}. In this
case, we write 
-limn→∞ xn = x, and we call x the 
-limit of {xn}.

Lemma . [] Every bounded sequence in a complete CAT() space X has a 
-
convergent subsequence.

Lemma . [] Let C be a closed and convex subset of a complete CAT() space X. If {xn}
is a bounded sequence in C, then the asymptotic center of {xn} is in C.
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Lemma . [] Let X be a complete CAT() space and let x ∈ X. Suppose that  < b ≤
tn ≤ c <  and xn, yn ∈ X for n = , , . . . . If for some r ≥  we have

lim sup
n→∞

d(xn,x)≤ r, lim sup
n→∞

d(yn,x)≤ r, and lim
n→∞d

(
tnxn ⊕ ( – tn)yn,x

)
= r,

then limn→∞ d(xn, yn) = .

Recall that the Ishikawa iteration inCAT() spaces is described as follows: For any initial
point x in C, we define the iterates {xn} by

⎧⎨
⎩
yn = βnTxn ⊕ ( – βn)xn,

xn+ = γnTyn ⊕ ( – γn)xn,
(.)

where the sequences {βn} and {γn} satisfy some appropriate conditions.
We introduce the notion of α-nonexpansive mappings of CAT() spaces.

Definition . Let C be a nonempty subset of a CAT() space X and let α < . Amapping
T : C → X is said to be α-nonexpansive if

d(Tx,Ty) ≤ αd(Tx, y) + αd(x,Ty) + ( – α)d(x, y), ∀x, y ∈ C.

The following is the CAT() counterpart to Lemma .. However, we do not know if the
compactness assumption can be removed from the negative α case.

Lemma . Let C be a nonempty closed and convex subset of a complete CAT() space X.
Let T : C → C be an α-nonexpansive mapping for some α < . In the case  ≤ α < ,we have
F(T) �= ∅ if and only if {Tnx}∞n= is bounded for some x in C. If C is compact, we always have
F(T) �= ∅.

Proof Assume first that ≤ α < . The necessity is obvious.We verify the sufficiency. Sup-
pose that {Tnx}∞n= is bounded for some x in C. Set xn := Tnx for n = , , . . . . By the bound-
edness of {xn}∞n=, there exists z in X such that A(C, {xn}) = {z}. It follows from Lemma .
that z ∈ C. Furthermore, we have

d(xn,Tz) ≤ αd(xn, z) + αd(xn–,Tz) + ( – α)d(xn–, z), ∀n = , , . . . .

This implies

lim sup
n→∞

d(xn,Tz)

≤ α lim sup
n→∞

d(xn, z) + α lim sup
n→∞

d(xn–,Tz) + ( – α) lim sup
n→∞

d(xn–, z).

Thus,

lim sup
n→∞

d(xn,Tz) ≤ lim sup
n→∞

d(xn, z).

Consequently, Tz ∈ A({xn}) = {z}, ensuring that F(T) �= ∅.
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Next, we assume α <  andC is compact. In particular,T is continuous and the sequence
of xn := Tnx for any x in C is bounded. In what follows, we adapt the arguments in [] with
slight modifications.
Let μ be a Banach limit, i.e., μ is a bounded unital positive linear functional of �∞ such

that μ ◦ s = μ. Here, s is the left shift operator on �∞. We write μnan for the value of μ(a)
with a = (an) in �∞ as usual. In particular, μnan+ = μ(s(a)) = μ(a) = μnan. As showed in
[, Lemmas . and .], we have

μnd(xn,Ty) ≤ μnd(xn, y), ∀y ∈ C, (.)

and

g(y) := μnd(xn, y)

defines a continuous function from C into R.
By compactness, there exists y in C such that g(y) = inf g(C). Suppose that there is an-

other z in C such that g(z) = g(y). Let m be the midpoint in the geodesic segment joining
y to z. In view of Lemma ., we see that g is convex. Thus, g(m) = g(y) too. Observing the
comparison triangles in E

, we have

d(xn, y) + d(xn, z) ≥ d(xn,m) +


d(y, z), ∀n = , , . . . .

Consequently,

μnd(xn, y) +μnd(xn, z) ≥ μnd(xn,m) +


μnd(y, z).

This amounts to say

g(y) + g(z) ≥ g(m) +


d(y, z).

Since g(y) = g(z) = g(m), we have y = z. Finally, it follows from (.) that g(Ty) ≤ g(y) =
inf g(C). By uniqueness, we have Ty = y ∈ F(T). �

The proofs of the following results are similar to those in Sections  and .

Lemma . Let C be a nonempty subset of a CAT() space X. Let T : C → X be an α-
nonexpansive mapping for some α <  such that F(T) �= ∅. Then T is quasi-nonexpansive.

Lemma . Let C be a nonempty closed and convex subset of a CAT() space X. Let T :
C → X be an α-nonexpansive mapping for some α < . Then the following assertions hold.

(i) If  ≤ α < , then

d(x,Ty) ≤  + α

 – α
d(x,Tx) +


 – α

(
αd(x, y)+d(Tx,Ty)

)
d(x,Tx)+d(x, y), ∀x, y ∈ C.

(ii) If α < , then

d(x,Ty) ≤ d(x,Tx) +


 – α

[
(–α)d(Tx, y)+d(Tx,Ty)

]
d(x,Tx)+d(x, y), ∀x, y ∈ C.
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Lemma . Let C be a nonempty closed and convex subset of a CAT() space X. Let
T : C → C be an α-nonexpansive mapping for some α < . Let a sequence {xn} with x in C
be defined by (.) such that {βn} and {γn} are arbitrary sequences in [, ]. Let z ∈ F(T).
Then the following assertions hold:
() max{d(xn+, z),d(yn, z)} ≤ d(xn, z) for n = , , . . . .
() limn→∞ d(xn, z) exists.
() limn→∞ d(xn,F(T)) exists.

Lemma . [] Let C be a nonempty convex subset of a CAT() space X and let T : C →
C be a quasi-nonexpansive map whose fixed point set is nonempty. Then F(T) is closed,
convex and hence contractible.

The following result is deduced from Lemmas . and ..

Lemma . Let C be a nonempty convex subset of a CAT() space X and let T : C → C
be an α-nonexpansive mapping with a nonempty fixed point set F(T) for some α < . Then
F(T) is closed, convex, and hence contractible.

Lemma . Let C be a nonempty closed and convex subset of a complete CAT() space X
and let T : C → C be an α-nonexpansive mapping for some α < . If {xn} is a sequence in C
such that d(Txn,xn) →  and 
-limn→∞ xn = z for some z in X, then z ∈ C and Tz = z.

Proof It follows from Lemma . that z ∈ C.
Let  ≤ α < . By Lemma .(i), we deduce that

d(xn,Tz) ≤  + α

 – α
d(xn,Txn) +


 – α

(
αd(xn, z) + d(Txn,Tz)

)
d(xn,Txn) + d(xn, z)

for all n in N. Thus we have

lim sup
n→∞

d(xn,Tz) ≤ lim sup
n→∞

d(xn, z).

Let α < . Then, by Lemma .(ii), we have

d(xn,Tz) ≤ d(xn,Txn) +


 – α

[
(–α)d(Txn, z) + d(Txn,Tz)

]
d(xn,Txn) + d(xn, z)

for all n in N. This implies again that

lim sup
n→∞

d(xn,Tz) ≤ lim sup
n→∞

d(xn, z).

By the uniqueness of asymptotic centers, Tz = z. �

5 Fixed point and convergence theorems in CAT(0) spaces
In this section, we extend our results in Section  to CAT() spaces.

Theorem . Let C be a nonempty closed and convex subset of a complete CAT() space
X and let T : C → C be an α-nonexpansive mapping for some α < . Let {βn} and {γn} be
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sequences in [, ] such that  < lim infk→∞ γnk ≤ lim supk→∞ γnk <  for a subsequence {γnk }
of {γn}. In the case α ≤ , we assume also that lim supk→∞ βnk < . Let {xn} be a sequence
with x in C defined by (.). Then the fixed point set F(T) �= ∅ if and only if {xn} is bounded
and limk→∞ d(Txnk ,xnk ) = .

Proof Suppose that F(T) �= ∅ and z in F(T) is arbitrarily chosen. By Lemma .,
limn→∞ d(xn, z) exists and {xn} is bounded. Let

lim
n→∞d(xn, z) = l. (.)

It follows from Lemmas . and .(ii) that

d(Tyn, z) ≤ d(yn, z)

= d
(
βnTxn ⊕ ( – βn)xn, z

)
≤ βnd(Txn, z) + ( – βn)d(xn, z)

≤ βnd(xn, z) + ( – βn)d(xn, z)

= d(xn, z).

Thus, we have

lim sup
n→∞

d(Tyn, z) ≤ lim sup
n→∞

d(yn, z) ≤ lim sup
n→∞

d(xn, z) = l. (.)

On the other hand, it follows from (.) and (.) that

lim
n→∞d

(
γnTyn ⊕ ( – γn)xn, z

)
= lim

n→∞d(xn+, z) = l. (.)

In view of (.)-(.) and Lemma ., we conclude that

lim
k→∞

d(Tynk ,xnk ) = .

By simply replacing ‖ · – · ‖ with d(·, ·) in the proof of Theorem ., we have the desired
result limk→∞ d(Txnk ,xnk ) = . The proof in the converse direction follows similarly. �

Theorem . Let C be a nonempty closed and convex subset of a complete CAT() space
X and let T : C → C be an α-nonexpansive mapping for some α < . Let {βn} and {γn} be
sequences in [, ] such that  < lim infk→∞ γnk ≤ lim supk→∞ γnk <  for a subsequence {γnk }
of {γn}. In the case α ≤ , we assume also that lim supk→∞ βnk < . Let {xn} be a sequence
with x in C defined by (.). If F(T) �= ∅, then {xnk } 
-converges to a fixed point of T .

Proof It follows from Theorem . that {xn} is bounded and limk→∞ d(Txnk ,xnk ) = . De-
note by ωw(xnk ) :=

⋃
A(C, {un}), where the union is taken over all subsequences {un} of

{xnk }.We prove thatωw(xnk )⊂ F(T). Let u ∈ ωw(xnk ). Then there exists a subsequence {un}
of {xnk } such that A(C, {un}) = {u}. In view of Lemmas . and ., there exists a subse-
quence {vn} of {un} such that
-limn→∞ vn = v for some v inC. Since limn→∞ d(Tvn, vn) = ,
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Lemma . implies that v ∈ F(T). By Lemma ., limn→∞ d(xn, v) exists. We claim that
u = v. For else, the uniqueness of asymptotic centers implies that

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn,u) ≤ lim sup
n→∞

d(un,u)

< lim sup
n→∞

d(un, v) = lim sup
n→∞

d(xn, v) = lim sup
n→∞

d(vn, v),

which is a contradiction. Thus, we have u = v ∈ F(T) and hence ωw(xnk ) ⊂ F(T).
Now, we prove that {xnk } 
-converges to a fixed point of T . It suffices to show that

ωw(xnk ) consists of exactly one point. Let {un} be a subsequence of {xnk }. In view of Lem-
mas . and ., there exists a subsequence {vn} of {un} such that 
-limn→∞ vn = v for
some v in C. Let A(C, {un}) = {u} and A(C, {xnk }) = {x}. By the argument mentioned above,
we have u = v and v ∈ F(T). We show that x = v. If it is not the case, then the uniqueness
of asymptotic centers implies that

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn,x)≤ lim sup
n→∞

d(xn,x)

< lim sup
n→∞

d(xn, v) = lim sup
n→∞

d(vn, v),

which is a contradiction. Thus we have the desired result. �

Theorem . Let C be a nonempty compact convex subset of a complete CAT() space
X and let T : C → C be an α-nonexpansive mapping for some α < . Let {βn} and {γn} be
sequences in [, ] such that  < lim infk→∞ γnk ≤ lim supk→∞ γnk <  for a subsequence {γnk }
of {γn}. In the case α ≤ , we assume also that lim supk→∞ βnk < . Let {xn} be a sequence
with x in C defined by (.). Then {xn} converges in metric to a fixed point of T .

Proof Using Lemmas . and . and replacing ‖ · – · ‖ with d(·, ·) in the proof of Theo-
rem ., we conclude the desired result. �

As in the proof of Theorem ., we can verify the following result.

Theorem . Let C be a nonempty compact convex subset of a complete CAT() space
X and let T : C → C be an α-nonexpansive mapping for some α < . Let {βn} and {γn} be
sequences in [, ] such that  < lim infk→∞ γnk ≤ lim supk→∞ γnk <  for a subsequence {γnk }
of {γn}. In the case α ≤ , we assume also that lim supk→∞ βnk < . Let {xn} be a sequence
with x in C defined by (.). If T satisfies condition (I), then {xn} converges in metric to a
fixed point of T .
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