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Abstract
Let H(λq) be the Hecke group associated to λq = 2cos π

q for q≥ 3 integer. In this
paper, we determine the constant term of the minimal polynomial of λq denoted by
P∗
q(x).
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1 Introduction
The Hecke groups H(λ) are defined to be the maximal discrete subgroups of PSL(,R)
generated by two linear fractional transformations

T(z) = –

z

and S(z) = –


z + λ
,

where λ is a fixed positive real number.
Hecke [] showed thatH(λ) is Fuchsian if and only if λ = λq =  cos π

q for q ≥  is an inte-
ger, or λ ≥ . In this paper, we only consider the former case and denote the corresponding
Hecke groups by H(λq). It is well known that H(λq) has a presentation as follows (see []):

H(λq) =
〈
T ,S | T = Sq = I

〉
. ()

These groups are isomorphic to the free product of two finite cyclic groups of orders 
and q.
The first few Hecke groups are H(λ) = � = PSL(,Z) (the modular group), H(λ) =

H(
√
), H(λ) = H( +

√


 ), and H(λ) = H(
√
). It is clear from the above that H(λq) ⊂

PSL(,Z[λq]), but unlike in the modular group case (the case q = ), the inclusion is strict
and the index [PSL(,Z[λq]) :H(λq)] is infinite as H(λq) is discrete, whereas PSL(,Z[λq])
is not for q ≥ .
On the other hand, it is well known that ζ , a primitive nth root of unity, satisfies the

equation

xn –  = . ()

In [], Cangul studied the minimal polynomials of the real part of ζ , i.e., of cos(π/n)
over the rationals. He used a paper of Watkins and Zeitlin [] to produce further results.
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Also, he made use of two classes of polynomials called Chebycheff and Dickson polyno-
mials. It is known that for n ∈ N∪ {}, the nth Chebycheff polynomial, denoted by Tn(x),
is defined by

Tn(x) = cos(n · arccosx), x ∈R, |x| ≤ , ()

or

Tn(cos θ ) = cosnθ , θ ∈R (θ = arccosx + kπ ,k ∈ Z). ()

Here we use Chebycheff polynomials.
For n ∈N, Cangul denoted the minimal polynomial of cos(π/n) over Q by �n(x). Then

he obtained the following formula for the minimal polynomial �n(x).

Theorem  ([, Theorem ]) Let m ∈N and n = [|m/|]. Then
(a) If m = , then �(x) = x – , and if m = , then �(x) = x + .
(b) If m is an odd prime, then

�m(x) =
Tn+(x) – Tn(x)

n(x – )
. ()

(c) If  |m, then

�m(x) =
Tn+(x) – Tn–(x)

n/(Tn
 +(x) – Tn

 –(x))
∏q–

d|m,d 	=m,d|m �d(x)
. ()

(d) If m is even andm/ is odd, then

�m(x) =
Tn+(x) – Tn–(x)

n–n′ (Tn′+(x) – Tn′ (x))
∏q–

d|m,d 	=m,d even�d(x)
, ()

where n′ =
m
 –
 .

(e) Let m be odd and let p be a prime dividingm. If p | m, then

�m(x) =
Tn+(x) – Tn(x)

n–n′ (Tn′+(x) – Tn′ (x))
, ()

where n′ =
m
p –
 . If p |m, then

�m(x) =
Tn+(x) – Tn(x)

n–n′ (Tn′+(x) – Tn′ (x))�p(x)
, ()

where n′ =
m
p –
 .

For the first four Hecke groups �, H(
√
) , H(λ), and H(

√
), we can find the minimal

polynomial, denoted by P∗
q(x), of λq over Qas λ – , λ

 – , λ
 – λ – , and λ

 – , re-
spectively. However, for q ≥ , the algebraic number λq =  cos π

q is a root of a minimal
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polynomial of degree ≥ . Therefore, it is not possible to determine λq for q ≥  as nicely
as in the first four cases. Because of this, it is easy to find and study with the minimal poly-
nomial of λq instead of λq itself. The minimal polynomial of λq has been used for many
aspects in the literature (see [–] and []).
Notice that there is a relation

P∗
q(x) = ϕ(q)/ · �q

(
x


)

between P∗
q(x) and �m(x).

In [], when the principal congruence subgroups ofH(λq) for q ≥  primewere studied,
we needed to know whether the minimal polynomial of λq is congruent to modulo p for
prime p and also the constant term of itmodulo p.
In this paper, we determine the constant term of the minimal polynomial P∗

q(x) of λq.
We deal with odd and even q cases separately. Of course, this problem is easier to solve
when q is odd.

2 The constant term of P∗
q(x)

In this section, we calculate the constant term for all values of q. Let c denote the constant
term of the minimal polynomial P∗

q(x) of λq, i.e.,

c = P∗
q(). ()

We know from [, Lemma, p.] that the roots of P∗
q(x) are  cos hπ

q with (h,q) = ,
h odd and  ≤ h ≤ q – . Being the constant term, c is equal to the product of all roots of
P∗
q(x):

c =
q–∏
h=

(h,q)=
h odd

 cos
hπ
q
. ()

Therefore we need to calculate the product on the right-hand side of (). To do this, we
need the following result given in [].

Lemma 
∏q–

h=  sin(
hπ
q + θ ) =  sinqθ .

We now want to obtain a similar formula for cosine. Replacing θ by π
 – θ , we get

q–∏
h=

 cos
(
hπ
q

– θ

)
=  sinq

(
π


– θ

)
. ()

Let now μ denote the Möbius function defined by

μ(n) =

⎧⎪⎪⎨
⎪⎪⎩
 if n is not square-free,

 if n = ,

(–)k if n has k distinct prime factors,

()
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for n ∈N. It is known that

∑
d|n

μ(d) =

⎧⎨
⎩
 if n > ,

 if n = .
()

Using this last fact, we obtain

ln
q–∏

h=,(h,q)=

 cos
(
hπ
q

– θ

)

=
q–∑
h=

ln

(
 cos

(
hπ
q

– θ

)) ∑
d|(h,q)

μ(d)

=
∑
d|q

μ(d)

q
d –∑
k=

ln

(
 cos

(
kdπ

q
– θ

))

=
∑
d|q

μ(d)
(
ln

q
d –∏
k=

 cos
(
kdπ

q
– θ

))

=
∑
d|q

μ(d) ·
(
ln sin

q
d

(
π


– θ

))
by ()

= ln
∏
d|q

sind
(

π


– θ

)μ(q/d)

. ()

Therefore

q–∏
h=
(h,q)=

 cos
(
hπ
q

– θ

)
=

∏
d|q

(
sind

(
π


– θ

))μ(q/d)

. ()

Finally, as (,q) 	= , we can write () as

q–∏
h=

(h,q)=

 cos
(
hπ
q

– θ

)
=

∏
d|q

(
sind

(
π


– θ

))μ(q/d)

. ()

Note that if q is even, then

q–∏
h=

(h,q)=

 cos
(
hπ
q

)
=

q–∏
h=

(h,q)=
h odd

 cos
hπ
q

= c, ()

while if q is odd, then

∣∣∣∣
q–∏
h=

(h,q)=

 cos
(
hπ
q

)∣∣∣∣ = c, ()
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as cos(h – i)π
q = – cos iπ

q . Also note that

sind
(

π


– θ

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cosdθ if d ≡ mod,

sindθ if d ≡ mod,

– cosdθ if d ≡ mod,

– sindθ if d ≡ mod.

()

To compute c, we let θ →  in (). If d is odd, then sind(π
 – θ )→ ± as θ →  by ().

So, we are only concerned with even d. Indeed, if q is odd, then the left-hand side at θ = 
is equal to ±. Therefore we have the following result.

Theorem  Let q be odd. Then

|c| = . ()

Proof It follows from () and (). �

Let us now investigate the case of even q. As (h,q) = , h must be odd. So, by a similar
discussion, we get the following.

Theorem  Let q be even. Then

c = lim
θ→

∏
d|q

(
sind

(
π


– θ

))μ(q/d)

. ()

Proof Note that by (), the right-hand side of () becomes a product of ±(cosdθ )±’s
and ±(sindθ )±’s. Above we saw that we can omit the former ones as they tend to ± as θ

tends to . Now, as
∑

d|n μ(d) = , there are equal numbers of the latter kind factors in the
numerator and denominator, i.e., if there is a factor sindθ in the numerator, then there is
a factor sind′θ in the denominator. Then using the fact that

lim
θ→

sinkθ
sin lθ

=
k
l
, ()

we can calculate c.
In fact the calculations show that there are three possibilities:
(i) Let q = α , α ≥ . Then the only divisors of q such that μ(q/d) 	=  are d = α and

α–. Therefore

c = lim
θ→

sinα (π
 – θ )

sinα–(π
 – θ )

=

⎧⎨
⎩
 if α > ,

– if α = .
()

http://www.fixedpointtheoryandapplications.com/content/2013/1/77


Demirci and Cangül Fixed Point Theory and Applications 2013, 2013:77 Page 6 of 8
http://www.fixedpointtheoryandapplications.com/content/2013/1/77

(ii) Secondly, let q = pα , α ≥ , p odd prime. Then the only divisors of q such that
μ(q/d) 	=  are d = pα , pα–, pα and pα–. Therefore

c = lim
θ→

sinpα(π
 – θ ) · sinpα–(π

 – θ )
sinpα(π

 – θ ) · sinpα–(π
 – θ )

= lim
θ→

ε · sinp
αθ · cospα–θ

cospαθ · sinpα–θ

= ε · p, ()

where

ε =

⎧⎨
⎩
 if p≡ mod,

– if p≡ –mod.
()

(iii) Let q be different from above. Then q can be written as

q = αpα
 · · ·pαk

k , ()

where pi are distinct odd primes and αi ≥ ,  ≤ i≤ k.
Here we consider the first two cases k =  and k = .
Let k = , i.e., let q = αpα

 . We have already discussed the case α = . Let α > . Then
the only divisors d of q with μ(q/d) 	=  are d = αpα

 , α–pα
 , αpα–

 and α–pα–
 .

Therefore

c = lim
θ→

sinαpα
 (π

 – θ ) · sinα–pα–
 (π

 – θ )
sinα–pα

 (π
 – θ ) · sinαpα–

 (π
 – θ )

= . ()

Now let k = , i.e., let q = αpα
 pα

 , (p < p). Similarly, all divisors d of q such
that μ(q/d) 	=  are d = αpα

 pα
 , α–pα

 pα
 , αpα–

 pα
 , αpα

 pα–
 , αpα–

 pα–
 ,

α–pα–
 pα–

 , α–pα
 pα–

 and α–pα–
 pα

 . Therefore

c = lim
θ→

sinα–pα–
 pα–

 (π
 – θ ) · sinαpα

 pα–
 (π

 – θ )
sinαpα–

 pα–
 (π

 – θ ) · sinα–pα
 pα–

 (π
 – θ )

× lim
θ→

sinαpα–
 pα

 (π
 – θ ) · sinα–pα

 pα
 (π

 – θ )
sinα–pα–

 pα
 (π

 – θ ) · sinαpα
 pα

 (π
 – θ )

= . ()

Finally, k ≥ , i.e., let

q = αpα
 · · ·pαk

k with p < p < · · · < pk .

In this case the proof is similar, but rather more complicated. In fact, the number of all
divisors d of q such that μ(q/d) 	=  is k+. There is

( k+


)
=  divisor of the form

d = αpα
 · · ·pαk

k .
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There are
( k+



)
= k +  divisors of the form

d = α–pα
 · · ·pαk

k , αpα–
 · · ·pαk

k , . . . , αpα
 · · ·pαk–

k .

There are
( k+



)
= k(k+)

 divisors of the form

d = α–pα–
 pα

 · · ·pαk
k , α–pα

 pα–
 · · ·pαk

k , . . . , α–pα
 pα

 · · ·pαk–
k ,

αpα–
 pα–

 · · ·pαk
k , . . . , αpα–

 pα
 · · ·pαk–

k , . . . , αpα
 · · ·pαk––

k– pαk–
k .

If we continue, we can find other divisors d of q, similarly. Finally, there is
( k+
k+

)
=  divisor

of the form α–pα–
 pα–

 · · ·pαk–
k . Thus, the product of all coefficients d in the factors

sind(π
 – θ ) in the numerator is equal to the product of all coefficients e in the factors

sin e(π
 – θ ) in the denominator implying c = . Therefore the proof is completed. �

Now we give an example for all possible even q cases.

Example  (i) Let q =  = . The only divisors of  such that μ(/d) 	=  are d =  and .
Therefore

c = lim
θ→

sin(π
 – θ )

sin(π
 – θ )

= .

(ii) Let q =  =  · . The only divisors of  such that μ(/d) 	=  are d = , ,  and .
Therefore

c = ε · lim
θ→

sin (π
 – θ ) · sin(π

 – θ )
sin(π

 – θ ) · sin(π
 – θ )

= –,

since p≡ –mod.
(iii) Let q =  =  · . The only divisors of  such that μ(/d) 	=  are d = , , 

and . Therefore

c = lim
θ→

sin(π
 – θ ) · sin(π

 – θ )
sin (π

 – θ ) · sin(π
 – θ )

= .

(iv) Let q =  =  · ·. The only divisors of  such thatμ(/d) 	=  are d = , , , ,
, ,  and . Therefore

c = lim
θ→

sin(π
 – θ ) · sin(π

 – θ ) · sin (π
 – θ ) · sin (π

 – θ )
sin(π

 – θ ) · sin(π
 – θ ) · sin(π

 – θ ) · sin(π
 – θ )

= .
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4. Watkins, W, Zeitlin, J: The minimal polynomial of cos(2π /n). Am. Math. Mon. 100(5), 471-474 (1993)
5. Arnoux, P, Schmidt, TA: Veech surfaces with non-periodic directions in the trace field. J. Mod. Dyn. 3(4), 611-629

(2009)
6. Beslin, S, De Angelis, V: The minimal polynomials of sin(2π /p) and cos(2π /p). Math. Mag. 77(2), 146-149 (2004)
7. Rosen, R, Towse, C: Continued fraction representations of units associated with certain Hecke groups. Arch. Math.

77(4), 294-302 (2001)
8. Schmidt, TA, Smith, KM: Galois orbits of principal congruence Hecke curves. J. Lond. Math. Soc. 67(3), 673-685 (2003)
9. Surowski, D, McCombs, P: Homogeneous polynomials and the minimal polynomial of cos(2π /n). Mo. J. Math. Sci.

(Print) 15(1), 4-14 (2003)
10. Ikikardes, S, Sahin, R, Cangul, IN: Principal congruence subgroups of the Hecke groups and related results. Bull. Braz.

Math. Soc. 40(4), 479-494 (2009)
11. Keng, HL, Yuan, W: Applications of Number Theory to Numerical Analysis. Springer, Berlin (1981)

doi:10.1186/1687-1812-2013-77
Cite this article as: Demirci and Cangül: The constant term of the minimal polynomial of cos(2π /n) overQ. Fixed Point
Theory and Applications 2013 2013:77.

http://www.fixedpointtheoryandapplications.com/content/2013/1/77

	The constant term of the minimal polynomial of cos(2pi/n) over Q
	Abstract
	MSC
	Keywords

	Introduction
	The constant term of Pq*(x)
	Competing interests
	Authors' contributions
	Acknowledgements
	References


