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Abstract
In this paper, we determine necessary and sufficient conditions for Bruck-Reilly and
generalized Bruck-Reilly ∗-extensions of arbitrary monoids to be regular, coregular and
strongly π -inverse. These semigroup classes have applications in various field of
mathematics, such as matrix theory, discrete mathematics and p-adic analysis
(especially in operator theory). In addition, while regularity and coregularity have so
many applications in the meaning of boundaries (again in operator theory), inverse
monoids and Bruck-Reilly extensions contain a mixture fixed-point results of algebra,
topology and geometry within the purposes of this journal.
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1 Introduction and preliminaries
In combinatorial group and semigroup theory, for a finitely generated semigroup
(monoid), a fundamental question is to find its presentation with respect to some (irre-
ducible) system of generators and relators, and then classify it with respect to semigroup
classes. In this sense, in [], the authors obtained a presentation for the Bruck-Reilly ex-
tension, which was studied previously by Bruck [], Munn [] and Reilly []. In different
manners, this extension has been considered as a fundamental construction in the theory
of semigroups. In detail, many classes of regular semigroups are characterized by Bruck-
Reilly extensions; for instance, any bisimple regular w-semigroup is isomorphic to a Reilly
extension of a group [] and any simple regular w-semigroup is isomorphic to a Bruck-
Reilly extension of a finite chain of groups [, ]. After that, in another important paper
[], the author obtained a new monoid, namely the generalized Bruck-Reilly ∗-extension,
and presented the structure of the ∗-bisimple type A w-semigroup. Later on, in [], the
authors studied the structure theorem of the ∗-bisimple type A w-semigroups as the
generalized Bruck-Reilly ∗-extension. Moreover, in a joint work [], it has been recently
defined a presentation for the generalized Bruck-Reilly ∗-extension and then obtained a
Gröbner-Shirshov basis of this new construction. As we depicted in the abstract of this pa-
per, Bruck-Reilly, its general version generalized Bruck-Reilly ∗-extension of monoids and
semigroup classes are not only important in combinatorial algebra but also in linear al-
gebra, discrete mathematics and topology. So these semigroup classes, regular, coregular,
inverse and strongly π-inverse, are the most studied classes in algebra.
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In this paper, as a next step of these above results, we investigate regularity, coregu-
larity and strongly π-inverse properties over Bruck-Reilly and generalized Bruck-Reilly
∗-extensions of monoids. We recall that regularity and strongly π-inverse properties have
been already studied for some other special extensions (semidirect and wreath products)
of monoids [, ]. We further recall that these two important properties have been also
investigated for the semidirect product version of Schützenberger products of any two
monoids [, ]. However, there are not yet such investigations concerning coregularity.
As we depicted in the abstract, semigroup classes have important applications in various
fields ofmathematics, such asmatrix theory, discretemathematics and p-adic analysis (es-
pecially in operator theory). In addition, while regularity and coregularity have so many
applications in themeaning of boundaries (again in operator theory), inversemonoids and
Bruck-Reilly extensions contain a mixture of algebra, topology and geometry within the
purposes of this journal.
Now let us present the following fundamental material that will be needed in this paper.

We refer the reader to [–] for more detailed knowledge.
An element a of a semigroup S is called regular if there exists x ∈ S such that axa = a. The

semigroup S is called regular if all its elements are regular. Groups are of course regular
semigroups, but the class of regular semigroups is vastly more extensive than the class of
groups (see []). Further, to have an inverse element can also be important in a semigroup.
Therefore, we call S is an inverse semigroup if every element has exactly one inverse. The
well-known examples of inverse semigroups are groups and semilattices. An element a ∈ S
is called coregular and b its coinverse if a = aba = bab. A semigroup S is said to be coregular
if each element of S is coregular []. In addition, let E(S) andRegS be the set of idempotent
and regular elements, respectively.We then say that S is called π-regular if, for every s ∈ S,
there is an m ∈ N such that sm ∈ RegS. Moreover, if S is π-regular and the set E(S) is a
commutative subsemigroup of S, then S is called strongly π -inverse semigroup []. We
recall that RegS is an inverse subsemigroup of a strongly π-inverse semigroup S.

2 Bruck-Reilly extensions of monoids
Let us suppose that A is a monoid with an endomorphism θ defined on it such that Aθ

is in the H-class [] of the identity A of A. Also, let N denotes the set of nonnegative
integers. Hence, the set N ×A×N

 with the multiplication

(m,a,n)
(
m′,a′,n′) = (

m – n + t,
(
aθ t–n)(a′θ t–m′)

,n′ –m′ + t
)
,

where t = max(n,m′) and θ is the identity map on A, forms a monoid with identity
(, A, ). Then thismonoid is called theBruck-Reilly extension ofA determined by θ [–]
and denoted by BR(A, θ ).
In the above references, the authors usedBR(A, θ ) to prove that every semigroup embeds

in a simple monoid, and to characterize special classes of inverse semigroups. In [, The-
orem .], Munn showed that BR(A, θ ) is an inverse semigroup if and only if A is inverse.
So, the following result is a direct consequence of this theorem.

Corollary  Let A be an arbitrary monoid. Then BR(A, θ ) is regular if and only if A is
regular.

http://www.fixedpointtheoryandapplications.com/content/2013/1/78


Guzel Karpuz et al. Fixed Point Theory and Applications 2013, 2013:78 Page 3 of 9
http://www.fixedpointtheoryandapplications.com/content/2013/1/78

Form,m′ ∈N
 and a,a′ ∈ A, since

(m,a,m)
(
m′,a′,m′) = (

m –m + t,
(
aθ t–m)(

a′θ t–m′)
,m′ –m′ + t

)
= (t,b, t)

with t = max(m,m′) and b = (aθ t–m)(a′θ t–m′ ) ∈ A, the set {(m,a,m)|a ∈ A,m ∈ N
} be-

comes a subsemigroup of BR(A, θ ). Thus, we further have the following lemma.

Lemma  Let (m,a,n) ∈ BR(A, θ ). If (m,a,n) is coregular then m = n.

Proof Let (m,a,n) ∈ BR(A, θ ). Then there exists (m′,a′,n′) ∈ BR(A, θ ) such that

(m,a,n)
(
m′,a′,n′)(m,a,n) = (m,a,n) and

(
m′,a′,n′)(m,a,n)

(
m′,a′,n′) = (m,a,n).

We have

(m,a,n)
(
m′,a′,n′)(m,a,n) =

(
m – n – n′ +m′ + s′,b,n –m + s′

)

for some b ∈ A, where s =max(n,m′) and s′ =max(n′ –m′ + s,m). This impliesm =m–n–
n′ +m′ + s′ and n = n –m + s′, in other words m +m′ = n + n′. Further, for some c ∈ A, we
have

(
m′,a′,n′)(m,a,n)

(
m′,a′,n′) = (

m′ – n′ – n +m + S′, c,n′ –m′ + S′),

where S = max(n′,m) and S′ = max(n – m + S,m′). This gives m = m′ – n′ – n + m + S′,
n = n′ –m′ + S′, and consequently, n′ =m′. Together withm+m′ = n+ n′, we obtainm = n
as required. �

Lemma  shows that a coregular element in BR(A, θ ) and its coinverse belongs to

{
(m,a,m)|a ∈ A,m ∈N

}.

Now we can present the following result.

Theorem Let A be amonoid.ThenA′ = {(m,a,m)|a ∈ A,m ∈N
} ≤ BR(A, θ ) is coregular

if and only if A is coregular.

Proof Assume that A′ ≤ BR(A, θ ) is a coregular monoid. For (,a, ) ∈ BR(A, θ ), there ex-
ists (m′,a′,m′) ∈ BR(A, θ ) such that

(,a, )
(
m′,a′,m′)(,a, ) = (

m′,
(
aθm′)

a′(aθm′)
,m′) = (,a, ) ()

and

(
m′,a′,m′)(,a, )(m′,a′,m′) = (

m′,a′(aθm′)
a′,m′) = (,a, ). ()

By () and (), we clearly havem′ = , and hence, aa′a = a and a′aa′ = a. So A is coregular.

http://www.fixedpointtheoryandapplications.com/content/2013/1/78
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Conversely, let (m,a,m) ∈ BR(A, θ ). Then there is an a′ ∈ A with aa′a = a and a′aa′ = a.
Thus, for (m,a′,m) ∈ BR(A, θ ), we get

(m,a,m)
(
m,a′,m

)
(m,a,m) =

(
m,aa′a,m

)
= (m,a,m)

and

(
m,a′,m

)
(m,a,m)

(
m,a′,m

)
=

(
m,a′aa′,m

)
= (m,a,m).

Therefore, A′ = {(m,a,m)|a ∈ A,m ∈ N
} ≤ BR(A, θ ) is coregular. �

In [, Theorem .], it is proved that:
• (m,a,n) is an idempotent element in BR(A, θ ) if and only if m = n and a is an
idempotent element in A.

This result will be used in the proof of the following theorem.

Theorem  BR(A, θ ) is strongly π -inverse if and only if A is regular and the idempotents
in A commute.

Proof Let BR(A, θ ) be strongly π-inverse, and let a ∈ A. Also let us consider the element
(,a, ) in BR(A, θ ). Then there exists an element r ∈ N with (,a, )r ∈ RegBR(A, θ ). It is
actually a routine matter to show that (,a, )r = (,a(aθ )r–, r). Moreover, there exists an
element a′ ∈ A such that (r,a′, ) is an inverse of (,a(aθ )r–, r) (see []). Therefore,

(
,a(aθ )r–, r

)
=

(
,a(aθ )r–, r

)(
r,a′, 

)(
,a(aθ )r–, r

)

=
(
,a(aθ )r–a′, r

)(
,a(aθ )r–, r

)
=

(
,a(aθ )r–a′a(aθ )r–, r

)
.

This shows that

a(aθ )r– = a(aθ )r–a′a(aθ )r–. ()

By the assumption given in the beginning of this section, since aθ is in theH-class of the
element A, we obtain aθ is a group element, and so there is an inverse element ((aθ )r–)–.
Thus, by (), we get a = a(aθ )r–a′a; in other words, a ∈ RegA. Consequently, A is regular.
Now, let us also show that the elements in E(A) are commutative. But this is quite clear
by the fact that the idempotents in BR(A, θ ) commute if and only if the idempotents in A
commute (see [, Theorem .()]).
Conversely, let us suppose that A is regular and the idempotents in A commute. Then

BR(A, θ ) is regular, whereπ-regular byCorollary .Moreover, again by [, Theorem.()],
E(BR(A, θ )) is a commutative subsemigroup, which is required to BR(A, θ ) satisfy strongly
π-inverse property, hence the result. �

3 The generalized Bruck-Reilly ∗-extension of monoids
Suppose that A is an arbitrary monoid having H∗

 and H as the H∗- and H- classes con-
taining the identity element A of A. Moreover, let us assume that β and γ are morphisms

http://www.fixedpointtheoryandapplications.com/content/2013/1/78
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fromA intoH∗
 and, for an element u inH, let λu be the inner automorphismofH∗

 defined
by x �→ uxu– such that γ λu = βγ .
Now one can consider the set S = N

 × N
 × A × N

 × N
 into a semigroup with a

multiplication

(m,n, v,p,q)
(
m′,n′, v′,p′,q′)

=

⎧⎪⎪⎨
⎪⎪⎩

(m,n – p + d, (vβd–p)(v′βd–n′ ),p′ – n′ + d,q′), if q =m′,

(m,n, v(((u–n′ (v′γ )up′ )γ q–m′–)βp),p,q′ –m′ + q), if q >m′,

(m – q +m′,n′, (((u–n(vγ )up)γm′–q–)βn′ )v′,p′,q′), if q <m′,

()

where d = max(p,n′) and β, γ  are interpreted as the identity map of A, and also u is
interpreted as the identity A of A. In [], Yu Shung and Li-Min Wang showed that S is
a monoid with the identity (, , A, , ). In fact, this new monoid S = N

 × N
 × A ×

N
 ×N

 is denoted by GBR∗(A;β ,γ ;u) and called generalized Bruck-Reilly ∗-extension of
A determined by the morphisms β , γ and the element u.
The following lemmas were established in [].

Lemma If (m,n, v,p,q) ∈GBR∗(A;β ,γ ;u), then (m,n, v,p,q) is an idempotent if and only
if m = q, n = p and v is idempotent.

Lemma  If (m,n, v,p,q) ∈GBR∗(A;β ,γ ;u), then (m,n, v,p,q) has an inverse

(
m′,n′, v′,p′,q′) ∈ S

if and only if v′ is an inverse of v in A while m′ = q, n′ = p, p′ = n and q′ =m.

Then we have an immediate consequence as in the following.

Corollary  Let A be a monoid. Then GBR∗(A;β ,γ ;u) is regular if and only if A is regular.

In this section, we mainly characterize the properties coregularity and strongly π-
inverse over the generalized Bruck-Reilly ∗-extensions of monoids. More specifically, for
a given monoid A, we determine the maximal submonoid of GBR∗(A;β ,γ ;u), which can
be held coregularity if A satisfies particular properties.
Our first observation is the following.

Lemma  The set L := {(m,n, v,n,m)|v ∈ A,m,n ∈N
} is a submonoid of GBR∗(A;β ,γ ;u).

Proof By considering the multiplication in (), the proof can be seen easily. �

It turns out that all coregular elements in GBR∗(A;β ,γ ;u) belong to the submonoid L .

Lemma  Let (m,n, v,p,q) ∈ GBR∗(A;β ,γ ;u). If (m,n, v,p,q) is coregular then m = q and
n = p.

http://www.fixedpointtheoryandapplications.com/content/2013/1/78
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Proof Let (m,n, v,p,q) ∈ GBR∗(A;β ,γ ;u) be a coregular element. Then there exists an el-
ement (m′,n′, v′,p′,q′) ∈GBR∗(A;β ,γ ;u) such that

(m,n, v,p,q)
(
m′,n′, v′,p′,q′)(m,n, v,p,q) = (m,n, v,p,q) and

(
m′,n′, v′,p′,q′)(m,n, v,p,q)

(
m′,n′, v′,p′,q′) = (m,n, v,p,q).

Let q =m′ and q′ =m. Then we have

(m,n, v,p,q)
(
m′,n′, v′,p′,q′)(m,n, v,p,q)

=
(
m,n + n′ – p – p′ + z′,w,p – n + z′,q

)

for some w ∈ A, where z =max(p,n′) and z′ =max(p′ – n′ + z,n). This implies that

n = n + n′ – p – p′ + z′ ()

and

p = p – n + z′. ()

By (), we have n = z′. Applying this in (), we get n+n′–p–p′+n = n and thus n+n′ = p+p′.
Further, we have

(
m′,n′, v′,p′,q′)(m,n, v,p,q)

(
m′,n′, v′,p′,q′)

=
(
m′,n′ + n – p′ – p + Z′,w′,p′ – n′ + Z′,q′)

for somew′ ∈ A, where Z =max(p′,n) and Z′ =max(p–n+Z,n′). This implies thatm =m′,
q = q′,

n = n′ + n – p′ – p + Z′ ()

and

p = p′ – n′ + Z′. ()

By writing the equality () in (), we get n′ = p′. Together with n + n′ = p + p′, we obtain
n = p. By assuming q =m′, we also get m = q.
Now let (x, y, t, z,w)(x′, y′, t′, z′,w′) = (x′′, y′′, t′′, z′′,w′′). Then it is easy to verify that x′′ ≥

x′,x and y′′ ≥ y′, y. If w 	= x′, we can easily see that x′′ > x′,x or y′′ > y′, y. This shows that
(m,n,a,p,q)(m′,n′,a′,p′,q′)(m,n,a,p,q) 	= (m,n,a,p,q) if q 	=m′ or q′ 	=m. Hence, q 	=m′

or q′ 	=m is not possible. �

Then we have the following result.

Theorem  Let A be a monoid. Then the submonoid L of GBR∗(A;β ,γ ;u) is coregular if
and only if A is coregular.

http://www.fixedpointtheoryandapplications.com/content/2013/1/78
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Proof Suppose that L = {(m,n, v,n,m)|v ∈ A,m,n ∈ N
} ≤ GBR∗(A;β ,γ ;u) is coregular.

For each (m′, , v, ,m′) in L, there exists an element (m′,n′, v′,n′,m′) ∈L such that
(
m′, , v, ,m′)(m′,n′, v′,n′,m′)(m′, , v, ,m′) = (

m′,n′,
(
vβn′)

v′(vβn′)
,n′,m′)

=
(
m′, , v, ,m′) ()

and
(
m′,n′, v′,n′,m′)(m′, , v, ,m′)(m′,n′, v′,n′,m′) = (

m′,n′, v′(vβn′)
v′,n′,m′)

=
(
m′, , v, ,m′). ()

By () and (), we obtain n′ = , and hence vv′v = v and v′vv′ = v. So, A is coregular.
Conversely, let A be a coregular monoid and (m,n, v,n,m) ∈ L. Then there exists an

element v′ ∈ A with vv′v = v and v′vv′ = v. Therefore, for (m,n, v′,n,m) ∈L, we get

(m,n, v,n,m)
(
m,n, v′,n,m

)
(m,n, v,n,m) =

(
m,n, vv′v,n,m

)
= (m,n, v,n,m),

(
m,n, v′,n,m

)
(m,n, v,n,m)

(
m,n, v′,n,m

)
=

(
m,n, v′vv′,n,m

)
= (m,n, v,n,m).

Hence, L≤ GBR∗(A;β ,γ ;u) is a coregular monoid, as desired. �

In the final theorem, we consider strongly π-inverse property.

Theorem  GBR∗(A;β ,γ ;u) is strongly π -inverse if and only if A is regular and the idem-
potents in A commute.

Proof We will follow the same format as in the proof of Theorem . So, let us suppose
thatGBR∗(A;β ,γ ;u) is a strongly π-inversemonoid, and let a ∈ A. Then, for (, ,a, , ) ∈
GBR∗(A;β ,γ ;u), there is an element r ∈ N with (, ,a, , )r ∈ RegGBR∗(A;β ,γ ;u). It is
easily seen that (, ,a, , )r = (, ,a(aβ)r–, r, ). Moreover, there is an element a′ ∈ A
such that (, r,a′, , ) is an inverse of (, ,a(aβ)r–, r, ) by Lemma . From here, we have

(
,,a(aβ)r–, r, 

)
=

(
,,a(aβ)r–, r, 

)(
, r,a′, , 

)(
,,a(aβ)r–, r, 

)

=
(
,,a(aβ)r–a′a(aβ)r–, r, 

)
.

This actually shows that

a(aβ)r– = a(aβ)r–a′a(aβ)r–. ()

At the same time, since aβ is in the H∗-class of the A, there exists an inverse element
((aβ)r–)–. Thus, by (), we get a = a(aβ)r–a′a, in other words, a ∈ RegA. Hence, A is
regular. Now, let us show that the elements in E(A) are commutative to conclude the ne-
cessity part of the proof. To do that, consider any two elements v and v in E(A). Thus,
(, , v, , ), (, , v, , ) ∈ E(GBR∗(A;β ,γ ;u)) (by Lemma ) and we have

(, , vv, , ) = (, , v, , )(, , v, , )

= (, , v, , )(, , v, , ) = (, , vv, , ).

So, vv = vv, as required.

http://www.fixedpointtheoryandapplications.com/content/2013/1/78
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Conversely, let us suppose that A is regular. Then GBR∗(A;β ,γ ;u) is regular, where π-
regular byCorollary .Nowweneed to show that the elements in E(GBR∗(A;β ,γ ;u)) com-
mute. To do that, let us take (m,n, e,n,m), (m′,n′, e′,n′,m′) ∈ E(GBR∗(A;β ,γ ;u)), and thus
ee′ = e′e by Lemma . Now, by considering themultiplication (m,n, e,n,m)(m′,n′, e′,n′,m′)
as defined in (), we have the following cases.
Case (i): Ifm =m′, then we get

(m,n, e,n,m)
(
m′,n′, e′,n′,m′) = (

m,d′,
(
eβd′–n)(e′βd′–n′)

,d′,m′)

and

(
m′,n′, e′,n′,m′)(m,n, e,n,m) =

(
m′,d′,

(
e′βd′–n′)(

eβd′–n),d′,m′),

respectively, where d′ = max(n,n′). Since e, e′ ∈ E(A), we deduce that both e′βd′–n′ and
eβd′–n are the elements of E(A), in other words,

(
e′βd′–n′)(

eβd′–n) = (
eβd′–n)(e′βd′–n′)

.

Thus, (m,n, e,n,m)(m′,n′, e′,n′,m′) = (m′,n′, e′,n′,m′)(m,n, e,n,m).
Case (ii): Ifm <m′ orm >m′, then we get

(m,n, e,n,m)
(
m′,n′, e′,n′,m′) = (

m′,n′,
(((

u–n(eγ )un
)
γm′–m–)βn′)

e′,n′,m′),
(
m′,n′, e′,n′,m′)(m,n, e,n,m) =

(
m′,n′, e′(((u–n(eγ )un)γm′–m–)βn′),n′,m′)

or

(m,n, e,n,m)
(
m′,n′, e′,n′,m′) = (

m,n,
(((

u–n
′(
e′γ

)
un

′)
γm–m′–)βn)e′,n,m

)
,

(
m′,n′, e′,n′,m′)(m,n, e,n,m) =

(
m,n, e′(((u–n′(

e′γ
)
un

′)
γm–m′–)βn),n,m)

,

respectively. Since ((u–n(eγ )un)γm′–m–)βn′ , ((u–n′ (e′γ )un′ )γm–m′–)βn ∈ E(A), we clearly
obtain (m,n, e,n,m)(m′,n′, e′,n′,m′) = (m′,n′, e′,n′,m′)(m,n, e,n,m).
Hence, the result. �
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9. Kocapinar, C, Karpuz, EG, Ateş, F, Çevik, AS: Gröbner-Shirshov bases of the generalized Bruck-Reilly ∗-extension.

Algebra Colloq. 19(1), 813-820 (2012)
10. Nico, WR: On the regularity of semidirect products. J. Algebra 80, 29-36 (1983)
11. Zhang, Y, Li, S, Wang, D: Semidirect products and wreath products of strongly π -inverse monoids. Georgian Math. J.

3(3), 293-300 (1996)
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