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Abstract
The main aim of this paper is to provide a novel approach to deriving identities for the
Bernstein polynomials using functional equations. We derive various functional
equations and differential equations using generating functions. Applying these
equations, we give new proofs for some standard identities for the Bernstein basis
functions, including formulas for sums, alternating sums, recursion, subdivision,
degree raising, differentiation and a formula for the monomials in terms of the
Bernstein basis functions. We also derive many new identities for the Bernstein basis
functions based on this approach. Moreover, by applying the Laplace transform to the
generating functions for the Bernstein basis functions, we obtain some interesting
series representations for the Bernstein basis functions.
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1 Introduction
The Bernstein polynomials have many applications: in approximations of functions, in
statistics, in numerical analysis, in p-adic analysis and in the solution of differential equa-
tions. It is also well known that in Computer Aided Geometric Design (CAGD) polyno-
mials are often expressed in terms of the Bernstein basis functions. These polynomials are
called Bezier curves and surfaces. Convexity and its generalization play an important role
in the theory of Bernstein polynomials. Therefore, a fixed point theorem and its applica-
tions are also very important in the theory of Bezier curves and surfaces.
Many of the known identities for the Bernstein basis functions are currently derived in

an ad hoc fashion, using either the binomial theorem, the binomial distribution, tricky al-
gebraic manipulations or blossoming. Themain purpose of this work is to construct novel
functional equations for the Bernstein polynomials. Using these functional equations and
the Laplace transform, we develop a novel approach both to standard and to new identities
for the Bernstein polynomials. Thus these polynomial identities are just the residue of a
much more powerful system of functional equations.
The remainder of this study is organized as follows. We find several functional equa-

tions and differential equations for the Bernstein basis functions using generating func-
tions. From these equations, many properties of the Bernstein basis functions are then
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derived. For instance, we give a new proof of the recursive definition of the Bernstein ba-
sis functions as well as a novel derivation for the two-term formula for the derivatives of
the nth degree Bernstein basis functions. Using functional equations, we give new deriva-
tions for the sum and alternating sum of the Bernstein basis functions and a formula for
the monomials in terms of the Bernstein basis functions. We also derive identities corre-
sponding to the degree elevation and subdivision formulas for Bezier curves. We prove
many new identities for the Bernstein basis functions. Finally, we give some applications
of the Laplace transform to the generating functions for the Bernstein basis functions.We
obtain interesting series representations for the Bernstein basis functions. We also give
some remarks and observations related to the Fourier transform and complex generating
functions for the Bernstein basis functions.

2 Generating functions
The Bernstein polynomials and related polynomials have been studied and defined in
many different ways, for example, by q-series, complex functions, p-adic Volkenborn inte-
grals and many algorithms. In this section, we provide novel generating functions for the
Bernstein basis functions.
The Bernstein basis functions Bn

k (x) are defined as follows.

Definition .

Bn
k (x) =

(
n
k

)
xk( – x)n–k , ()

where
(
n
k

)
=

n!
k!(n – k)!

,

k = , , . . . ,n, cf. [–].

Generating functions for the Bernstein basis functions can be defined as follows.

Definition .

fB,k(x, t) =
∞∑
n=

Bn
k (x)

tn

n!
. ()

Note that there is one generating function for each value of k.

Theorem .

fB,k(x, t) =
tkxke(–x)t

k!
. ()

Proof By substituting () into the right-hand side of (), we get

∞∑
n=

Bn
k (x)

tn

n!
=

∞∑
n=

((
n
k

)
xk( – x)n–k

)
tn

n!
.
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Therefore

∞∑
n=

Bn
k (x)

tn

n!
=
(xt)k

k!

∞∑
n=k

( – x)n–k
tn–k

(n – k)!
.

The right-hand side of the above equation is a Taylor series for e(–x)t , thus we arrive at the
desired result. �

We give some alternative forms of the generating functions in () as follows:

∞∑
n=

Bn
k (x)

tn

n!
ext =

tkxket

k!
, ()

∞∑
n=

Bn
k (x)

tn

n!
e–t =

tkxke–xt

k!
, ()

and

∞∑
n=

Bn
k (x)

tn

n!
e(x–)t =

tkxk

k!
. ()

By using the above alternative forms, we derive some new identities for the Bernstein basis
functions.

Remark . If we replace x by x–a
b–a in (), where a < b, then

tk( x–ab–a )
ke(

b–x
b–a )t

k!
=

∞∑
n=

Bn
k (x,a,b)

tn

n!
,

where Bn
k (x,a,b) denotes the generalized Bernstein basis function defined by

Bn
k (x,a,b) =

(
n
k

)
(x – a)k(b – x)n–k

(b – a)m
,

cf. [].

A Bernstein polynomial P(x) is a polynomial represented in the Bernstein basis func-
tions

P(x) =
n∑

k=

cnkB
n
k (x), ()

cf. [].
Recently, Simsek [, ], Simsek et al. [] and Acikgoz et al. [] have also studied on

the generating function for Bernstein basis type functions.
There are many applications of the Bernstein-type polynomials which are related to the

theory of the Bezier curves, approximation theory, solving high even-order differential
equations by using the Bernstein Galerkin method.
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In approximation theory, the Weierstrass approximation theorem is very useful. The
Bernstein basis functions are also related to this theorem. We give the following remarks
for this theorem.
Let f : [, ] → R be a continuous function. The sequence of the Bernstein polynomials

of f is given by

Bn(x, f ) =
n∑

k=

f
(
k
n

)
Bn
k (x),

∣∣Bn(x, f ) – f (x)
∣∣ → 

as n → ∞, which was proved by many methods, for example, by the Weierstrass approx-
imation theorem, by the probabilistic interpretation toBn(x, f ) (cf. [, , ]).

3 Identities for the Bernstein basis functions
In this section, we use the generating functions for the Bernstein basis functions to derive
a family of functional equations. Using these equations, we derive a collection of identities
for the Bernstein basis functions.

3.1 Sums and alternating sums
From (), we get the following functional equations:

∞∑
k=

fB,k(x, t) = et ()

and

∞∑
k=

(–)kfB,k(x, t) = e(–x)t . ()

Theorem . (Sum of the Bernstein basis functions)

n∑
k=

Bn
k (x) = .

Proof From (), one finds that

∞∑
k=

fB,k(x, t) =
∞∑
n=

tn

n!
. ()

By combining () and (), we get

∞∑
n=

( n∑
k=

Bn
k (x)

)
tn

n!
=

∞∑
n=

tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �
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Theorem . (Alternating sum of the Bernstein basis functions)

n∑
k=

(–)kBn
k (x) = ( – x)n.

Proof By combining () and (), we obtain

∞∑
n=

( n∑
k=

(–)kBn
k (x)

)
tn

n!
=

∞∑
n=

( – x)ntn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Remark . Goldman [], [, Chapter , pp.-] derived the formula for the alter-
nating sum of the Bernstein basis functions algebraically.

3.2 Subdivision
From (), we have the following functional equation:

fB,j(xy, t) = fB,j(x, ty)et(–y). ()

From this functional equation, we get the following identity which is the basis for subdi-
vision of Bezier curves, cf. [–, ].

Theorem .

Bn
j (xy) =

n∑
k=j

Bk
j (x)B

n
k (y).

Proof By equations () and (),

∞∑
n=j

Bn
j (xy)

tn

n!
=

( ∞∑
n=

Bn
j (x)y

n tn

n!

)( ∞∑
n=

( – y)ntn

n!

)
.

Therefore

∞∑
n=j

Bn
j (xy)

tn

n!
=

∞∑
n=j

( n∑
k=j

Bk
j (x)

yk( – y)n–k

k!(n – k)!

)
tn.

Substituting () into the above equation, we arrive at the desired result. �

Remark . Theorem . is a bit tricky to prove with algebraic manipulations. Goldman
[], [, Chapter , pp.-] proved this identity algebraically. He also proved the fol-
lowing related subdivision identities:

Bn
j
(
( – y)x + y

)
=

j∑
k=

Bn–k
j–k (x)B

n
k (y)
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and

Bn
j
(
( – y)x + yz

)
=

n∑
k=

(∑
p+q=j

Bn–k
p (x)Bk

q(z)
)
Bn
k (y).

For additional identities, see [], [, Chapter , pp.-].

3.3 Formula for the monomials in terms of the Bernstein basis functions
Multiplying both sides of () by

(k
l
)
, we get

(
k
l

)
(xt)k

k!
et(–x) =

(
k
l

) ∞∑
n=

Bn
k (x)

tn

n!
.

Summing both sides of the above equation over k, we obtain the following functional equa-
tion, which is used to derive a formula for the monomials in terms of the Bernstein basis
functions:

xltl

l!
et =

∞∑
k=

(
k
l

)
fB,k(x, t). ()

Theorem .

(
n
l

)
xl =

k∑
l=

(
k
l

)
Bn
k (x).

Proof Combining () and (), we get

xl

l!

∞∑
n=

tn+l

n!
=

∞∑
n=

( n∑
k=

(
k
l

)
Bn
k (x)

)
tn

n!
.

Therefore

∞∑
n=

((
n
l

)
xl

)
tn

n!
=

∞∑
n=

( n∑
k=

(
k
l

)
Bn
k (x)

)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

3.4 Differentiating the Bernstein basis functions
In this section we give higher-order derivatives of the Bernstein basis functions. We begin
by observing that

fB,k(x, t) = gk(t,x)h(t,x), ()

where

gk(t,x) =
tkxk

k!

http://www.fixedpointtheoryandapplications.com/content/2013/1/80
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and

h(t,x) = e(–x)t .

Using Leibnitz’s formula for the lth derivative, with respect to x, we obtain the following
higher-order partial differential equation:

∂ lfB,k(x, t)
∂xl

=
l∑

j=

(
l
j

)(
∂ jgk(t,x)

∂xj

)(
∂ l–jh(t,x)

∂xl–j

)
. ()

From this equation, we arrive at the following theorem.

Theorem .

∂ lfB,k(x, t)
∂xl

=
l∑

j=

(
l
j

)
(–)l–jtlfB,k–j(x, t). ()

Proof Formula () follows immediately from (). �

Applying Theorem ., we obtain a new derivation for the higher-order derivatives of
the Bernstein basis functions.

Theorem .

dlBn
k (x)

dxl
=

n!
(n – l)!

l∑
j=

(–)l–j
(
l
j

)
Bn–l
k–j (x). ()

Proof By substituting the right-hand side of () into (), we get

∞∑
n=

(
dlBn

k (x)
dxl

)
tn

n!
=

∞∑
n=

( l∑
j=

(–)l–j
(
l
j

)
Bn
k–j(x)

)
tn+l

n!
.

Therefore

∞∑
n=

(
dlBn

k (x)
dxl

)
tn

n!
=

∞∑
n=

( l∑
j=

(–)l–j
(
l
j

)(
n
l

)
l!Bn–l

k–j (x)

)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Substituting l =  into (), we arrive at the following standard corollary.

Corollary .

d
dx

Bn
k (x) = n

(
Bn–
k–(x) – Bn–

k (x)
)
,

cf. [–].
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3.5 Recurrence relation
In the previous section we computed the derivative of () with respect to x to derive a
derivative formula for the Bernstein basis functions. In this section we are going to differ-
entiate () with respect to t to derive a recurrence relation for the Bernstein basis func-
tions.
Using Leibnitz’s formula for the vth derivative, with respect to t, we obtain the following

higher-order partial differential equation:

∂vfB,k(x, t)
∂tv

=
v∑
j=

(
v
j

)(
∂ jgk(t,x)

∂tj

)(
∂v–jh(t,x)

∂tv–j

)
. ()

From the above equation, we have the following theorem.

Theorem .

∂vfB,k(x, t)
∂tv

=
v∑
j=

Bv
j (x)fB,k–j(x, t). ()

Proof Formula () follows immediately from (). �

Using definitions () and () in Theorem ., we obtain a recurrence relation for the
Bernstein basis functions.

Theorem .

Bn
k (x) =

v∑
j=

Bv
j (x)B

n–v
k–j (x). ()

Proof By substituting the right-hand side of () into (), we get

∂v

∂tv

( ∞∑
n=

Bn
k (x)

tn

n!

)
=

∞∑
n=

( v∑
j=

Bv
j (x)B

n
k–j(x)

)
tn

n!
.

Therefore

∞∑
n=v

Bn
k (x)

tn–v

(n – v)!
=

∞∑
n=

( v∑
j=

Bv
j (x)B

n
k–j(x)

)
tn

n!
.

From the above equation, we get

∞∑
n=v

Bn
k (x)

tn–v

(n – v)!
=

∞∑
n=v

( v∑
j=

Bv
j (x)B

n–v
k–j (x)

)
tn–v

(n – v)!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �
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We also computed the derivative of () with respect to t to derive the following higher-
order partial differential equation:

∂vfB,k(x, t)
∂tv

=
v∑
j=

(
v
j

)
Bv
v–j(x)fB,k–v+j(x, t).

By using the above equation, we derive another recurrence relation for the Bernstein
basis functions as follows:

Bn
k (x) =

v∑
j=

(
v
j

)
Bv
v–j(x)B

n–v
k–v+j(x).

Remark . Setting v =  in (), one obtains the standard recurrence

Bn
k (x) = ( – x)Bn–

k (x) + xBn–
k–(x).

3.6 Degree raising
In this section we present a functional equation which we apply to provide a new proof of
the degree raising formula for the Bernstein polynomials.
From (), we obtain the following functional equation:

(xt)dfB,k(x, t) =
(k + d)!

k!
fB,k+d(x, t).

Therefore

xdBn
k (x) =

n!(k + d)!
k!(n + d)!

Bn+d
k+d(x). ()

Substituting d =  into the above equation, we have

xBn
k (x) =

k + 
n + 

Bn+
k+(x). ()

The above relation can also be proved by (), cf. [–].
From (), we also get the following functional equation:

(xt)–dfB,k(x, t) =
(k – d)!

k!
fB,k–d(x, t).

Therefore

( – x)dBn
k (x) =

n!(n + d – k)!
(n + d)!(n – k)!

Bn+d
k (x).

Substituting d = , we have

( – x)Bn
k (x) =

(n +  – k)
(n + )

Bn+
k (x). ()

Adding () and (), we get the standard degree elevation formula

Bn
k (x) =


n + 

(
(k + )Bn+

k+(x) + (n +  – k)Bn+
k (x)

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/80
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4 New identities
In this section, using alternative forms of the generating functions, functional equations
and the Laplace transform, we give many new identities for the Bernstein basis functions.
Using (), we obtain the following functional equations:

fB,k (x, t)fB,k (x, t) =
(
k + k
k

)


k+k
fB,k+k (x, t) ()

and

fB,k(x, t)fB,k(y, –t) =
(–xyt)k

(k!)
et(y–x). ()

Theorem .

Bn
k+k (x) =

k+k–nk!k!
(k + k)!

n∑
j=

(
n
j

)
Bj
k (x)B

n–j
k (x).

Proof By substituting the right-hand side of () into (), we get

∞∑
n=

Bn
k (x)

tn

n!

∞∑
n=

Bn
k (x)

tn

n!
=

∞∑
n=

Bn
k+k (x)

n–k–k (k + k)!tn

n!k!k!
.

Therefore

∞∑
n=

( n∑
j=

(
n
j

)
Bj
k (x)B

n–j
k (x)

)
tn

n!
=

∞∑
n=

Bn
k+k (x)

n–k–k (k + k)!tn

n!k!k!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Theorem .

(–xy)k(y – x)n–k =
(k!)

(n)k

n∑
j=

(
n
j

)
(–)n–jBj

k(x)B
n–j
k (y),

where

(n)k = n(n – ) · · · (n – k + ),

and (n) = .

Proof Combining () and (), we get

( ∞∑
n=

Bn
k (x)

tn

n!

)( ∞∑
n=

(–)nBn
k (y)

tn

n!

)
=
(–xy)k

(k!)

∞∑
n=

(y – x)ntn+k

n!
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/80
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From the above equation, we obtain

∞∑
n=

( n∑
j=

(
n
j

)
(–)n–jBj

k(x)B
n–j
k (y)

)
tn

n!
=
(–xy)k

(k!)

∞∑
n=

(n)k(y – x)n–k
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Theorem . Let x �= . For all positive integers k and n, we have

n–k∑
j=

(
n
j

)
xj–kBn–j

k (x) =
(
n
k

)
.

Proof By using (), we obtain

∞∑
n=

Bn
k (x)

tn

n!

∞∑
n=

xn
tn

n!
=
tkxk

k!

∞∑
n=

tn

n!
.

Therefore

∞∑
n=k

( n–k∑
j=

(
k
j

)
xjBn–j

k (x)

)
tn

n!
= xk

∞∑
n=k

(
n
k

)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Theorem . For all positive integers k and n, we have

n–k∑
j=

(–)j
(
n
j

)
Bn–j
k (x) = (–)n–k

(
n
k

)
xn.

Proof By using (), we get

∞∑
n=

Bn
k (x)

tn

n!

∞∑
n=

(–)n
tn

n!
=
tkxk

k!

∞∑
n=

(–)nxn
tn

n!
.

Therefore

∞∑
n=k

( n–k∑
j=

(–)j
(
k
j

)
Bn–j
k (x)

)
tn

n!
=

∞∑
n=k

(
n
k

)
(–)n–kxn

tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Theorem . For all positive integers k and n, we have

n–k∑
j=

(–)j
(
n
j

)
( – x)jBn–j

k (x) =

⎧⎨
⎩xk , for n = k,

, for n �= k.

http://www.fixedpointtheoryandapplications.com/content/2013/1/80
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Proof Proof of Theorem . is the same as that of Theorem .. So we omit it. �

5 Applications of the Laplace transform to the generating functions for the
Bernstein basis functions

In this section, we give some applications of the Laplace transform to the generating func-
tions for the Bernstein basis functions. We obtain interesting series representations for
the Bernstein basis functions.

Theorem . Let x �= . For all the positive integer k, we have

∞∑
n=

xBn
k (x) = .

Proof Integrate equation () (by parts) with respect to t from  to ∞, we have

∞∑
n=

Bn
k (x)


n!

∫ ∞


tne–t dt =

xk

k!

∫ ∞


tke–xt dt. ()

If we appropriately use the case

x > 

of the following Laplace transform of the function f (t) = tk :

L
(
tk

)
=

k!
xk+

,

on the both sides of (), we find that

∞∑
n=

Bn
k (x) =


x
.

From the above equation, we arrive at the desired result. �

Theorem . Let x �= . For all the positive integer k, we have

∞∑
n=

(–)n
Bn
k (x)
xn+

= (–)kxk .

Proof Proof of Theorem . is the same as that of Theorem .. That is, if we replace t by
–t in equation () and integrate by parts with respect to t from  to ∞ using the Laplace
transform of the function f (t) = tn, then we arrive at the desired result. �

6 Further remarks and observations
The Fourier series of the Bernstein polynomials has been studied, without generating
functions, by Izumi et al. []. They investigated many properties of the Fejer mean of the
Fourier series of these polynomials. The Fourier transform of the Bernstein polynomials
has also been given, without generating functions, by Chui et al. []. By replacing t by it

http://www.fixedpointtheoryandapplications.com/content/2013/1/80
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in ()-(), one may give applications of the Fourier transform to the complex generating
functions for the Bernstein basis functions.
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