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Abstract
In this paper, by means of integral representation, we introduce the generalized
Hurwitz-Lerch zeta functions of arbitrary complex order. For these functions, we
establish the reduction formula and its associated dual formula. We then investigate
analytic continuations to the whole complex plane and special values. By means of
these reduction and dual formulas, we obtain nice and useful formulas for the
Bernoulli-Nörlund and Apostol-Euler-Nörlund polynomials.

1 Introduction
The origin of the Hurwitz-Lerch zeta functions and their study go back to Riemann and
Hurwitz. In fact, these zeta functions have many important identities which are at the
origin of numerous applications in various areas inmathematics and physics. In this paper
we introduce and investigate reduction and duality formulas for the generalized Hurwitz-
Lerch zeta functions ζ (s,α;x,λ). As an application, we show how these formulas can be
easily used for the study of the convolution relations and computation of special values of
the Apostol-Bernoulli and Apostol-Euler-Nörlund polynomials of an arbitrary order.
Throughout this paper, we use the following notations, definitions and identities.

1.1 Notations and preliminaries
For this subsection, we refer to Carlitz [, ] and Comtet [, p., p., p., p.]. Let
α be a complex number, and let k be a non-negative integer. The rising factorial 〈α〉k is
defined by

〈α〉k :=
⎧⎨
⎩ if k = ,

α(α + ) · · · (α + k – ) if k ≥ .

We use the falling factorial (α)k = (–)k〈–α〉k , the binomial notation
〈
α

k
〉
= 〈α〉k

k! and the
polynomials R(n,k,a) and R(n,k,a), which are defined by equalities () and (). For a non-
negative integer n, parameter a and an indeterminate X, we have

〈a +X〉n =
n∑

k=

R(n,k,a)Xk ()
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and

Xn =
n∑

k=

(–)n–kR(n,k,a)〈a +X〉k . ()

From Carlitz [, ] we know that these polynomials have the explicit expressions

R(n,k,a) =
n–k∑
j=

(
j + k
j

)
|s|(n, j + k)aj, ()

R(n,k,a) =
n–k∑
m=

(
n
m

)
S(n –m,k)am, ()

where |s|(n, l) = (–)n–ls(n, l), and s(n, l) and S(n, l) are the Stirling numbers of the first
and the second kind, respectively. Moreover, these polynomials satisfy the orthogonality
formulas

n∑
k=

(–)n–kR(n,k,a)R(k, j,a) =
n∑

k=

R(n,k,a)(–)k–jR(k, j,a) = δn,j,  ≤ j ≤ n, ()

where δn,j is the Kronecker delta symbol.

1.2 Motivation
For a given positive integer N and complex λ,x ∈ C\{} with |λ| ≤  and �(x) > , the
multiple Hurwitz-Lerch zeta function ζN (s;x,λ) of order N is defined by the series

ζN (s;x,λ) =
∑

k,...,kN≥

λk+···+kN

(x + k + · · · + kN )s
()

for a complex s such that �(s) > N if λ =  and �(s) >  if λ �= , and its integral represen-
tation is given by

ζN (s;x,λ) =


�(s)

∫ +∞


ts–

e–xt

( – λe–t)N
dt. ()

The ordinary Hurwitz-Lerch zeta function ζ (s;x,λ), which corresponds to the function
ζ(s;x,λ), was originally defined in [] by Erdelyi et al.Moreover, Choi and Srivastava [–
], Kanemitsu et al. [] and Nakamura [] presented its various properties and applica-
tions.
The multiple Hurwitz zeta function ζN (s;x) of order N corresponds to the multiple

Hurwitz-Lerch zeta function ζN (s;x, ), while the Hurwitz zeta function ζ (s;x) is simply
ζ(s;x, ). It is shown in [] that themultiple Hurwitz zeta function ζN (s;x) can be reduced
to a finite sum of the Hurwitz zeta functions ζ (s;x) with Stirling numbers in coefficients.
Precisely, we have

ζN (s;x) =
N–∑
k=

pN ,k(x)ζ (s – k;x), ()
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where

pN ,k(x) =
R(N – ,k,  – x)

(N – )!
. ()

Formore details about the formula (), see []. From the analytic continuations of ζN (s;x)
and ζ (s;x) to the whole complex plane, the generalized nth-Bernoulli polynomial B(N)

n (x)
of orderN and the nth-Bernoulli polynomial Bn(x) are related to ζN (–n;x) and ζ (–n;x) by
the formulas

ζN (–n;x) = (–)N
n!

(N + n)!
B(N)
N+n(x), ()

ζ (–n;x) = –
Bn+(x)
n + 

, ()

for any non-negative integer n. Therefore, by means of equations (), () and (), we
can easily write B(N)

n (x) as a linear combination of the Bernoulli polynomials Bn–k(x), k =
, . . . ,N –  with n≥ N .

1.3 Summary
In this paper we deal with the following. Replacing the integer N by any complex num-
ber α, we relax the definition of the multiple Hurwitz-Lerch zeta function, and we gen-
eralize the formulas (), () and (). We prove reduction and duality formulas for the
Hurwitz-Lerch zeta functions ζ (s,α;x,λ) and give applications to the Bernoulli-Nörlund
and Apostol-Euler-Nörlund polynomials.
The paper can be summarized as follows. In Section , we state our main results. The

Section  contains the proofs of these results. In Section , bymeans of themain results, we
get reduction and its dual formulas for the Bernoulli-Nörlund andApostol-Euler-Nörlund
polynomials.

2 Statement of main results
Let us consider complex numbers α, λ and x such that |λ| ≤  and �(x),�(α) > . We
define the generalized Hurwitz-Lerch zeta function by the integral representation

ζ (s,α;x,λ)

=
�(α)
�(s)

∫ ∞



ts–e–xt

( – λe–t)α
dt, �(s) > �(α) for λ =  and �(s) >  for λ �= . ()

Lemma . Let τ be a positive real number, and let α, λ be complex numbers such that
|λ| ≤ . Then the series of functions

∞∑
k=

〈
α

k

〉
λke–kt

is absolutely and uniformly convergent on [τ , +∞[ and


( – λe–t)α

=
∞∑
k=

〈
α

k

〉
λke–kt .
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Proof Indeed, we have for all positive integer k the majoration
∣∣∣∣
〈
α

k

〉
λke–kt

∣∣∣∣ ≤ 〈|α|〉k
k!

e–kτ ,

and the ratio

〈|α|〉k+e–(k+)τ
(k + )!

· k!
〈|α|〉ke–kτ

tends to e–τ ∈ ], [ as k → +∞. Thus, the lemma is proved. �

On the other hand, the integral

∫ ∞



ts–e–xt

( – λe–t)α
dt =

∫ ∞


ts–e–xt

( ∞∑
k=

〈
α

k

〉
λke–kt

)
dt

is absolutely convergent for �(s) > �(α) for λ = , and �(s) >  for λ �= . Therefore, by
means of Lemma ., we can interchange the summation and integration to obtain

∫ ∞



ts–e–xt

( – λe–t)α
dt =

∞∑
k=

〈
α

k

〉
λk

(∫ ∞


ts–e–(x+k)t dt

)
= �(s)

∞∑
k=

〈
α

k

〉
λk

(x + k)s
.

Therefore, we obtain the series representation of ζ (s,α;x,λ) as follows.

Proposition . For any complex numbers α, λ and x such that |λ| ≤  and�(x),�(α) > ,
we have

ζ (s,α;x,λ) =
∞∑
k=

�(α + k)
k!

· λk

(x + k)s
.

Note that forα be a positive integerN , we have ζN (s;x,λ) = ζ (s,N ;x,λ)
(N–)! , and by Proposition .,

their series representations are given as follows.

Corollary . For any positive integer N , complex number λ and x such that |λ| ≤  and
�(x) > , we have

ζN (s;x,λ)

=
∞∑
k=

(
k +N – 
N – 

)
λk

(x + k)s
, where �(s) >N for λ =  and �(s) >  for λ �= .

We are now able to state our main results.

Theorem . (Reduction formula) For any non-negative integer N and complex numbers
α, λ, x such that |λ| ≤  and �(x),�(α) > , the following reduction formula holds:

ζ (s,α +N ;x,λ) =
N∑
k=

R(N ,k,α – x)ζ (s – k,α;x,λ), ()

with �(s) > �(α) +N for λ =  and �(s) >N for λ �= .
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By dualizing the above theorem, we obtain the following formula.

Theorem . (Duality formula) For any non-negative integer N and complex numbers α,
λ, x such that |λ| ≤  and �(x),�(α) > , we have

ζ (s –N ,α;x,λ) =
N∑
k=

(–)N–kR(N ,k,α – x)ζ (s,α + k;x,λ),

with �(s) > �(α) +N for λ =  and �(s) >N for λ �= .

For α = , we get an extension of Choi’s reduction formula to multiple Hurwitz-Lerch
zeta ζN (s;x,λ), and we find its dual version.

Corollary . LetN be a positive integer,and let x, λ be complex numbers such that |λ| ≤ ,
�(x) > .Then, for any complex s with�(s) >N ,wehave the reduction andduality formulas

ζN (s;x,λ) =
N–∑
k=

R(N – ,k,  – x)
(N – )!

ζ (s – k;x,λ), ()

ζ (s –N ;x,λ) =
N∑
k=

(–)N–kk!R(N ,k,  – x)ζk+(s;x,λ). ()

Substituting x = λ =  in Corollary ., we obtain the following.

Corollary . Let N be a positive integer. For any complex s with �(s) >N , we obtain the
formula

ζN (s) =


(N – )!

N–∑
k=

|s|(N – ,k)ζ (s – k), ()

and its dual

ζ (s –N) =
N∑
k=

k!(–)N–kS(N ,k)ζk+(s), ()

where ζN (s) = ζ (s,N ;)
(N–)! is the Riemann zeta function of order N .

3 Proofs of Theorem 2.4 and Theorem 2.5
In the sequel, all the parameters under consideration are subject to the conditions of the
theorem. For fixed parameters α, x and λ, the function t >  �→ f (t,α;x,λ) := �(α)e–xt( –
λe–t)–α is smooth and satisfies the differential identity

∂t f (t,α;x,λ) = (α – x)f (t,α;x,λ) – f (t,α + ;x,λ). ()

From the identity (), with the help of integration by parts, we get

�(s)ζ (s,α + ;x,λ)

=
∫ ∞


ts–f (t,α + ;x,λ)dt

http://www.fixedpointtheoryandapplications.com/content/2013/1/82
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= (α – x)
∫ ∞


ts–f (t,α;x,λ)dt –

∫ ∞


ts–∂t f (t,α;x,λ)dt

= (α – x)
∫ ∞


ts–f (t,α;x,λ)dt –

[
ts–fα(t)

]∞
 + (s – )

∫ ∞


ts–f (t,α;x,λ)dt.

The hypotheses of the theorems ensure that [ts–f (t,α;x,λ)]∞ = , and hence we have

�(s)ζ (s,α + ;x,λ) = (α – x)
∫ ∞


ts–f (t,α;x,λ)dt + (s – )

∫ ∞


ts–f (t,α;x,λ)dt

= (α – x)�(s)ζ (s,α;x,λ) + (s – )�(s – )ζ (s – ,α;x,λ),

and therefore

ζ (s,α + ;x,λ) = (α – x)ζ (s,α;x,λ) + ζ (s – ,α;x,λ), ()

or, equivalently,

(
α – x + E–

s
)
ζ (s,α;x,λ) = E+

αζ (s,α;x,λ), ()

where the functions E±
u : ϕ(u) �→ ϕ(u± ) are the translation operators. By switching α in

the identity (), we see that the N equalities

(
α + k – x + E–

s
)
ζ (s,α + k;x,λ) = E+

αζ (s,α + k;x,λ), k = , , . . . ,N –  ()

hold. The composition of these equalities yields the relation

〈
α – x + E–

s
〉
Nζ (s,α;x,λ) =

(
E+

α

)N
ζ (s,α;x,λ). ()

On the other hand, we have

〈
α – x + E–

s
〉
N =

N∑
k=

R(N ,k,α – x)
(
E–
s
)k , ()

(
E+

α

)N
ζ (s,α;x,λ) = ζ (s,α +N ;x,λ). ()

Therefore, from equalities (), () and (), we get our Theorem ..
The proof of Theorem . is an immediate consequence of the orthogonality properties

() of the polynomials R(n,k,a) and R(k, j,a), and Theorem ..

4 The Bernoulli-Nörlund and Apostol-Euler-Nörlund polynomials
4.1 Apostol-Euler-Nörlund polynomials
The Apostol-Euler-Nörlund polynomials E(α)

n (x;λ) are defined, for λ �= –, by the generat-
ing function

(


λet + 

)α

ext =
∞∑
n=

E(α)
n (x;λ)

tn

n!
, |t| < ∣∣log(–λ)

∣∣. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/82
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We consider complex numbers α, λ and x such that |λ| ≤  and �(x),�(α) > . We first
prove the analytic continuation of s �→ �(s)ζ (s,α;x,λ), and we compute special values of
ζ (s,α;x,λ).

Theorem . Let λ be a complex number with λ �= . The function s �→ �(s)ζ (s,α;x,λ)
has analytic continuation to the whole complex plane, except possible simple poles at non-
positive integers s = –m with residue

�(α)
m!

E(α)
m (x; –λ). ()

Moreover, the function s �→ ζ (s,α;x,λ) has analytic continuation as an entire function to
the whole complex plane, and for all non-negative integer n, we have

�(α)E(α)
n (x; –λ) = αζ (–n,α;x,λ). ()

Proof Let λ be a complex number other than . We choose a real number δ >  so that
δ < | logλ|. We split the integral from zeta’s definition as

�(s)
�(α)

ζ (s,α;x,λ) =
(∫ δ


+

∫ ∞

δ

)
ts–

e–xt

( – λe–t)α
dt.

As �(x) >  and |λ| ≤ , for all complex number α, the integral

∫ ∞

δ

ts–
e–xt

( – λe–t)α
dt

defines an entire function of s ∈ C.
We substitute in the first integral, for �(s) > , the generating expansion of the Apostol-

Euler-Nörlund polynomials

α

∫ δ


ts–

e–xt

( – λe–t)α
dt =

∞∑
n=

(–)nE(α)
n (x; –λ)
n!

∫ δ


ts–+n dt =

∞∑
n=

(–)nδs+n

n!(s + n)
E(α)
n (x; –λ).

It hence follows that

α

�(α)
ζ (s,α;x,λ) =

∞∑
n=

(–)nδs+n

n!(s + n)�(s)
E(α)
n (x; –λ) +

α

�(s)

∫ ∞

δ

ts–
e–xt

( – λe–t)α
dt.

For a given non-negative integer m, we know that

lim
s→–m

(s +m)�(s) =
(–)m

m!
,

and /�(–m) = . This proves the analytic continuation of the function s �→ ζ (s,α;x,λ) as
an entire function to the whole complex plane, and

�(α)E(α)
m (x; –λ) = αζ (–m,α;x,λ). ()

�

http://www.fixedpointtheoryandapplications.com/content/2013/1/82
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Remark . Equality () has been proved, using different method, by Luo [, Theo-
rem .].

Now, by applying our Theorem ., Theorem . and Theorem ., we deduce the re-
duction and duality formulas for the Apostol-Euler-Nörlund polynomials E(α)

n (x;λ).

Theorem . For any non-negative integers n, N and complex numbers α, λ �= – with
|λ| ≤ , we have

–N 〈α〉NE(α+N)
n (x;λ) =

N∑
k=

R(N ,k,α – x)E(α)
n+k(x;λ)

and

E(α)
n+N (x;λ) =

N∑
k=

(–)N–kR(N ,k,α – x)–k〈α〉kE(α+k)
n (x;λ). ()

4.2 Explicit formula for the Apostol-Euler-Nörlund polynomials
In particular for n = , and by using formula (), we get this explicit formula for the
Apostol-Euler-Nörlund polynomials.

Proposition . Let α, λ be complex numbers with |λ| ≤ , λ �= –. For any positive integer
N , we have

E(α)
N (x;λ) =

α

(λ + )α

N∑
k=

(–)N–kR(N ,k,α – x)
〈α〉k

(λ + )k
. ()

The above formula, when combined with the well-known equality

E(α)
N (x;λ) =

N∑
k=

(
N
k

)
xN–kE(α)

k (;λ),

gives this other explicit expression

E(α)
N (x;λ) =

α

(λ + )α

N∑
k=

(
N
k

)
xN–k

( k∑
j=

(–)k–jR(k, j,α)
〈α〉j

(λ + )j

)
. ()

4.3 Differential formula for the Apostol-Euler-Nörlund polynomials
We consider the differential operatorDλ = λ d

dλ
. From the series representation (.) of the

Hurwitz-Lerch zeta functions, we have

Dn
λ

(
λxζ (s,α;x,λ)

)
= λxζ (s – n,α;x,λ). ()

Using Theorem . at s = , we obtain the differential formula

E(α)
n (x;λ) = αλ–xDn

λ

(
λx

( + λ)α

)
. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/82
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4.4 Bernoulli-Nörlund polynomials
In this subsection we investigate convolution formulas for the Bernoulli-Nörlund polyno-
mials B(α)

n (x). We define them by the generating function

(
t

et – 

)α

ext =
∞∑
n=

B(α)
n (x)

tn

n!
, |t| < π .

The Nörlund polynomials are B(α)
n := B(α)

n (), see [].
We set a = �(α), and we introduce the modified Hurwitz-Lerch zeta function defined

by the integral representation

ζ *(s,α;x) =


�(s – α + [a])

∫ ∞



ts–e–xt

( – e–t)α
dt, �(s) >max

(
a, {a}). ()

Theorem . (λ = ) Let α, x be complex numbers with �(x) > . The function s �→ �(s –
α + [a])ζ *(s,α;x) has analytic continuation to the whole complex plane, except simple poles
at s = α – m with residue (–)m

m!([a]–m–)!B
(α)
m (x), for any non-negative integer m < [a] (when

a ≥ ).Moreover, for all non-negative integer m ≥ [a], we have

ζ *(α –m,α;x) = (–)[a]
(m – [a])!

m!
B(α)
m (x). ()

Proof The proof is similar to that of Theorem .. We split the integral

�
(
s – α + [a]

)
ζ *(s,α;x) =

(∫ 


+

∫ ∞



)
ts–

e–xt

( – e–t)α
dt.

As �(x) > , for all complex number α, the integral

∫ ∞


ts+α– e–xt

( – e–t)α
dt

defines an entire function of s ∈ C.
We use in the first integral, for �(s) > a, the generating function of the Bernoulli-

Nörlund polynomials

∫ 


ts–

e–xt

( – e–t)α
dt =

∞∑
n=

(–)n

n!
B(α)
n (x)

∫ 


ts–α–+n dt =

∞∑
n=

(–)n

n!(s – α + n)
B(α)
n (x).

It hence follows that

ζ *(s,α;x) =
∞∑
n=

(–)n

n!(s – α + n)�(s – α + [a])
B(α)
n (x) +


�(s – α + [a])

∫ ∞


ts–

e–xt

( – e–t)α
dt.

For a given non-negative integer n < [a] (if [a] > ), we have a simple pole at s = α – n with
residue (–)n

n!([a]–n–)!B
(α)
n (x).

For a given integer n≥ [a], it is known that

lim
s→α–n

(s – α + n)�
(
s – α + [a]

)
=

(–)[a]–n

(n – [a])!

http://www.fixedpointtheoryandapplications.com/content/2013/1/82
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and /�([a] – n) = . Then we obtain

B(α)
m (x) = 〈–m〉[a]ζ *(α –m,α;x).

This proves the analytic continuation of the function s �→ ζ *(s,α;x) as an entire function
to the whole complex plane, except simple poles at s = α – n,  ≤ n < [a] if �(α)≥ .
This completes the proof of the theorem. �

Remark . For any positive integer α, the relation () recovers the results in the pa-
per [].

Observe that

�(α)ζ *(s,α;x) =
�(s)

�(s – α + [a])
ζ (s,α;x, ).

Hence, from Theorem . and Theorem ., we deduce the following reduction and
duality formulas.

Theorem . Under the hypothesis of Theorem ., we have

〈α〉Nζ *(s,α +N ;x) =
N∑
k=

R(N ,k,α – x)
(s – )k

(s –  – α + [a])k
ζ *(s – k,α;x), ()

(s – )N
(s –  – α + [a])N

ζ *(s –N ,α;x) =
N∑
k=

(–)N–kR(N ,k,α – x)〈α〉kζ *(s,α + k;x). ()

By use of Theorem . and equalities (), (), we get the convolution identities on the
Bernoulli-Nörlund polynomials.

Theorem . For any non-negative integer n and any positive integer N , we have the con-
volution identity and its dual version

〈α〉N B(α+N)
n+N (x)
(n +N)!

= (–)N
N∑
k=

R(N ,k,α – x)〈n +  – α〉k B
(α)
n+k(x)

(n + k)!
, ()

〈n +  – α〉N B(α)
n+N (x)

(n +N)!
=

N∑
k=

R(N ,k,α – x)〈α〉k B
(α+k)
n+k (x)
(n + k)!

. ()

Note that from Theorem . we have the following corollaries.

Corollary . Under the hypothesis of Theorem ., for x = , and indeterminate α, we
obtain, among the so-called Nörlund polynomials B(α)

n , the formula

〈α〉N B(α+N)
n+N

(n +N)!
= (–)N

N∑
k=

R(N ,k,α)〈n +  – α〉k B(α)
n+k

(n + k)!
.
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Corollary . Under the hypothesis of Theorem ., for x = α, we obtain the following
formula:

〈α〉N B(α+N)
n+N (α)
(n +N)!

=
N∑
k=

s(N ,k)〈α – k – n〉k B
(α)
n+k(α)

(n + k)!
.

Corollary . Under the hypothesis of Theorem ., and if x = , α = , we obtain Euler’s
identity type on the Bernoulli numbers of order N

B(N)
n+N–

(n +N – )!
=

N–∑
k=

s(N ,k + )〈 – k – n〉k Bn+k

(n + k)!
.

This formula is an analogue of the nice identity for Bernoulli numbers obtained by Euler
and given by

B()
n+ = –(n + )Bn – nBn+ (n≥ )

and its generalization to Bernoulli numbers B(N)
n+ of arbitrary level N , cf. [, ].

Corollary . Under the hypothesis of Theorem ., taking n =  in the dual formula
(), we obtain

〈 – α〉N B(α)
N (x)
N !

=
N∑
k=

R(N ,k,α – x)〈α〉k B
(α+k)
k (x)
k!

.

5 Further applications
Webriefly indicate some possible ways to generalize a few known special functions related
to the Hurwitz-Lerch zetas functions. We give, in addition, associated reduction and du-
ality formulas.

5.1 Generalized polylogarithms
Let α, λ be complex numbers such that |λ| ≤  and �(α) > . We define the generalized
polylogarithms by the equality

Li(s,α;λ) =
∞∑
k=

�(α + k – )
(k – )!

· λk

ks
, ()

which is equivalent to the equalities

Li(s,α;λ) = λζ (s,α; ,λ) ()

and

Li(s,α;λ) =
λ�(α)
�(s)

∫ ∞



ts–e–t

( – λe–t)α
dt ()

for �(s) > �(α) if λ =  and �(s) >  if λ �= .
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The ordinary polylogarithm corresponds to

Li(s;λ) = Li(s, ;λ) =
λ

�(s)

∫ ∞



ts–

et – λ
dt;

for more details, see [, ].
Therefore, from Theorem . and Theorem ., the following reduction and duality

formulas hold.

Theorem . Under the hypothesis of Theorem . on the parameters α, λ, N and s, we
have the reduction and duality relations for the generalized polylogarithms

Li(s,α +N ;λ) =
N∑
k=

R(N ,k,α – )Li(s – k,α;λ), ()

Li(s –N ,α;λ) =
N∑
k=

(–)N–kR(N ,k,α – )Li(s,α + k;λ). ()

5.2 Generalized Fermi-Dirac functions
Following Srivastava et al. [], we extend the definition of the Fermi-Dirac functions, with
parameter α with �(α) > , as follows:

�v(s,α;x) =
�(α)
�(s)

∫ ∞


ts–

e–v(x+t)

(ex+t + )α
dt, �(x)≥ ,�(v) > –�(α), ()

and �(s) > �(α) if e–x = – and �(s) >  if e–x �= –. Alternatively, they have a series repre-
sentation related to the Hurwitz-Lerch zetas. Under the same conditions on parameters
as above, we have

�v(s,α;x) =
∞∑
k=

�(α + k)
k!

.
(–)ke–x(v+α+k)

(v + α + k)s
, ()

�v(s,α;x) = e–x(v+α)ζ
(
s,α; v + α, –e–x

)
. ()

The ordinary Fermi-Dirac function is given by

�v(s;x) := �v(s, ;x) =


�(s)

∫ ∞


ts–

e–v(x+t)

ex+t + 
dt. ()

Theorem. We have the reduction and duality relations for the generalized Fermi-Dirac
functions

�v–N (s,α +N ;x) =
N∑
k=

R(N ,k, –v)�v(s – k,α;x), ()

�v(s –N ,α;x) =
N∑
k=

(–)N–kR(N ,k, –v)�v–k(s,α + k;x), ()

for �(x)≥ , �(v) > –�(α), �(s) > �(α) +N if e–x = –, and �(s) >N otherwise.

http://www.fixedpointtheoryandapplications.com/content/2013/1/82


Bayad and Chikhi Fixed Point Theory and Applications 2013, 2013:82 Page 13 of 14
http://www.fixedpointtheoryandapplications.com/content/2013/1/82

5.3 Generalized Bose-Einstein functions
The generalized Bose-Einstein functions can also be defined as follows. As the case α = 
in [], we can define them by their integral representations

�v(s,α;x) =
�(α)
�(s)

∫ ∞


ts–

e–v(x+t)

(ex+t – )α
dt, �(x)≥ ,�(v) > –�(α), ()

and�(s) >�(α) if e–x = , and�(s) >  otherwise. Alternatively, their series representation
and relationship with Hurwitz-Lerch zetas are given by the equalities

�v(s,α;x) =
∞∑
k=

�(α + k)
k!

· e–x(v+α+k)

(v + α + k)s
, ()

�v(s,α;x) = e–x(v+α)ζ
(
s,α; v + α, e–x

)
. ()

The ordinary Bose-Einstein function corresponds to

�v(s;x) := �v(s, ;x) =


�(s)

∫ ∞


ts–

e–v(x+t)

ex+t – 
dt. ()

The related reduction and duality formulas are then similar to those of the generalized
Fermi-Dirac functions.

Theorem . We have the reduction and duality relations for the generalized Bose-
Einstein functions

�v–N (s,α +N ;x) =
N∑
k=

R(N ,k, –v)�v(s – k,α;x), ()

�v(s –N ,α;x) =
N∑
k=

(–)N–kR(N ,k, –v)�v–k(s,α + k;x), ()

for �(x)≥ , �(v) > –�(α), �(s) > �(α) +N if e–x = , and �(s) >N otherwise.

5.4 Formulas for the generalized Euler-Frobenius polynomials
We consider the Apostol-Euler-Frobenius-Nörlund type polynomials H (α)

n (x;λ|u) defined
as follows.
For u �= ,  and λ �= , u, the Frobenius-Euler-Nörlund polynomials are defined through

the generating function

(
 – u

λet – u

)α

ext :=
∞∑
n=

H (α)
n (x;λ|u) t

n

n!
, |t| <

∣∣∣∣log
(

λ

u

)∣∣∣∣. ()

The so-called Euler-Frobenius polynomials correspond to Hn(x|u) := H ()
n (x; |u), and we

denote the Apostol-Euler-Frobenius polynomials by Hn(x;λ|u) :=H ()
n (x;λ|u).

By writing

(
 – u

λet – u

)α

=
(
u – 
u

)α(


–λ
u et + 

)α

, ()
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we easily see that for all non-negative integer n, we have

H (α)
n (x;λ|u) =

(
u – 
u

)α

E(α)
n

(
x, –

λ

u

)
, ()

and using the explicit formula () of the Apostol-Euler-Nörlund polynomials, we get that
of the Apostol-Euler-Frobenius-Nörlund polynomials

H (α)
n (x;λ|u) =

(
u – 
u – λ

)α n∑
k=

(
n
k

)
xn–k

( k∑
j=

(–)k–jR(k, j,α)〈α〉j
(

u
u – λ

)j
)
. ()

On the other hand, using equality (), we deduce the differential formula for the Apostol-
Euler-Frobenius-Nörlund polynomials

H (α)
n (x;λ|u) = (u – )αλ–xDn

λ

(
λx

(u – λ)α

)
. ()
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