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Abstract
In the present paper, we introduce a simple Stancu generalization of q-analogue of
well-known Durrmeyer operators. We first estimate moments of q-Durrmeyer-Stancu
operators. We also establish the rate of convergence as well as Voronovskaja type
asymptotic formula for q-Durrmeyer-Stancu operators.

1 Introduction
In the last decade, the applications of q-calculus in the approximation theory is one of
the main areas of research. To approximate Lebesgue integrable functions on the interval
[, ], Durrmeyer introduced the integral modification of the well-known Bernstein poly-
nomials. In , Derriennic [] first studied these operators in detail. After the q-analogue
of Bernstein polynomials by Phillips [], Gupta and Heping [] introduced q-Durrmeyer
operators. Several other researchers have studied in this direction and obtained different
approximation properties of many operators [, ]. In the present article, we propose the
q-analogue of the Stancu generalization of Durrmeyer operators and study the conver-
gence behavior. We have used notations of q-calculus as given in [–].
We set pnk(q;x) =

(n
k
)
qx

k( – x)n–kq , p∞k(q;x) = xk
(–q)k [k]q !

( – x)∞q .
Phillips [] proposed the following q-Bernstein polynomials, which for each positive

integer n and f ∈ C[, ] are defined as

Bn,q(f ;x) =
n∑

k=

f
(
[k]q
[n]q

)
pnk(q;x).

In , Derriennic [] introduced a q-analogue of the Durrmeyer operators and has es-
tablished some approximation properties of the q-Durrmeyer operators. After couple of
years, Gupta [] studied q-analogue of Durrmeyer operators and discussed approxima-
tion properties of the following q-Durrmeyer operators: For f ∈ C[, ],

Dn,q(f ;x) = [n + ]q
n∑

k=

q–kpnk(q;x)
∫ 


f (t)pnk(q;qt)dqt

=
n∑

k=

Ank(f )pnk(q;x); ≤ x ≤ . ()
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Recently, Ibrahim et al. [, ] introduced Stancu generalization of certain operators and
discussed its approximation properties. Motivated by such type operators, we introduce
the Stancu type generalization of the q-Durrmeyer operators () for  ≤ α ≤ β , which is
defined as follows:

Dα,β
n,q (f ;x) = [n + ]q

n∑
k=

q–kpnk(q;x)
∫ 


f
(
[n]qt + α

[n]q + β

)
pnk(q;qt)dqt

=
n∑

k=

Aα,β
nk (f )pnk(q;x);  ≤ x ≤ . ()

It can be easily verified that in case q = , α =  and β = , the operators defined in ()
reduce to the well-known Durrmeyer operators as defined in []. Throughout the present
manuscript, the expression gn(x)⇑ g(x) means uniform convergence of a sequence {gn(x)}
to g(x).
The present note deals with the study of q-Durrmeyer-Stancu operators {Dα,β

n,q (f )} for  <
q < . First, we estimate the moments for q-Durrmeyer-Stancu operators. We also study
the rate of convergence as well as asymptotic formula for these operators {Dα,β

n,q (f )}. We
establish a direct results in terms of ω(f , ·).

2 Estimation of moments
In this section, we shall obtain Dα,β

n,q (ti;x), i = , , . . . .
Note that for s = , , . . . and by the definition of q-Beta function [], we have

∫ 


tspnk(q;qt)dqt =

qk[n]q![k + s]q!
[n + s + ]q![k]q!

and

∫ 


tsp∞k(q;qt)dqt = ( – q)s+

qk[k + s]q!
[k]q!

.

()

Lemma  We have

Dα,β
n,q (;x) = ,

Dα,β
n,q (t;x) =

[n]q + α[n + ]q + qx[n]q
[n + ]q([n]q + β)

,

Dα,β
n,q

(
t;x

)
=
q[n]q([n]q – )x + ((q( + q) + αq)[n]q + αq[]q[n]q)x

([n]q + β)[n + ]q[n + ]q

+
α

([n]q + β)
+
( + q + αq)[n]q + α[]q[n]q

([n]q + β)[n + ]q[n + ]q
.

Lemma  We have

δn(x) =Dα,β
n,q (t – x,x) =

( q[n]q
[n + ]q([n]q + β)

– 
)
x +

[n]q + α[n + ]q
[n + ]q([n]q + β)

,

γn(x) =Dα,β
n,q

(
(t – x),x

)

=
q[n]q – q[n]q – q[n]q[n + ]q([n]q + β) + [n + ]q[n + ]q([n]q + β)

([n]q + β)[n + ]q[n + ]q
x
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+
q( + q)[n]q + qα[n]q[n + ]q – ([n]q + α[n + ]q)[n + ]q([n]q + β)

([n]q + β)[n + ]q[n + ]q
x

+
( + q)[n]q + α[n]q[n + ]q
([n]q + β)[n + ]q[n + ]q

.

Remark  [] By simple computation, it can easily be verified that

Dn,q
(
tm;x

)
=

[n + ]q!
[n +m + ]q!

n∑
k=

[k + ]q[k + ]q · · · [k +m]qpnk(q;x), r ≥ .

Using [k + s]q = [s]q + qs[k]q, we get [k + ]q[k + ]q · · · [k + m]q =
∏m

s=([s]q + qs[k]q) =∑m
s= cs(m)[k]sq, where cs(m) > , s = , , , . . . ,m are constants independent of k. Hence,

Dn,q(tm;x) =
[n+]q !

[n+m+]q !
∑m

s= cs(m)
∑n

k=[k]sqpnk(q;x) =
[n+]q !

[n+m+]q !
∑m

s= cs(m)[n]sqBn,q(ts;x).

Remark  For allm ∈N∪ {},  ≤ α ≤ β , we have the following recursive relation for the
images of the monomials tm under Dα,β

n,q (tm;x) in terms of Dn,q(tj;x); j = , , , . . . ,m, as

Dα,β
n,q

(
tm;x

)
=

m∑
j=

(
m
j

)
[n]jqαm–j

([n]q + β)m
Dn,q

(
tj,x

)

=
m∑
j=

(
m
j

)
[n]jqαm–j

([n]q + β)m
[n + ]q!

[n + j + ]q!

j∑
s=

cs(m)[n]sqBn,q
(
ts;x

)
.

Since cs(m) >  for s = , , . . . ,m and Bn,q(ts;x) is a polynomial of degree ≤ min(s,n) (see
[]), we get Dα,β

n,q (tm;x) is a polynomial of degree ≤ min(m,n).

3 Convergence of q-Durrmeyer-Stancu operators
Theorem Let qn ∈ (, ].Then the sequence {Dα,β

n,qn (f )} convergence to f uniformly on [, ]
for each f ∈ C[, ] if and only if limn→∞ qn = .

The proof of the above theorem follows along the lines of [, Theorem ], thus we omit
the details.
Let q ∈ (, ) be fixed. We define Dα,β

∞,q(f , ) = f () and for x ∈ (, )

Dα,β
∞,q(f ;x) =


 – q

∞∑
k=

p∞k(q;x)q–k
∫ 


f
(
[n]qt + α

[n]q + β

)
p∞k(q;qt)dqt

=
∞∑
k=

Aα,β
∞k(f )p∞k(q;x). ()

Using the fact that [], we have

∞∑
k=

p∞k(q;x) = ,
∞∑
k=

(
 – qk

)
p∞k(q;x) = x, and

∞∑
k=

(
 – qk

)p∞k(q;x) = x + ( – q)x( – x).
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Using () and (), it is easy to prove that

Dα,β
∞,q(;x) = , Dα,β

∞,q(t;x) =
[n]q( + q(x – )) + α

[n]q + β
,

Dα,β
∞,q

(
t;x

)
=
[n]qqx + ([n]q(q( + q)( – q)) + qα[n]q)x

([n]q + β)

+
[n]q( – q)( + q) + α( – q)[n]q + α

([n]q + β)
.

For f ∈ C[, ], t > , we define the modulus of continuity ω(f , t) as follows: ω(f , t) =
sup{|f (x) – f (y)| : |x – y| ≤ t,x, y ∈ [, ]}. We shall show the following theorem.

Theorem  Let  < q <  then for each f ∈ C[, ] the sequence {Dα,β
n,q (f ;x)} converges to

Dα,β
∞,q(f ;x) uniformly on [, ]. Furthermore, ‖Dα,β

n,q (f ) –Dα,β
∞,q(f )‖ ≤ Cα,β

q ω(f ,qn).

The proof of the above theorem follows along the lines of [, Theorem ], thus we omit
the details.

Remark  We may observe that, for f (x) = x, we have ‖Dα,β
n,q (f ) – Dα,β

∞,q(f )‖ 
 qn 

ω(f ,

√
qn), where A(n) 
 B(n) means that A(n) � B(n) and A(n)  B(n), and A(n) � B(n)

means that there exists a positive constant C independent of n such that A(n) ≤ CB(n).
Hence, the estimate of Theorem  is sharp in the following sense: the sequence qn in
Theorem  cannot be replaced by any other sequence decreasing to zero more rapidly
as n→ ∞.

Lemma  [] Let L be a positive linear operator on C[, ], which reproduces linear func-
tions. If L(t,x) > x ∀x ∈ (, ), then L(f ) = f if and only if f is linear.

Remark  Since Dα,β
∞,q(t,x) =

[n]q[(–q)(+q)+q(+q)(–q)x+q(–q)x+qx]+α[n]q(+q(x–))+α

[n]q+β
> x

for  < q <  consequence of Lemma  we have the following:

Theorem  Let  < q <  be fixed and let f ∈ C[, ]. Then Dα,β
∞,q(f ;x) = f (x) for all x ∈ [, ]

if and only if f is linear.

Remark  Let  < q <  be fixed and let f ∈ C[, ]. Then the sequence {Dαβ
n,q(f ;x)} does not

approximate f (x) unless f is linear. This is completely in contrast to the classical Bernstein
polynomials, by which {Dn(f ;x)} approximates f (x) for any f ∈ C[, ].

Theorem  For any f ∈ C[, ], {Dα,β
∞,q(f )} converges to f uniformly on [, ] as q → –.

Next, we establish a Voronovskaja type asymptotic formula for the operators Dα,β
n,qn :

Theorem  Let f be bounded and integrable on the interval [, ], second derivative of f
exists at a fixed point x ∈ [, ] and q = qn ∈ (, ) such that qn →  as n→ ∞, then

lim
n→∞[n]qn

(
Dα,β

n,qn (f ;x) – f (x)
)
=

(
α +  – ( + β)x

)
f ′(x) + x( + x)f ′′(x).
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The proof of the above lemma follows along the lines of [, Theorem ]; thus, we omit
the details.
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