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Abstract
The first aim of this paper is to construct new generating functions for the
generalized λ-Stirling type numbers of the second kind, generalized array type
polynomials and generalized Eulerian type polynomials and numbers. We derive
various functional equations and differential equations using these generating
functions. The second aim is to provide a novel approach to derive identities
including multiplication formulas and recurrence relations for these numbers and
polynomials using these functional equations and differential equations.
Furthermore, we derive some new identities for the generalized λ-Stirling type
numbers of the second kind, the generalized array type polynomials and the
generalized Eulerian type polynomials. We also give many applications related to the
class of these polynomials and numbers.
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1 Introduction, definitions and preliminaries
Throughout this paper, we use the following standard notations: N = {, , , . . .}, N =
{, , , , . . .} = N ∪ {} and Z– = {–,–,–, . . .}. Here, Z denotes the set of integers, R
denotes the set of real numbers and C denotes the set of complex numbers. We assume
that ln(z) denotes the principal branch of the multi-valued function ln(z) with the imag-
inary part �(ln(z)) constrained by –π < �(ln(z)) ≤ π . Furthermore, n =  if n = , and,
n =  if n ∈N.

(
x
v

)
=
x(x – ) · · · (x – v + )

v!
,

and {z} = , for j ∈ N, z ∈C; {z}j = ∏j–
d=(z – d), (cf. [–]).

The generating functions have various applications in many branches of mathematics
and mathematical physics. These functions are defined by linear polynomials, differential
relations, globally referred to as functional equations. The functional equations arise in
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well-defined combinatorial contexts and they lead systematically to well-defined classes
of functions. The concept of fixed point of a function is another useful idea in solving
some functional equations. Having knowledge on the fixed points of functions frequently
support to solve specific types of functional equations (cf. see, for detail, []).
Although, in the literature, one can find extensive investigations related to the gener-

ating functions for the Bernoulli, Euler and Genocchi numbers and polynomials and also
their generalizations, the λ-Stirling numbers of the second kind, the array polynomials and
the Eulerian polynomials, related to nonnegative real parameters, have not been studied
yet. Therefore, this paper deal with new classes of generating function for generalized
λ-Stirling type numbers of the second kind, generalized array type polynomials and gen-
eralized Eulerian polynomials, respectively. By using these generating functions, we derive
many functional equations and differential equations. By using these equations, we inves-
tigate and introduce fundamental properties and many new identities for the generalized
λ-Stirling type numbers of the second kind, the generalized array type polynomials and
the generalized Eulerian type polynomials and numbers. We also derive multiplication
formulas and recurrence relations for these numbers and polynomials. We derive many
new identities related to these numbers and polynomials.
There are various applications of the classical Euler numbers inmany branches of math-

ematics andmathematical physics. One of theme is related to the Brouwer fixed-point the-
orem, which is briefly described as follows: letDn be a unit disk inRn. It is well known that
Dn is a compact manifold bounded by the unit sphere Sn–. Any smooth map g :Dn →Dn

has a fixed point.The Brouwer fixed-point theorem: Any continuous functionG :Dn →Dn

as a fixed point (cf. see, for detail, []). The classical Euler numbers are related to the
Brouwer fixed point theorem and vector fields (cf. see for detail []). Thus, the general-
ized Eulerian type numbers may be associated with the Brouwer fixed-point theorem and
vector fields.
The remainder of this study is organized as follows:
Section , Section  and Section  of this paper deal with new classes of generating

functions which are related to generalized λ-Stirling type numbers of the second kind,
generalized array type polynomials and generalized Eulerian polynomials, respectively. In
Section , we derive new identities related to the generalized Bernoulli polynomials, the
generalized Eulerian type polynomials, generalized λ-Stirling type numbers and the gen-
eralized array polynomials. In Section , we give relations between generalized Bernoulli
polynomials and generalized array polynomials.

2 Generating function for generalized λ-Stirling type numbers of the second
kind

The Stirling numbers are used in combinatorics, in number theory, in discrete probability
distributions for finding higher order moments, etc. The Stirling number of the second
kind, denoted by S(n,k), is the number of ways to partition a set of n objects into k groups.
These numbers occur in combinatorics and in the theory of partitions and so on.
In this section, we construct a new generating function, related to nonnegative real pa-

rameters, for the generalized λ-Stirling type numbers of the second kind. We derive some
elementary properties including recurrence relations of these numbers. The following def-
inition provides a natural generalization and unification of the λ-Stirling numbers of the
second kind.
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Definition . Let a,b ∈ R+, λ ∈ C and v ∈ N. The generalized λ-Stirling type numbers
of the second kindS(n, v;a,b;λ) are defined bymeans of the following generating function:

fS,v(t;a,b;λ) =
(λbt – at)v

v!
=

∞∑
n=

S(n, v;a,b;λ) t
n

n!
. ()

Remark . By setting a =  and b = e in (), we have the λ-Stirling numbers of the second
kind

S(n, v; , e;λ) = S(n, v;λ)

which are defined by means of the following generating function:

(λet – )v

v!
=

∞∑
n=

S(n, v;λ)
tn

n!
,

(cf. [, , ]). Substituting λ =  into above equation, we have the Stirling numbers of the
second kind

S(n, v; ) = S(n, v),

(cf. [–, ]).

By using (), we obtain the following theorem.

Theorem . Let a,b ∈R+. Each of the following identities holds true:

S(n, v;a,b;λ) = 
v!

v∑
j=

(–)j
(
v
j

)
λv–j(j lna + (v – j) lnb

)n ()

and

S(n, v;a,b;λ) = 
v!

v∑
j=

(–)v–j
(
v
j

)
λj(j lnb + (v – j) lna

)n. ()

Proof By using () and the binomial theorem, we can easily arrive at the desired results.
�

By using the formula (), for a,b ∈ R+, we can compute some values of the numbers
S(n, v;a,b;λ) as follows:

S(, ;a,b;λ) = , S(, ;a,b;λ) = , S(, ;a,b;λ) = ln

(
bλ

a

)
,

S(, ;a,b;λ) = , S(, ;a,b;λ) = λ(lnb) – (lna),

S(, ;a,b;λ) = (lnbλ)


– ln

(
aλbλ

)
+

(
lna

),
S(, ;a,b;λ) = , S(, ;a,b;λ) = λ(lnb) – (lna), S(, v;a,b;λ) = (λ – )v

v!
,
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and

S(n, ;a,b;λ) = λ(lnb)n – (lna)n, S(n, ;a,b;λ) = δn,,

where δn, denotes the Kronecker symbol.

Remark . By setting a =  and b = e in the assertions () of Theorem ., we have the
following result:

S(n, v;λ) =

v!

v∑
j=

(
v
j

)
λv–j(–)j(v – j)n.

The above relation has been studied by Srivastava [] and Luo []. By setting λ =  in the
above equation, we have the following result:

S(n, v;λ) =

v!

v∑
j=

(
v
j

)
(–)j(v – j)n

(cf. [–, –]).
By differentiating both sides of Eq. () with respect to the variable t, we obtain the fol-

lowing differential equations:

∂

∂t
fS,v(t;a,b;λ) =

(
λ(lnb)bt – (lna)at

)
fS,v–(t;a,b;λ)

or

∂

∂t
fS,v(t;a,b;λ) = v ln(b)fS,v(t;a,b;λ) + ln

(
b
a

)
atfS,v–(t;a,b;λ). ()

By using Eqs. () and (), we obtain recurrence relations for the generalized λ-Stirling
type numbers of the second kind by the following theorem:

Theorem . Let n, v ∈N and a,b ∈R+

S(n, v;a,b;λ) =
n–∑
j=

(
n – 
j

)
S(j, v – ;a,b;λ)

(
λ
(
ln(b)

)n–j – (
ln(a)

)n–j) ()

or

S(n, v;a,b;λ) = v ln(b)S(n – , v;a,b;λ)

+ ln

(
b
a

) n–∑
j=

(
n – 
j

)
S(j, v – ;a,b;λ)

(
ln(a)

)n––j.

Remark . By setting a =  and b = e, Theorem . yields the corresponding results
which are proven by Luo and Srivastava [, Theorem ]. Substituting a = λ =  and b = e
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into Theorem ., we obtain the following known results:

S(n, v) =
n–∑
j=

(
n – 
j

)
S(j, v – ),

and

S(n, v) = vS(n – , v) + S(n – , v – ),

(cf. [–, , , , ]).

The generalized λ-Stirling type numbers of the second kind can also be defined by
Eq. ():

Theorem . Let k ∈N, a,b ∈R+ and λ ∈C

λx(lnbx)m =
m∑
l=

∞∑
j=

(
m
l

)(
x
j

)
j!S(l, j;a,b;λ)

(
ln

(
a(x–j)

))m–l. ()

Proof By using (), we get

(
λbt

)x = ∞∑
j=

(
x
j

)
j!

∞∑
m=

S(m, j;a,b;λ)
tm

m!

∞∑
n=

(
lnax–j

)n tn
n!
.

From the above equation, we obtain

λx
∞∑
m=

(
lnbx

)m tm

m!
=

∞∑
m=

∞∑
j=

(
x
j

)
j!S(m, j;a,b;λ)

tm

m!

∞∑
n=

(
lnax–j

)n tn
n!
.

Therefore,

λx
∞∑
m=

(
lnbx

)m tm

m!
=

∞∑
m=

( m∑
l=

∞∑
j=

(
m
l

)(
x
j

)
j!S(l, j;a,b;λ)

(
lna(x–j)

)m–l
)
tm

m!
.

Comparing the coefficients of tm
m! on both sides of the above equation, we arrive at the

desired result. �

Remark . For a =  and b = e, the formula () can easily be shown to be reduced to the
following result which is given by Luo and Srivastava [, Theorem ]:

λxxn =
∞∑
l=

(
x
l

)
l!S(n, l;λ),

where n ∈N and λ ∈C. For λ = , the above formula is reduced to

xn =
n∑

v=

(
x
v

)
v!S(n, v)

(cf. [–, , ]).
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3 Generalized array type polynomials
By using the same motivation with the λ-Stirling type numbers of the second kind, we
also construct a novel generating function, related to nonnegative real parameters, of the
generalized array type polynomials. We derive some elementary properties including re-
currence relations of these polynomials. The following definition provides a natural gen-
eralization and unification of the array polynomials:

Definition . Let a,b ∈R+, x ∈R, λ ∈C and v ∈N. The generalized array type polyno-
mials Sn

v (x;a,b;λ) can be defined by

Sn
v (x;a,b;λ) =


v!

v∑
j=

(–)v–j
(
v
j

)
λj(ln(av–jbx+j))n. ()

By using the formula (), we can compute some values of the polynomials Sn
v (x;a,b;λ)

as follows:

Sn
 (x;a,b;λ) =

(
ln

(
bx

))n, S
v (x;a,b;λ) =

( – λ)v

v!

and

S
 (x;a,b;λ) = – ln

(
abx

)
+ λ ln

(
bx+

)
.

Remark . The polynomials Sn
v (x;a,b;λ) may be also called generalized λ-array type

polynomials. By substituting x =  into (), we arrive at ():

Sn
v (;a,b;λ) = S(n, v;a,b;λ).

Setting a = λ =  and b = e in (), we have

Snv (x) =

v!

v∑
j=

(–)v–j
(
v
j

)
(x + j)n,

a result due to Chang and Ha [, Eq. (.)] and Simsek []. It is easy to see that

S(x) = Snn(x) = ,Sn(x) = xn

and for v > n,

Snv (x) = 

(cf. [, Eq. (.)]).

Generating functions for the polynomial Sn
v (x;a,b, c;λ) can be defined as follows.

Definition . Let a,b ∈R+, x ∈R, λ ∈C and v ∈N. The generalized array type polyno-
mials Sn

v (x;a,b;λ) are defined by means of the following generating function:

gv(x, t;a,b;λ) =
∞∑
n=

Sn
v (x;a,b;λ)

tn

n!
. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/87


Simsek Fixed Point Theory and Applications 2013, 2013:87 Page 7 of 28
http://www.fixedpointtheoryandapplications.com/content/2013/1/87

Theorem . Let a,b ∈R+, x ∈ R, λ ∈C and v ∈N

gv(x, t;a,b;λ) =

v!

(
λbt – at

)vbxt . ()

Proof By substituting () into the right-hand side of (), we obtain

∞∑
n=

Sn
v (x;a,b;λ)

tn

n!
=

∞∑
n=

(

v!

v∑
j=

(–)v–j
(
v
j

)
λj(ln(av–jbx+j))n

)
tn

n!
.

Therefore,

∞∑
n=

Sn
v (x;a,b;λ)

tn

n!
=


v!

v∑
j=

(–)v–j
(
v
j

)
λj

∞∑
n=

(
ln

(
av–jbx+j

))n tn
n!
.

The right-hand side of the above equation is the Taylor series for e(ln(av–jbx+j))t . Thus, we get

∞∑
n=

Sn
v (x;a,b;λ)

tn

n!
=

(

v!

v∑
j=

(–)v–j
(
v
j

)
λja(v–j)tbjt

)
bxt .

By using () and binomial theorem in the above equation, we arrive at the desired re-
sult. �

Remark . If we set λ =  in (), we get a new special case of the array polynomials given
by

fS,v(t;a,b)btx =
∞∑
n=

Sn
v (x;a,b)

tn

n!
.

In the special case when a = λ =  and b = e, the generalized array polynomials Sn
v (x;a,b;λ)

defined by () would lead us at once to the classical array polynomials Sn
v (x), which are

defined by means of the following generating function:

(et – )v

v!
etx =

∞∑
n=

Snv (x)
tn

n!
,

which yields the generating function for the array polynomials Snv (x) studied by Chang and
Ha []; see also (cf. [, ]).

The polynomials Sn
v (x;a,b;λ) defined by () havemany interesting properties, which we

give in this section.
We set

gv(x, t;a,b;λ) = bxtfS,v(t;a,b;λ). ()

Theorem . The following formula holds true:

Sn
v (x;a,b;λ) =

n∑
j=

(
n
j

)
S(j, v;a,b;λ)

(
lnbx

)n–j. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/87
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Proof By using (), we obtain

∞∑
n=

Sn
v (x;a,b;λ)

tn

n!
=

∞∑
n=

S(n, v;a,b;λ) t
n

n!

∞∑
n=

(
lnbx

)n tn
n!
.

From the above equation, we get

∞∑
n=

Sn
v (x;a,b;λ)

tn

n!
=

∞∑
n=

( n∑
j=

(
n
j

)
S(j, v;a,b)

(
lnbx

)n–j) tn

n!
.

Comparing the coefficients of tn on both sides of the above equation, we arrive at the
desired result. �

Remark . In the special case when a = λ =  and b = e, Eq. () is reduced to

Snv (x) =
n∑
j=

(
n
j

)
xn–jS(j, v)

(cf. [, Theorem ]).

By differentiating j times both sides of () with respect to the variable x, we obtain the
following differential equation:

∂ j

∂xj
gv(x, t;a,b;λ) = tj(lnb)jgv(x, t;a,b;λ).

From this equation, we arrive at higher order derivative of the array type polynomials
by the following theorem.

Theorem . Let n, j ∈N with j ≤ n. Then we have

∂ j

∂xj
Sn
v (x;a,b;λ) = {n}j

(
ln(b)

)jSn–j
v (x;a,b;λ).

Remark . By setting a = λ = j =  and b = e in Theorem ., we have

d
dx

Snv (x) = nSn–v (x)

(cf. []).

From (), we get the following functional equation:

gv (x, t;a,b;λ)gv (x, t;a,b;λ) =
(
v + v
v

)
gv+v (x + x, t;a,b;λ). ()

From this functional equation, we obtain the following identity.

http://www.fixedpointtheoryandapplications.com/content/2013/1/87
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Theorem . Let x,x ∈ R, a,b ∈ R+, λ ∈ C and v, v ∈ N. Then the following identity
holds true:

(
v + v
v

)
Sn
v+v (x + x;a,b;λ) =

n∑
j=

(
n
j

)
S j
v (x;a,b;λ)S

n–j
v (x;a,b;λ).

Proof Combining () and (), we get

∞∑
n=

Sn
v (x;a,b;λ)

tn

n!

∞∑
n=

Sn
v (x;a,b;λ)

tn

n!
=

(
v + v
v

) ∞∑
n=

Sn
v+v (x + x;a,b;λ)

tn

n!
.

Therefore,

∞∑
n=

( n∑
j=

(
n
j

)
S j
v (x;a,b;λ)S

n–j
v (x;a,b;λ)

)
tn

n!

=
(
v + v
v

) ∞∑
n=

Sn
v+v (x + x;a,b;λ)

tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

4 Generalized Eulerian type numbers and polynomials
In this section, we provide generating functions, related to nonnegative real parameters,
for the generalized Eulerian type polynomials and numbers, that is, the so-called gen-
eralized Apostol type Frobenius Euler polynomials and numbers. We derive fundamen-
tal properties, recurrence relations and many new identities for these polynomials and
numbers based on the generating functions, functional equations and differential equa-
tions.
These polynomials and numbers have many applications in many branches of mathe-

matics.
The following definition gives us a natural generalization of the Eulerian polynomials.

Definition . Let a,b, c ∈R+ (a �= b), x ∈R, λ ∈C and u ∈C�{λ}. The generalized Eule-
rian type polynomials Hn(x;u;a,b, c;λ) are defined by means of the following generating
function:

Fλ(t,x;u,a,b, c) =
(at – u)cxt

λbt – u
=

∞∑
n=

Hn(x;u;a,b, c;λ)
tn

n!
()

(|t| < π
| lnb| when λ = u; |t lnb + ln( λ

u )| < π when λ �= u).

By substituting x =  into (), we obtain

Hn(;u;a,b, c;λ) =Hn(u;a,b, c;λ),

whereHn(u;a,b, c;λ) denotes generalized Eulerian type numbers.

http://www.fixedpointtheoryandapplications.com/content/2013/1/87
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By substituting t =  into (), we have

Fλ(,x;u,a,b, c) =
 – u
λ – u

. ()

From the above equation, we find that

H(u;a,b, c;λ) =
 – u
λ – u

.

The generalized Eulerian type polynomials of orderm,H(m)
n (x;u;a,b, c;λ) are defined by

means of the following generating function:

F (m)
λ (t,x;u,a,b, c) =

(
at – u
λbt – u

)m

cxt =
∞∑
n=

H(m)
n (x;u;a,b, c;λ)

tn

n!
,

with, of course

H(m)
n (;u;a,b, c;λ) =H(m)

n (u;a,b, c;λ),

whereH(m)
n (u;a,b, c;λ) denotes the generalized Eulerian type numbers of orderm.

Remark . Substituting a =  into (), we have

( – u)cxt

λbt – u
=

∞∑
n=

Hn(x;u; ,b, c;λ)
tn

n!

a result due to Kurt and Simsek []. In the special case when λ =  and b = c = e, the gener-
alized Eulerian type polynomialsHn(x;u; ,b, c;λ) are reduced to the Eulerian polynomials
or Frobenius Euler polynomials which are defined by means of the following generating
function:

( – u)ext

et – u
=

∞∑
n=

Hn(x;u)
tn

n!

(∣∣∣∣t + ln

(

u

)∣∣∣∣ < π
)

()

with, of course, Hn(;u) = Hn(u) denotes the so-called Eulerian numbers (cf. [, , ,
–]). Substituting u = –, into (), we have

Hn(x; –) = En(x),

where En(x) denotes Euler polynomials which are defined by means of the following gen-
erating function:

ext

et + 
=

∞∑
n=

En(x)
tn

n!
(|t| < π

)
()

(cf. [–]).

http://www.fixedpointtheoryandapplications.com/content/2013/1/87
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Throughout this paper, we assume that a,b, c ∈R+, x ∈R, λ ∈ C and u ∈C�{λ}.
The following elementary properties of the generalized Eulerian type polynomials and

numbers are derived from their generating functions in () and ().

Theorem . (Recurrence relation for the generalized Eulerian type numbers) For n =
, we have H(u;a,b;λ) = –u

λ–u . For n > , following the usual convention of symbolically
replacing (H(u;a,b;λ))n byHn(u;a,b;λ), we have

λ
(
lnb +H(u;a,b;λ)

)n – uHn(u;a,b;λ) = (lna)n.

Proof By using (), we obtain

∞∑
n=

(lna)n
tn

n!
– u =

∞∑
n=

(
λ
(
lnb +H(u;a,b;λ)

)n – uHn(u;a,b;λ)
) tn
n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

By differentiating both sides of Eq. () with respect to the variable x, we obtain the
following higher order differential equation:

∂ j

∂xj
Fλ(t,x;u,a,b, c) =

(
ln

(
ct

))jFλ(t,x;u,a,b, c). ()

From this equation, we arrive at higher order derivative of the generalized Eulerian type
polynomials by the following theorem.

Theorem . Let n, j ∈N with j ≤ n. Then we have

∂ j

∂xj
Hn(x;u;a,b, c;λ) = {n}j

(
ln(c)

)jHn–j(x;u;a,b, c;λ).

Proof Combining () and (), we have

∞∑
n=

∂ j

∂xj
Hn(x;u;a,b, c;λ)

tn

n!
= (ln c)j

∞∑
n=

Hn(x;u;a,b, c;λ)
tn+j

n!
.

From the above equation, we get

∞∑
n=

∂ j

∂xj
Hn(x;u;a,b, c;λ)

tn

n!
= (ln c)j

∞∑
n=

{n}jHn–j(x;u;a,b, c;λ)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Remark . Setting j =  in Theorem ., we have

∂

∂x
Hn(x;u;a,b, c;λ) = nHn–(x;u;a,b, c;λ) ln(c).
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In their special case when a = λ =  and b = c = e, Theorem . is reduced to the following
well-known result:

∂ j

∂xj
Hn(x;u) =

n!
(n – j)!

Hn–j(x;u)

(cf. [, Eq. (.)]). Substituting j =  into the above equation, we have

∂

∂x
Hn(x;u) = nHn–(x;u)

(cf. [, Eq. (.)], []).

Theorem . The following explicit representation formula holds true:

(x ln c + lna)n – uxn(ln c)n = λ
(
x ln c + lnb +H(u;a,b;λ)

)n – u
(
x ln c +H(u;a,b;λ)

)n.
Proof By using () and the umbral calculus convention, we obtain

at – u
λbt – u

= eH(u;a,b;λ)t .

From the above equation, we get

∞∑
n=

(
(lna + x ln c)n – u(x ln c)

) tn
n!

=
∞∑
n=

(
λ
(
H(u;a,b;λ) + lnb + x ln c

)n – u
(
Hn(u;a,b;λ) + x ln c

)n) tn
n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Remark . By substituting a = λ =  and b = c = e into Theorem ., we have

( – u)xn =Hn(x + ;u) – uHn(x;u) ()

(cf. [, Eq. (.)]). By setting u = – in the above equation, we have

xn = En(x + ) + En(x)

a result due to Shiratani []. By using (), Carlitz [] studied on the Mirimanoff polyno-
mial fn(,m) which is defined by

fn(x,m) =
m–∑
j=

(x + j)num–j– =
Hn(x +m;u) – umHn(x;u)

 – u
.

By applying Theorem ., one may generalize the Mirimanoff polynomial.
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Theorem . The following explicit representation formula holds true:

Hn(x;u;a,b, c;λ) =
n∑
j=

(
n
j

)
(x ln c)n–jHj(u;a,b;λ). ()

Proof By using (), we get

∞∑
n=

Hn(u;a,b;λ)
tn

n!

∞∑
n=

(x ln c)n
tn

n!
=

∞∑
n=

Hn(x;u;a,b, c;λ)
tn

n!
.

From the above equation, we obtain

∞∑
n=

( n∑
j=

(
n
j

)
(x ln c)n–jHj(u;a,b;λ)

)
tn

n!
=

∞∑
n=

Hn(x;u;a,b, c;λ)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Remark . Substituting a = λ =  and b = c = e into (), we have

Hn(x;u) =
n∑
j=

(
n
j

)
xn–jHj(u)

(cf. [, , , –]).

Remark . From (), we easily get

Hn(x;u;a,b, c;λ) =
(
H(u;a,b, c;λ) + x ln c

)n,
where after expansion of the right member, Hn(u;a,b, c;λ) is replaced by Hn(u;a,b, c;λ),
we use this convention frequently throughout of this paper.

Theorem . The following formula holds true:

Hn(x + y;u;a,b, c;λ) =
n∑
j=

(
n
j

)
(y ln c)n–jHj(x;u;a,b, c;λ). ()

Proof By using (), we have

∞∑
n=

Hn(x + y;u;a,b, c;λ)
tn

n!
=

∞∑
n=

(y ln c)n
tn

n!

∞∑
n=

Hn(x;u;a,b, c;λ)
tn

n!
.

Therefore,

∞∑
n=

Hn(x + y;u;a,b, c;λ)
tn

n!
=

∞∑
n=

n∑
j=

(
n
j

)
(y ln c)n–jHj(x,u;a,b, c;λ)

tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �
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Remark . In the special case when a = λ =  and b = c = e, Eq. () is reduced to the
following result:

Hn(x + y) =
n∑
j=

(
n
j

)
yn–jHj(x,u)

(cf. [, Eq. (.)]). Substituting u = – into the above equation, we get the following well-
known result:

En(x + y) =
n∑
j=

(
n
j

)
yn–jEj(x). ()

By using (), we define the following functional equation:

Fλ
(
t,x;u,a,b, c

)
cyt = Fλ(t,x;u,a,b, c)Fλ(t, y; –u,a,b, c). ()

Theorem . The following formula holds true:

Hn
(
x + y;u;a,b, c;λ) = (

H(x;u;a,b, c;λ) +H(y; –u;a,b, c;λ)
)n. ()

Proof Combining () and (), we easily arrive at the desired result. �

Remark . In the special case when a = λ =  and b = c = e, Eq. () is reduced to the
following result:

Hn
(
x + y;u

)
=

n∑
j=

(
n
j

)
Hj(x;u)Hn–j(y; –u)

(cf. [, Eq. (.)]).

Theorem . The following formula holds true:

(–)nHn
(
 – x;u–;a,b, c;λ–) = λ

n∑
j=

(
n
j

)(
ln

(
b
a

))n–j

Hj(x – ,u;a,b, c;λ).

Proof By using (), we obtain

(a–t – u–)c–(–x)t

λ–b–t – u–
= λ

(
b
a

)t ∞∑
n=

Hn(x – ;u;a,b, c;λ)
tn

n!
.

From the above equation, we get

∞∑
n=

Hn
(
 – x;u–;a,b, c;λ–) (–)ntn

n!

= λ

( ∞∑
n=

Hn(x – ;u;a,b, c;λ)
tn

n!

)( ∞∑
n=

(
ln

(
b
a

))n tn

n!

)
.
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Therefore

∞∑
n=

(–)nHn
(
 – x;u–;a,b, c;λ–) tn

n!

=
∞∑
n=

(
λ

n∑
j=

(
n
j

)(
ln

(
b
a

))n–j

Hj(x – ,u;a,b, c;λ)

)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Remark . In their special case when a = λ =  and b = c = e, Theorem . is reduced to
the following result:

(–)nHn
(
 – x;u–

)
=Hn(x – ,u)

(cf. [, Eq. (.)]). Substituting u = – into the above equation, we get the following well-
known result:

(–)nEn( – x) = En(x)

(cf. [, Eq. (.)], [, , , ]).

Theorem .

Hn

(
x + y


;u;a,b, c;λ
)
=

n∑
j=

(
n
j

)Hj(x;u;a,b, c;λ)Hn–j(y; –u;a,b, c;λ)
n

.

Proof By using (), we get

∞∑
n=

Hn

(
x + y


;u;a,b, c;λ
)
ntn

n!

=
∞∑
n=

( n∑
j=

(
n
j

)
Hj(x;u;a,b, c;λ)Hn–j(y; –u;a,b, c; )

)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Remark . When a = λ =  and b = c = e, Theorem . is reduced to the following result:

Hn

(
x + y


;u
)
= –n

n∑
j=

(
n
j

)
Hj(x;u)Hn–j(y; –u),

(cf. [, Eq. (.)]).
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4.1 Multiplication formulas for normalized polynomials
In this section, using generating functions, we derivemultiplication formulas in terms of
the normalized polynomials which are related to the generalized Eulerian type polynomi-
als, the Bernoulli and the Euler polynomials.

Theorem . (Multiplication formula) Let y ∈N. Then we have

Hn(yx;u;a,b,b;λ) = yn
n∑

k=

y–∑
j=

(
n
k

)
λj(lna)n–k

uj+–y – uj+
Hk

(
x +

j
y
;uy;a,b,b;λy

)

×
(
Hn–k

(

y
;uy

)
– uHn–k

(
uy

))
, ()

where Hn(x;u) and Hn(u) denote the Eulerian polynomials and numbers, respectively.

Proof Substituting c = b into (), we have

∞∑
n=

Hn(x;u;a,b,b;λ)
tn

n!
=
(at – u)bxt

λbt – u
=

(
at – u
–u

)
bxt

 – λbt
u

. ()

By using the following finite geometric series,

y–∑
j=

(
λbt

u

)j

=
 – ( λbt

u )y

 – λbt
u

,

on the right-hand side of (), we obtain

∞∑
n=

Hn(x;u;a,b,b;λ)
tn

n!
=

(at – u)bxt

–u( – ( λbt
u )y)

y–∑
j=

(
λbt

u

)j

.

From this equation, we get

∞∑
n=

Hn(x;u;a,b,b;λ)
tn

n!
=

(at – u)
(ayt – uy)

y–∑
j=

λj

uj+–y
(ayt – uy)byt(

x+j
y )

(λbyt – uy)
.

Now by making use of the generating functions () and () on the right-hand side of the
above equation, we obtain

∞∑
n=

Hn(x;u;a,b,b;λ)
tn

n!

=


 – uy

y–∑
j=

λj

uj+–y

( ∞∑
n=

Hn

(
x + j
y

;uy;a,b,b;λy
)
yntn

n!

)

×
( ∞∑

n=

(
Hn

(

y
;uy

)
– uHn

(
uy

)) (y lna)ntn

n!

)
.
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Therefore,

∞∑
n=

Hn(x;u;a,b,b;λ)
tn

n!
=

∞∑
n=

n∑
k=

y–∑
j=

(
n
k

)
ynλj(lna)n–k

uj+–y – uj+
Hk

(
x + j
y

;uy;a,b,b;λy
)

×
(
Hn–k

(

y
;uy

)
– uHn–k

(
uy

)) tn

n!
.

By equating the coefficients of tn
n! on both sides, we get

Hn(x;u;a,b,b;λ) =
n∑

k=

y–∑
j=

(
n
k

)
ynλj(lna)n–k

uj+–y – uj+
Hk

(
x + j
y

;uy;a,b,b;λy
)

×
(
Hn–k

(

y
;uy

)
– uHn–k

(
uy

))
.

Finally, by replacing x by yx on both sides of the above equation, we arrive at the desired
result. �

Remark . By substituting a =  into Theorem ., for n = k, we obtain

Hn(yx;u; ,b,b;λ) = ynuy–
 – u
 – uy

y–∑
j=

λj

uj
Hn

(
x +

j
y
;uy; ,b,b;λy

)
. ()

By substituting b = e and λ =  into the above equation, we arrive at the multiplication
formula for the Eulerian polynomials

Hn(yx;u) = ynuy–
( – u)
 – uy

y–∑
j=


uj
Hn

(
x +

j
y
;uy

)
, ()

(cf. [], [, Eq. (.)]). If u = –, then the above equation reduces to the well known
multiplication formula for the Euler polynomials: for y is an odd positive integer, we have

En(yx) = yn
y–∑
j=

(–)jEn

(
x +

j
y

)
, ()

where En(x) denotes the Euler polynomials in the usual notation. If y is an even positive
integer, we have

En(yx) =
yn–

n

y–∑
j=

(–)jBn

(
x +

j
y

)
, ()

where Bn(x) and En(x) denote the Bernoulli polynomials and Euler polynomials, respec-
tively, (cf. [, ]).

To prove the multiplication formula of the generalized Apostol Bernoulli polynomials,
we need the following generating function which is defined by Srivastava et al. [, pp.,
Eq. ()]:
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Definition . Let a,b, c ∈ R+ with a �= b, x ∈ R and n ∈ N. Then the generalized
Bernoulli polynomials B(α)

n (x;λ;a,b, c) of order α ∈ C are defined by means of the fol-
lowing generating functions:

fB(x,a,b, c;λ;α) =
(

t
λbt – at

)α

cxt =
∞∑
n=

B
(α)
n (x;λ;a,b, c)

tn

n!
, ()

where∣∣∣∣t ln
(
b
a

)
+ ln(λ)

∣∣∣∣ < π ; α := .

It is easily observe that

B
(α)
n (;a,b, c) =B

(α)
n (a,b) and B

()
n (a,b) =Bn(a,b)

(cf. [, , , , , , , , , , , ]). Moreover, by substituting a =  and b = c =
e into (), then we arrive at the Apostol-Bernoulli polynomials Bn(x;λ), which have been
introduced and investigated by many mathematicians (cf. [], [, , , , , , ,
]). When a = α = λ =  and b = c = e into (),B()

n (; ; , e, e) andB
()
n (x; ; , e, e) reduce

to the classical Bernoulli numbers and the classical Bernoulli polynomials, respectively,
(cf. [–]).

Theorem . Let y ∈N. Then we have

Bn(yx;λ;a,b,b) =
n∑
l=

y–∑
j=

(
n
l

)
λjyl–

(
(y –  – j) lna

)n–l
Bl

(
x +

j
y
;λy;a,b,b

)
.

Proof Substituting c = b and α =  into (), we get

∞∑
n=

Bn(x;λ;a,b, c)
tn

n!
=

y

y–∑
j=

λj yt
λybyt – ayt

b(
x+j
y )ytat(y–j–).

Therefore,

∞∑
n=

Bn(x;λ;a,b, c)
tn

n!

=
∞∑
n=

n∑
l=

y–∑
j=

(
n
l

)
λj((y –  – j) lna

)n–lyl–Bl

(
x + j
y

;λy;a,b,b
)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we get

B
(α)
n (x;λ;a,b, c) =

n∑
l=

y–∑
j=

(
n
k

)
λj((k –  – j) lna

)n–lyl–Bl

(
x + j
k

;λy;a,b,b
)
.

By replacing x by yx on both sides of the above equation, we arrive at the desired result.
�
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Remark . Kurt and Simsek [] proved multiplication formula for the generalized
Bernoulli polynomials of order α. When a = λ =  and b = c = e into Theorem ., we
have the multiplication formula for the Bernoulli polynomials given by

Bn(yx) = yn–
y–∑
j=

Bn

(
x +

j
y

)
, ()

(cf. [, , , , , , , , , , ]).

If f is a normalized polynomial which satisfies the formula

fn(yx) = yn–
y–∑
j=

fn
(
x +

j
y

)
, ()

then f is the yth degree Bernoulli polynomial due to () (cf. [, ]). According toNielsen
[], if a normalized polynomial satisfies () for a single value of y > , then it is identical
with Bm(x). Consequently, if a normalized polynomial satisfies () for a single value of
y > , then it is identical with Hn(x;u; ,b,b;λ). The formula () is different. Therefore,
for y is an even positive integer, Carlitz [, Eq. (.)] considered the following equation:

gn–(yx) = –
yn–

n

y–∑
j=

(–)jfn
(
x +

j
y

)
,

where gn–(x) and fn(x) denote the normalized polynomials of degree n –  and n, respec-
tively. More precisely, as Carlitz has pointed out [, p.], if y is a fixed even integer ≥ 
and fn(x) is an arbitrary normalized polynomial of degree n, then () determines gn–(x)
as a normalized polynomial of degree n–. Thus, for a single value y, () does not suffice
to determine the normalized polynomials gn–(x) and fn(x).

Remark . According to (), the set of normalized polynomials {fn(x)} is an Appell
set, (cf. []).
We now modify () as follows:

(at – ξ )cxt

λbt – ξ
=

∞∑
n=

Hn(x; ξ ;a,b, c;λ)
tn

n!
, ()

where ξ r =  (ξ �= λ, r ∈ N).
The polynomialHn(x; ξ ;a,b, c;λ) is a normalized polynomial of degreem in x. The poly-

nomialHn(x; ξ ; , e, e; ) may be called Eulerian polynomials with parameter ξ . In particular
we note that

Hn(x; –; , e, e; ) = En(x)

since for a = λ = , b = c = e, Eq. () reduces to the generating function for the Euler
polynomials.
By means of Eq. (), it is easy to verify the following multiplication formulas.
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If y is an odd positive integer, then we have

Hn–(yx; ξ ;a,b,b;λ) =
yn–

n

y–∑
j=

(
λ

ξ

)j

Bn

(
x +

j
y
;b;λy

)

–

ξn

n∑
k=

y–∑
j=

(
λ

ξ

)j

yk–(lna)n–kBk

(
x +

j
y
;b;λy

)
, ()

where

Hk

(
x +

j
y
; ξ y; ,b,b;λy

)
=Bn

(
x +

j
y
;b;λy

)
.

If y is an even positive integer, then we have

Hn(yx; ξ ;a,b,b;λ) =
yn



y–∑
j=

(
λ

ξ

)j

En

(
x +

j
y
;b;λy

)

–

ξ

n∑
k=

y–∑
j=

(
λ

ξ

)j

yk(lna)n–kEk

(
x +

j
y
;b;λy

)
, ()

where

Hk

(
x +

j
y
; ξ y; ,b,b;λy

)
= En

(
x +

j
y
;b;λy

)
,

whereEn(x;a,b, c) denotes the generalized Euler polynomials, which are defined bymeans
of the following generating function:

(
t

bt – at

)
cxt =

∞∑
n=

En(x;a,b, c)
tn

n!

(cf. [, , , , , , , , ]).

Remark . If we set a = λ =  and b = e, then () and () reduce to the following
multiplication formulas, respectively:

Hn–(yx; ξ ) =
yn–

n

(
 –


ξ

) y–∑
j=


ξ j Bn

(
x +

j
y

)

(cf. [, Eq. (.)]) and

Hn(yx; ξ ) =
yn



(
 –


ξ

) y–∑
j=


ξ j En

(
x +

j
y

)
.
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Let fn(x) and gn(x) be normalized polynomials in the usual way. Carlitz [, Eq. (.)] de-
fined the following equation:

gn–(yx) =
( – ρ)yn–

n

y–∑
j=

ρ jfn
(
x +

j
y

)
,

where ρ is a fixed primitive rth root of unity, r > , y≡ (mod r).

Remark . If we set a = λ = , b = c = e and ξ = –, then () and () reduce to ()
and ().

Remark . Walum [] defined multiplication formula for periodic functions as fol-
lows:

ϑ(y)f (yx) =
∑
j(y)

f
(
x +

j
y

)
, ()

where f is periodic with period  and j(y) under the summation sign indicates that j runs
through a complete system of residues mod y. Formulas (), () and other multiplica-
tion formulas related to periodic functions and normalized polynomials occur in Franel’s
formula, in the theory of the Dedekind sums and Hardy-Berndt sums, in the theory of the
zeta functions and L-functions and in the theory of periodic bounded variation, (cf. [,
]).

4.2 Recurrence relation for the generalized Eulerian type polynomials
In this section, we are going to differentiate () with respect to the variable t to derive a
recurrence relation for the generalized Eulerian type polynomials. Therefore, we obtain
the following partial differential equations:

t
∂

∂t
Fλ(t,x;u,a,b,b) = t

(
lna + x ln(b)

)
Fλ(t,x;u,a,b,b) + u(lna)GY (t,a;u)

–
λ

u
ln(b)Fλ(t,x + ;u,a,b,b)fB

(
,b,b;

λ

u
; 

)

or

∂

∂t
Fλ(t,x;u,a,b,b) =

(
lna + x ln(b)

)
Fλ(t,x;u,a,b,b) + u(lna)GY (t,a;u)

– λ ln(b)GY (t,a;u)F
λ (t,x + ;u,a,b,b),

where GY (t,a;u) is defined by

GY (t,a;u) =


at – u
=

∞∑
n=

Yn(u;a)
tn

n!
, ()

where a ≥ . The polynomials Yn(x,u;a) are defined by means of the following generating
function:

GY (x, t,a;u) =GY (t,a;u)axt =
∞∑
n=

Yn(x,u;a)
tn

n!
,
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where∣∣∣∣t lna + ln

(

u

)∣∣∣∣ < π ,

with, of course

Yn(,u;a) = Yn(u;a).

If we substitute x =  and a =  into (), then we obtain

Yn(λ; ) =


 – u
.

By using the above partial differential equations, we obtain recurrence relations for the
generalized Eulerian type polynomials by the following theorem:

Theorem . Let n ∈ N.We have

Hn(x;u;a,b,b;λ) = n(lna + x lnb)Hn–(x;u;a,b,b;λ) + nu(lna)Yn–(u;a)

–
x lnb
u

n∑
j=

(
n
j

)
Hj(x + ;u;a,b,b;λ)Bn–j

(
λ

u
; ,b,b

)
,

or

Hn+(x;u;a,b,b;λ) = (lna + x lnb)Hn(x;u;a,b,b;λ) + u(lna)Yn(u;a)

+ (λ lnb)
n∑
j=

(
n
j

)
H()

j (x + ;u;a,b,b;λ)Yn–j(u;a),

whereBn(λ;a,b) denotes the generalized Bernoulli numbers.

5 New identities involving families of polynomials
In this section, we derive some new identities related to the generalized Bernoulli poly-
nomials and numbers of order , the Eulerian type polynomials and the generalized array
type polynomials.

Theorem . The following relationship holds true:

Bn(x;λ;a,b,b) =
n∑
j=

(
n
j

)
Hj

(
x;λ–;a,

b
a
,
b
a
; 

)
Bn–j(x – ;λ; ,a,a).

Proof

∞∑
n=

Bn(x;λ;a,b,b)
tn

n!
=

(
ta(x–)t

λat – 

)( (at – λ–)( ba )
xt

( ba )t – λ–

)
.

Combining () and () with the above equation, we get

∞∑
n=

Bn(x;λ;a,b,b)
tn

n!
=

∞∑
n=

Bn(x – ;λ; ,a,a)
tn

n!

∞∑
n=

Hn

(
x;λ–;a,

b
a
,
b
a
; 

)
tn

n!
.
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Therefore,

∞∑
n=

Bn(x;λ;a,b,b)
tn

n!
=

∞∑
n=

( n∑
j=

(
n
j

)
Hj

(
x;λ–;a,

b
a
,
b
a
; 

)
Bn–j(x – ;λ; ,a,a)

)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Relationship between the generalized Bernoulli numbers and the Frobenius Euler num-
bers is given by the following result.

Theorem . The following relationship holds true:

Bn(λ;a,b) =


λ – 

n∑
j=

(
n
j

)
j
(
lna–

)n–j(
ln

(
b
a

))j

Hj–
(
λ–). ()

Proof By using (), we obtain

∞∑
n=

Bn(λ;a,b)
tn

n!
=

ta–t

λ – 

(
 – λ–

et ln( ba ) – λ–

)
.

From the above equation, we get

∞∑
n=

Bn(λ;a,b)
tn

n!
=


λ – 

∞∑
n=

(
ln

(

a

))n tn

n!

∞∑
n=

nHn
(
λ–)(ln(b

a

))n tn

n!
.

Therefore,

∞∑
n=

Bn(λ;a,b)
tn

n!
=

∞∑
n=

( n∑
j=

(
n
j

) j(lna–)n–j(ln( ba ))
j

λ – 
Hj–

(
λ–)) tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Remark . By substituting a =  and b = e into (), we have

Bn(λ) =
n

λ – 
Hn–

(
λ–),

(cf. [, ]).

The relationship between the generalized Eulerian type polynomials and generalized
array type polynomials are given by the following theorem:

Theorem . The following relationship holds true:

Hn(x;u;a,b,b;λ) =
∞∑
k=

∞∑
m=

n∑
d=

(
m + k – 

m

)(
n
d

)
k!(lnam)n–d

um+k Sd
k (x;a,b;λ).
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Proof From (), we obtain

∞∑
n=

Hn(x;u;a,b, c;λ)
tn

n!
=

∞∑
k=

(
λbt – at

u – at

)k

bxt .

Combining () with the above equation, we get

∞∑
n=

Hn(x;u;a,b,b;λ)
tn

n!
=

∞∑
k=

k!
(u – at)k

∞∑
n=

Sn
k (x;a,b;λ)

tn

n!
.

From the above equation, we get

∞∑
n=

Hn(x;u;a,b,b;λ)
tn

n!
=

∞∑
n=

∞∑
k=

k!Sn
k (x;a,b;λ)

uk( – at
u )k

tn

n!
.

Now we assume | atu | <  in the above equation; thus we get

∞∑
n=

Hn(x;u;a,b,b;λ)
tn

n!

=
∞∑
n=

∞∑
k=

∞∑
m=

(
m + k – 

m

)
k!Sn

k (x;a,b;λ)
uk+m

amttn

n!
.

Therefore,

∞∑
n=

Hn(x;u;a,b,b;λ)
tn

n!

=
∞∑
n=

∞∑
k=

∞∑
m=

n∑
d=

(
m + k – 

m

)(
n
d

)
k!(lnam)n–dSd

k (x;a,b;λ)
um+k

tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Remark . Substituting a =  into the above theorem and noting that d = n, we deduce
the following identity:

Hn(x;u; ,b,b;λ) =
∞∑
k=

k!
(u – )k

Sn
k (x; ,b;λ)

which upon setting λ =  and b = e, yields

Hn(x;u) =
n∑

k=

k!
(u – )k

Sn
k (x)

which was found by Chang and Ha [, Lemma ].
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6 Relationship between the generalized Bernoulli polynomials and the
generalized array type polynomials

In this section, we give some applications related to the generalized Bernoulli polynomials,
generalized array type polynomials. We derive many identities involving these polynomi-
als. By using same method with Agoh and Dilcher’s [], we give the following theorem:

Theorem .

(
λbt – at

t

)k

bxt =
∞∑
n=

Sn+k
k (x;a,b;λ)(n+k

k
) tn

n!
. ()

Proof Combining () and (), we get

(
λbt – at

t

)k

bxt =

tk

∞∑
n=

k!
n!
Snk (x,a,b;λ)t

n =
∞∑
n=

k!
n!
Sn+kk (x,a,b;λ)tn–k .

From the above equation, we arrive at the desired result. �

Remark . By setting x = , a = λ =  and b = e, Theorem . yields the corresponding
result which is proven by Agoh and Dilcher [].

Theorem . The following formula holds true:

(n + k)
Sn+k
k (x;a,b;λ)(n+k

k
) – xn

Sn+k–
k (x;a,b;λ)(n+k–

k
)

=
n∑
j=

(n
j
)

(j+k–
k–

)S j+k–
k– (x;a,b;λ)

(
ln

(
bλk)(ln(b))n–j – ln

(
ak

)(
ln(a)

)n–j).
Proof By differentiating both sides of Eq. () with respect to the variable t, after some
elementary calculations, we get the formula asserted by Theorem .. �

Theorem . The following relationship holds true:

Sn
k–(x + y;a,b;λ) =

n∑
j=

(n
j
)(n+k–

k–
)

(j+k
k
) S j+k

k (x;a,b;λ)Bn–j(y;λ;a,b,b).

Proof We set

(
λbt – at

t

)k

bxt
(

tbyt

λbt – at

)
=

(
λbt – at

t

)k–

b(x+y)t .

Combining () and () with the above equation, we get

∞∑
n=

Sn+k–
k– (x + y;a,b;λ)(n+k–

k–
) tn

n!

=
∞∑
n=

Bn(y;λ;a,b,b)
tn

n!

∞∑
n=

Sn+k
k (x;a,b;λ)(n+k

k
) tn

n!
.
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Therefore,

∞∑
n=

Sn+k–
k– (x + y;a,b;λ)(n+k–

k–
) tn

n!

=
∞∑
n=

( n∑
j=

(n
j
)

(j+k
k
)S j+k

k (x;a,b;λ)Bn–j(y;λ;a,b,b)

)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Remark . By setting x = y = , a = λ =  and b = e, Theorem . yields the correspond-
ing result which is proven by Agoh and Dilcher [].

Theorem . The following relationship holds true:

B
(u–v)
n (x + y;λ;a,b,b) =

n∑
j=

(n
j
)

(n+v
v

)S j+v
v (x;a,b;λ)B(u)

n–j(y;λ;a,b,b).

Proof We set

(
λbt – at

t

)v

bxt
(

t
λbt – at

)u

byt =
(

t
λbt – at

)u–v

b(x+y)t . ()

Combining () and () with the above equation, by using same calculations with the
proof of Theorem ., we arrive at the desired result. �
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