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1 Introduction
Let A(n) (n≥ ) denote the class of functions f (z) of the form

f (z) = z +
∞∑
k=n

anzn (.)

which are analytic in the open unit disc U = {z : |z| < }. We write A = A(). Let S∗ and
K be the subclasses of A(n) consisting of all starlike functions f (z) in U and of all convex
functions f (z) in U , respectively.
If f (z) ∈ A(n) satisfies

∣∣∣∣arg(zf ′(z)
f (z)

)∣∣∣∣ < π


γ (z ∈ U) (.)

for some γ ( < γ ≤ ), then f (z) is said to be strongly starlike of order γ inU , and denoted
by f (z) ∈ S̃∗(γ ). If f (z) ∈ A(n) satisfies

∣∣∣∣arg( + zf ′′(z)
f ′(z)

)∣∣∣∣ < π


γ (z ∈U) (.)

for some γ ( < γ ≤ ), then we say that f (z) is strongly convex of order γ in U , and we
denote by K̃ (γ ) the class of all such functions. It is obvious that f (z) ∈ A(n) belongs to K̃(γ )
if and only if zf ′(z) ∈ S̃∗(γ ). Further, we note that S̃∗() = S∗ and K̃() = K .
The strongly starlike and convex functions have been extensively studied by several au-

thors (see, e.g., [–]). The object of the present paper is to derive some sufficient condi-
tions for strongly starlikeness and strongly convexity. Some previous results are extended.
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For our purpose, we have to recall here the following results.

Lemma  (see []) Let a function p(z) =  + cz + cz + · · · be analytic in U and p(z) �= 
(z ∈U). If there exists a point z ∈U such that

∣∣argp(z)∣∣ < π


β

(|z| < |z|
)

and

∣∣argp(z)∣∣ = π


β ( < β ≤ ),

then

zp′(z)
p(z)

= ikβ ,

where

k ≥ 


(
a +


a

) (
when argp(z) =

π


β

)
,

k ≤ –



(
a +


a

) (
when argp(z) = –

π


β

)
,

and p(z)/β = ±ia (a > ).

Lemma  (see []) If f (z) ∈ A satisfies

∣∣f ′(z) – 
∣∣ < √




(z ∈U),

then f (z) ∈ S∗.

2 Starlikeness and convexity
Our first result is contained in the following.

Theorem  Let  < α ≤ 
+ 

π

∫ 
 sin–( ρ

+ρ
)dρ

. If f (z) ∈ A(n) (n≥ ) satisfies

∣∣arg f ′(z)
∣∣ < π


α (z ∈U), (.)

then f (z) ∈ S̃∗(β), where

β =
(
 +


π

∫ 


sin–

(
ρ

 + ρ

)
dρ

)
α.

Proof Note that

arg f ′(z) = arg

(
zf ′(z)
f (z)

)
+ arg

(
f (z)
z

)
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and

arg

(
f (z)
z

)
= arg

(

z

∫ z


f ′(t)dt

)
= arg

(

z

∫ r


f ′(ρeiθ)eiθ dρ

) (
z = reiθ , t = ρeiθ

)
= arg

(∫ r


f ′(ρeiθ )dρ

)
. (.)

Let

 = ρ < ρ < ρ < · · · < ρm– < ρm = r,

and

ρj – ρj– = δm (j = , , . . . ,m).

Then, by using (.), we have that

∣∣∣∣arg( f (z)
z

)∣∣∣∣ =
∣∣∣∣∣arg

(
lim

m→∞

m∑
j=

δmf ′(ρjeiθ
))∣∣∣∣∣ ≤ lim

m→∞

m∑
j=

δm
∣∣arg f ′(ρjeiθ

)∣∣.
Since the condition (.) implies that

f ′(z) ≺
(
 + z
 – z

)α

(z ∈U),

we obtain that∣∣∣∣arg( f (z)
z

)∣∣∣∣ ≤ lim
m→∞

m∑
j=

δm

∣∣∣∣arg(  + ρjeiθ

 – ρjeiθ

)α∣∣∣∣ < α

∫ r


sin–

(
ρ

 + ρ

)
dρ

< α

∫ 


sin–

(
ρ

 + ρ

)
dρ

=
π


α

(

π

∫ 


sin–

(
ρ

 + ρ

)
dρ

)
. (.)

Furthermore, since∣∣∣∣arg(zf ′(z)
f (z)

)∣∣∣∣ – ∣∣∣∣arg( f (z)
z

)∣∣∣∣ ≤ ∣∣arg f ′(z)
∣∣ (z ∈ U),

we conclude from (.) and (.) that∣∣∣∣arg(zf ′(z)
f (z)

)∣∣∣∣ ≤ ∣∣arg f ′(z)
∣∣ + ∣∣∣∣arg( f (z)

z

)∣∣∣∣ < π


α +

π


α

(

π

∫ 


sin–

(
ρ

 + ρ

)
dρ

)
=

π


β ,

which shows that f (z) ∈ S̃∗(β). �
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Theorem  Let  < α ≤ . If f (z) ∈ A(n) (n≥ ) satisfies

∣∣arg(f ′(z) + zf ′′(z)
)∣∣ < π


α

(
α +


π
tan– α

)
(z ∈U), (.)

then f (z) ∈ K̃(α), where α = . . . . is the root of the equation

α +

π
tan– α = .

Proof Note that

arg
(
f ′(z) + zf ′′(z)

)
= arg f ′(z) + arg

(
 +

zf ′′(z)
f ′(z)

)
.

If there exists a point z ∈U such that

∣∣arg f ′(z)
∣∣ < π


αα

(|z| < |z|
)

and

∣∣arg f ′(z)
∣∣ = π


αα,

then by Lemma , we have

zf ′′(z)
f ′(z)

= iααk.

Therefore, if arg f ′(z) = π
 αα, then we have

arg f ′(z) + arg

(
 +

zf ′′(z)
f ′(z)

)
=

π


αα + arg( + iααk)

=
π


αα + tan–(ααk)

≥ π


αα + α tan– α

=
π


α

(
α +


π
tan– α

)
,

which contradicts (.). If arg f ′(z) = –π
 αα, then applying the same method for the pre-

vious case, we also have

arg f ′(z) + arg

(
 +

zf ′′(z)
f ′(z)

)
≤ –

π


α

(
α +


π
tan– α

)
,

which contradicts (.). Therefore, there exists no z ∈ U such that | arg f ′(z)| = π
 αα.

This implies that

∣∣arg f ′(z)
∣∣ < π


αα (z ∈U).

http://www.fixedpointtheoryandapplications.com/content/2013/1/88


Tao and Liu Fixed Point Theory and Applications 2013, 2013:88 Page 5 of 6
http://www.fixedpointtheoryandapplications.com/content/2013/1/88

Furthermore, since∣∣∣∣arg( + zf ′′(z)
f ′(z)

)∣∣∣∣ – ∣∣arg f ′(z)
∣∣ ≤ ∣∣arg(f ′(z) + zf ′′(z)

)∣∣
<

π


α

(
α +


π
tan– α

)
(z ∈ U),

we conclude that∣∣∣∣arg( + zf ′′(z)
f ′(z)

)∣∣∣∣ < π


α

(
α +


π
tan– α

)
=

π


α (z ∈U),

which shows that f (z) ∈ K̃ (α). �

Theorem  If f (z) = z + anzn + · · · ∈ A(n) (n≥ ) satisfies

∣∣f (n)(z)∣∣ ≤
√



(z ∈U), (.)

then f (z) ∈ S∗.

Proof From (.), one can see that

∣∣f (n–)(z)∣∣ = ∣∣∣∣∫ z


f (n)(t)dt

∣∣∣∣
≤

∫ |z|



∣∣f (n)(t)∣∣|dt|
≤

√



|z| <
√



(z ∈U),

· · ·∣∣f ′′(z)
∣∣ ≤

√



(z ∈ U).

Noting that

∣∣f ′(z) – 
∣∣ = ∣∣∣∣∫ z


f ′′(t)dt

∣∣∣∣
≤

∫ |z|



∣∣f ′′(t)
∣∣|dt|

≤
√



|z| <
√



(z ∈U).

By Lemma , we have f (z) ∈ S∗. �

Theorem  If f (z) = z + anzn + · · · ∈ A(n) (n≥ ) satisfies

∣∣f (n)(z)∣∣ ≤
√



(z ∈U), (.)

then f (z) ∈ K .
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Proof By using the same method as in the proof of Theorem , we have

∣∣f ′′(z)
∣∣ ≤

√



(z ∈U).

It follows that

∣∣(zf ′(z)
)′ – 

∣∣ = ∣∣f ′(z) + zf ′′(z) – 
∣∣

≤ ∣∣f ′(z) – 
∣∣ + ∣∣zf ′′(z)

∣∣
≤

∣∣∣∣∫ z


f ′′(t)dt

∣∣∣∣ + ∣∣zf ′′(z)
∣∣

≤
∫ |z|



∣∣f ′′(t)
∣∣|dt| + √




|z|

≤ 
√



|z| <

√



(z ∈U).

Therefore, using Lemma , we see that zf ′(z) ∈ S∗, or f (z) ∈ K . �
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