RESEARCH

Open Access

Certain sufficient conditions for strongly starlikeness and convexity

Yu-Qin Tao¹ and Jin-Lin Liu^{2*}

*Correspondence: jlliu@yzu.edu.cn ²Department of Mathematics, Yangzhou University, Yangzhou, 225002, China Full list of author information is available at the end of the article

Abstract

The object of the present paper is to derive some sufficient conditions for strongly starlikeness and convexity.

MSC: 30C45

Keywords: analytic function; starlike function; convex function; strongly starlike function; strongly convex function

1 Introduction

Let A(n) ($n \ge 2$) denote the class of functions f(z) of the form

$$f(z) = z + \sum_{k=n}^{\infty} a_n z^n$$
(1.1)

which are analytic in the open unit disc $U = \{z : |z| < 1\}$. We write A = A(2). Let S^* and K be the subclasses of A(n) consisting of all starlike functions f(z) in U and of all convex functions f(z) in U, respectively.

If $f(z) \in A(n)$ satisfies

$$\left| \arg\left(\frac{zf'(z)}{f(z)}\right) \right| < \frac{\pi}{2}\gamma \quad (z \in U)$$
(1.2)

for some γ (0 < $\gamma \leq 1$), then f(z) is said to be strongly starlike of order γ in U, and denoted by $f(z) \in \widetilde{S^*}(\gamma)$. If $f(z) \in A(n)$ satisfies

$$\left| \arg\left(1 + \frac{zf''(z)}{f'(z)}\right) \right| < \frac{\pi}{2}\gamma \quad (z \in U)$$
(1.3)

for some γ (0 < $\gamma \leq 1$), then we say that f(z) is strongly convex of order γ in U, and we denote by $\widetilde{K}(\gamma)$ the class of all such functions. It is obvious that $f(z) \in A(n)$ belongs to $\widetilde{K}(\gamma)$ if and only if $zf'(z) \in \widetilde{S^*}(\gamma)$. Further, we note that $\widetilde{S^*}(1) = S^*$ and $\widetilde{K}(1) = K$.

The strongly starlike and convex functions have been extensively studied by several authors (see, *e.g.*, [1–11]). The object of the present paper is to derive some sufficient conditions for strongly starlikeness and strongly convexity. Some previous results are extended.

© 2013 Tao and Liu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(2.1)

For our purpose, we have to recall here the following results.

Lemma 1 (see [5]) Let a function $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ be analytic in U and $p(z) \neq 0$ $(z \in U)$. If there exists a point $z_0 \in U$ such that

$$\left|\arg p(z)\right| < \frac{\pi}{2}\beta \quad \left(|z| < |z_0|\right)$$

and

$$\left|\arg p(z_0)\right| = \frac{\pi}{2}\beta \quad (0 < \beta \le 1),$$

then

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik\beta,$$

where

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right) \quad \left(\text{when } \arg p(z_0) = \frac{\pi}{2} \beta \right),$$
$$k \le -\frac{1}{2} \left(a + \frac{1}{a} \right) \quad \left(\text{when } \arg p(z_0) = -\frac{\pi}{2} \beta \right)$$

and $p(z_0)^{1/\beta} = \pm ia \ (a > 0)$.

Lemma 2 (see [4]) *If* $f(z) \in A$ satisfies

$$|f'(z)-1| < \frac{\sqrt{20}}{5}$$
 $(z \in U),$

then $f(z) \in S^*$.

2 Starlikeness and convexity

Our first result is contained in the following.

Theorem 1 Let $0 < \alpha \leq \frac{1}{1+\frac{2}{\pi} \int_0^1 \sin^{-1}(\frac{2\rho}{1+\rho^2}) d\rho}$. If $f(z) \in A(n)$ $(n \geq 2)$ satisfies $\left|\arg f'(z)\right| < \frac{\pi}{2} \alpha \quad (z \in U),$

then $f(z) \in \widetilde{S^*}(\beta)$, where

$$\beta = \left(1 + \frac{2}{\pi} \int_0^1 \sin^{-1}\left(\frac{2\rho}{1+\rho^2}\right) d\rho\right) \alpha.$$

Proof Note that

$$\arg f'(z) = \arg\left(\frac{zf'(z)}{f(z)}\right) + \arg\left(\frac{f(z)}{z}\right)$$

$$\arg\left(\frac{f(z)}{z}\right) = \arg\left(\frac{1}{z}\int_{0}^{z} f'(t) dt\right)$$
$$= \arg\left(\frac{1}{z}\int_{0}^{r} f'(\rho e^{i\theta})e^{i\theta} d\rho\right) \quad (z = re^{i\theta}, t = \rho e^{i\theta})$$
$$= \arg\left(\int_{0}^{r} f'(\rho e^{i\theta}) d\rho\right). \tag{2.2}$$

Let

$$0 = \rho_0 < \rho_1 < \rho_2 < \cdots < \rho_{m-1} < \rho_m = r,$$

and

$$\rho_j - \rho_{j-1} = \delta_m \quad (j = 1, 2, ..., m).$$

Then, by using (2.2), we have that

$$\left|\arg\left(\frac{f(z)}{z}\right)\right| = \left|\arg\left(\lim_{m\to\infty}\sum_{j=1}^m \delta_m f'(\rho_j e^{i\theta})\right)\right| \le \lim_{m\to\infty}\sum_{j=1}^m \delta_m \left|\arg f'(\rho_j e^{i\theta})\right|.$$

Since the condition (2.1) implies that

$$f'(z) \prec \left(\frac{1+z}{1-z}\right)^{\alpha} \quad (z \in U),$$

we obtain that

$$\left| \arg\left(\frac{f(z)}{z}\right) \right| \leq \lim_{m \to \infty} \sum_{j=1}^{m} \delta_{m} \left| \arg\left(\frac{1+\rho_{j}e^{i\theta}}{1-\rho_{j}e^{i\theta}}\right)^{\alpha} \right| < \alpha \int_{0}^{r} \sin^{-1}\left(\frac{2\rho}{1+\rho^{2}}\right) d\rho$$
$$< \alpha \int_{0}^{1} \sin^{-1}\left(\frac{2\rho}{1+\rho^{2}}\right) d\rho$$
$$= \frac{\pi}{2} \alpha \left(\frac{2}{\pi} \int_{0}^{1} \sin^{-1}\left(\frac{2\rho}{1+\rho^{2}}\right) d\rho \right).$$
(2.3)

Furthermore, since

$$\left| \arg\left(\frac{zf'(z)}{f(z)}\right) \right| - \left| \arg\left(\frac{f(z)}{z}\right) \right| \le \left| \arg f'(z) \right| \quad (z \in U),$$

we conclude from (2.1) and (2.3) that

$$\left| \arg\left(\frac{zf'(z)}{f(z)}\right) \right| \le \left| \arg f'(z) \right| + \left| \arg\left(\frac{f(z)}{z}\right) \right| < \frac{\pi}{2}\alpha + \frac{\pi}{2}\alpha \left(\frac{2}{\pi}\int_0^1 \sin^{-1}\left(\frac{2\rho}{1+\rho^2}\right)d\rho \right)$$
$$= \frac{\pi}{2}\beta,$$

which shows that $f(z) \in \widetilde{S^*}(\beta)$.

Theorem 2 Let $0 < \alpha \le 1$. If $f(z) \in A(n)$ $(n \ge 2)$ satisfies

$$\left|\arg\left(f'(z) + zf''(z)\right)\right| < \frac{\pi}{2}\alpha\left(\alpha_1 + \frac{2}{\pi}\tan^{-1}\alpha_1\right) \quad (z \in U),$$
(2.4)

then $f(z) \in \widetilde{K}(\alpha)$, where $\alpha_1 = 0.3834...$ is the root of the equation

$$2\alpha_1 + \frac{2}{\pi}\tan^{-1}\alpha_1 = 1.$$

Proof Note that

$$\arg(f'(z) + zf''(z)) = \arg f'(z) + \arg\left(1 + \frac{zf''(z)}{f'(z)}\right).$$

If there exists a point $z_0 \in U$ such that

$$\left|\arg f'(z)\right| < \frac{\pi}{2}\alpha_1\alpha \quad \left(|z| < |z_0|\right)$$

and

$$\left|\arg f'(z_0)\right|=\frac{\pi}{2}\alpha_1\alpha,$$

then by Lemma 1, we have

$$\frac{z_0 f''(z_0)}{f'(z_0)} = i\alpha_1 \alpha k.$$

Therefore, if $\arg f'(z_0) = \frac{\pi}{2}\alpha_1 \alpha$, then we have

$$\arg f'(z_0) + \arg \left(1 + \frac{z_0 f''(z_0)}{f'(z_0)}\right) = \frac{\pi}{2} \alpha_1 \alpha + \arg(1 + i\alpha_1 \alpha k)$$
$$= \frac{\pi}{2} \alpha_1 \alpha + \tan^{-1}(\alpha_1 \alpha k)$$
$$\ge \frac{\pi}{2} \alpha_1 \alpha + \alpha \tan^{-1} \alpha_1$$
$$= \frac{\pi}{2} \alpha \left(\alpha_1 + \frac{2}{\pi} \tan^{-1} \alpha_1\right),$$

which contradicts (2.4). If $\arg f'(z_0) = -\frac{\pi}{2}\alpha_1\alpha$, then applying the same method for the previous case, we also have

$$\arg f'(z_0) + \arg\left(1 + \frac{z_0 f''(z_0)}{f'(z_0)}\right) \le -\frac{\pi}{2}\alpha\left(\alpha_1 + \frac{2}{\pi}\tan^{-1}\alpha_1\right),$$

which contradicts (2.4). Therefore, there exists no $z_0 \in U$ such that $|\arg f'(z_0)| = \frac{\pi}{2}\alpha_1\alpha$. This implies that

$$\left|\arg f'(z)\right| < \frac{\pi}{2}\alpha_1\alpha \quad (z \in U).$$

Furthermore, since

$$\left| \arg\left(1 + \frac{zf''(z)}{f'(z)}\right) \right| - \left| \arg f'(z) \right| \le \left| \arg\left(f'(z) + zf''(z)\right) \right|$$
$$< \frac{\pi}{2} \alpha \left(\alpha_1 + \frac{2}{\pi} \tan^{-1} \alpha_1\right) \quad (z \in U),$$

we conclude that

$$\left|\arg\left(1+\frac{zf''(z)}{f'(z)}\right)\right| < \frac{\pi}{2}\alpha\left(2\alpha_1+\frac{2}{\pi}\tan^{-1}\alpha_1\right) = \frac{\pi}{2}\alpha \quad (z \in U),$$

which shows that $f(z) \in \widetilde{K}(\alpha)$.

Theorem 3 If $f(z) = z + a_n z^n + \cdots \in A(n)$ $(n \ge 2)$ satisfies

$$\left|f^{(n)}(z)\right| \le \frac{\sqrt{20}}{5} \quad (z \in U),$$
(2.5)

then $f(z) \in S^*$.

Proof From (2.5), one can see that

$$|f^{(n-1)}(z)| = \left| \int_0^z f^{(n)}(t) \, dt \right|$$

$$\leq \int_0^{|z|} |f^{(n)}(t)| \, dt|$$

$$\leq \frac{\sqrt{20}}{5} |z| < \frac{\sqrt{20}}{5} \quad (z \in U),$$

...

$$\left|f''(z)\right| \leq \frac{\sqrt{20}}{5} \quad (z \in U).$$

Noting that

$$\begin{aligned} \left| f'(z) - 1 \right| &= \left| \int_0^z f''(t) \, dt \right| \\ &\leq \int_0^{|z|} \left| f''(t) \right| | \, dt | \\ &\leq \frac{\sqrt{20}}{5} |z| < \frac{\sqrt{20}}{5} \quad (z \in U). \end{aligned}$$

By Lemma 2, we have $f(z) \in S^*$.

Theorem 4 If $f(z) = z + a_n z^n + \dots \in A(n)$ $(n \ge 2)$ satisfies

$$\left|f^{(n)}(z)\right| \le \frac{\sqrt{5}}{5} \quad (z \in U),$$
(2.6)

then $f(z) \in K$.

Proof By using the same method as in the proof of Theorem 3, we have

$$\left|f''(z)\right| \leq \frac{\sqrt{5}}{5} \quad (z \in U).$$

It follows that

$$\begin{aligned} \left(zf'(z)\right)' - 1 &|= \left|f'(z) + zf''(z) - 1\right| \\ &\leq \left|f'(z) - 1\right| + \left|zf''(z)\right| \\ &\leq \left|\int_{0}^{z} f''(t) \, dt\right| + \left|zf''(z)\right| \\ &\leq \int_{0}^{|z|} \left|f''(t)\right| |\, dt| + \frac{\sqrt{5}}{5} |z| \\ &\leq \frac{2\sqrt{5}}{5} |z| < \frac{\sqrt{20}}{5} \quad (z \in U). \end{aligned}$$

Therefore, using Lemma 2, we see that $zf'(z) \in S^*$, or $f(z) \in K$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors have made the same contribution. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Maanshan Teacher's College, Maanshan, 243000, China. ²Department of Mathematics, Yangzhou University, Yangzhou, 225002, China.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

We would like to express sincere thanks to the referees for careful reading and suggestions which helped us to improve the paper.

Received: 16 January 2013 Accepted: 25 March 2013 Published: 10 April 2013

References

- 1. Gangadharan, A, Ravichandran, V: Radii of convexity and strong starlikeness for some classes of analytic functions. J. Math. Anal. Appl. **211**, 303-313 (1997)
- 2. Liu, J-L: The Noor integral operator and strongly starlike functions. J. Math. Anal. Appl. 261, 441-447 (2001)
- 3. Liu, J-L: Certain sufficient conditions for strongly starlike functions associated with an integral operator. Bull. Malays. Math. Soc. 34, 21-30 (2011)
- 4. Mocanu, PT: Some starlikeness conditions for analytic functions. Rev. Roum. Math. Pures Appl. 33, 117-124 (1988)
- Nunokawa, M: On the order of strongly starlikeness of strongly convex functions. Proc. Jpn. Acad., Ser. A, Math. Sci. 68, 234-237 (1993)
- Nunokawa, M, Owa, S, Polatoglu, Y, Caglar, M, Duman, EY: Some sufficient conditions for starlikeness and convexity. Turk. J. Math. 34, 333-337 (2010)
- Nunokawa, M, Owa, S, Saitoh, H, Ikeda, A, Koike, N: Some results for strongly starlike functions. J. Math. Anal. Appl. 212, 98-106 (1997)
- 8. Nunokawa, M, Thomas, DK: On convex and starlike functions in a sector. J. Aust. Math. Soc. A 60, 363-368 (1996)
- 9. Obradovic, M, Owa, S: Some sufficient conditions for strongly starlikeness. Int. J. Math. Math. Sci. 24, 643-647 (2000)
- 10. Ponnusamy, S, Singh, V: Criteria for strongly starlike functions. Complex Var. Theory Appl. 34, 267-291 (1997)
- 11. Xu, N, Yang, D-G, Owa, S: On strongly starlike multivalent functions of order β and type α . Math. Nachr. 283, 1207-1218 (2010)

doi:10.1186/1687-1812-2013-88

Cite this article as: Tao and Liu: Certain sufficient conditions for strongly starlikeness and convexity. Fixed Point Theory and Applications 2013 2013:88.