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Abstract
In this paper, we construct some Hecke-type operators acting on the complex
polynomials space, and we prove their commutativity. By means of this
commutativity, we find a new approach to establish the generating function of the
Apostol-Bernoulli type polynomials which are eigenfunctions of these Hecke-type
operators. Moreover, we derive many useful identities related to these operators and
polynomials.
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1 Introduction
The Hecke operators have many applications in various spaces like the space of elliptic
modular forms, the space of polynomials and others. Many mathematicians applied them
to obtain applications in analytic number theory, harmonic analysis, theoretical physics,
equidistribution of Hecke points on a family of homogeneous varieties, and cohomology.
For instance, Hecke operators are used to investigate and study Fourier coefficients of
modular forms, to explore other properties of the Hecke-eigenforms, which satisfy many
interesting arithmetic relations. For more details on Hecke operators, see [, ]. Recently,
the Hurwitz zeta functions and the Apostol-Bernoulli polynomials have been studied by
many authors, for example, see (cf. [–], the others).
The main motivation of this paper is to introduce and study new Hecke-type operators

on the ring of C[x]. We study fundamental properties of these operators. We derive re-
lations between these operators, the Hurwitz zeta functions and Apostol-Bernoulli type
polynomials.
Our results are new and useful in applied mathematics and computation, analytic num-

ber theory and related areas. There are many reasons for being interested by Hecke-type
operators. In particular, these operators are linear operators and are closely related to
Raabe’s multiplication theorem [, ]. We recall the statement of this theorem, for any
positive integer m ≥  we have

m–∑
k=

Bn

(
x + k
m

)
=m–nBn(x), ∀n ∈N,
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where Bn(x) are the well-known Bernoulli polynomials. Conversely, from the paper [] of
Lehmer, it is well known that the Raabe’s theorem gives a characterization of the Bernoulli
polynomials. As an application, of themain result of this paper, the Lehmer’s [] approach
will be generalized to the Apostol-Bernoulli type polynomials. These polynomials plays a
central role in the computational number theory.
In order to state our results, we fix the following notations and definitions. Let a, N be

positive integers and d ∈ C\{} and ξN be a primitive root of unity of orderN .We consider
the functions χa,N :N→ C given by

χa,N (k) =

⎧⎨
⎩ξ k

N , N ≥ ;

a , N = .

We define the partial Hecke-type operators associated to χa,N and d as follows:

Ta,d,N (P)(x) :=
a–∑
k=

χa,N (k)P
(
x + dk
a

)
, P(X) ∈ C[X].

The total Hecke-type operators associated to N and d are defined by

Td,N :=
∑

a≡(N)

Ta,d,N .

2 Main results
We have the following results.

Theorem . Let a, N be positive integers and d ∈ C\{}. Assume that a �≡ (modN).
Then we have the following properties for the operators Ta,d,N :

(i) The operator Ta,d,N is linear and preserves the degree in C[x].
(ii) ∀m≥ ,

Ta,d,N
(
xm

)
=

⎧⎨
⎩Sd,, m = ;

a–mxm + a–m
∑m–

v=
(m
v
)
Sd,m–v(χa,N ) · xv, m ≥ ,

where

Sd,m–v(χa,N ) =
a–∑
k=

χa,N (k)(dk)m–v =

⎧⎨
⎩

∑a–
k=


a (dk)

m–v, N = ;∑a–
k= ξ k

N (dk)m–v, N ≥ 

and Sd, = Sd,(χa,N ).

Proof A simple computation gives the linearity of the operator Ta,d,N , so we omit it. Since
a �≡ (modN), we can see easily that

a–∑
k=

χa,N (k) �= .
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From the above equation, we obtain

Sd, �= .

Let us show how to compute Ta,d,N (xm). Form = , we get

Ta,d,N
(
xm

)
=

a–∑
k=

χa,N (k).

We end the proof by induction. Letm ≥ , after an elementary manipulation we obtain

Ta,d,N
(
xm

)
= a–m

m∑
v=

{(
m
v

) a–∑
k=

χa,N (k)(dk)m–v

}
xv

and, therefore, (ii) is satisfied. �

We consider the restriction of the partial Hecke operator to the finite dimensional space

Cm[x] =
{
P(x) ∈C[x] : degree of P(x) ≤ m

}
.

By writing the operator Ta,d,N in the canonical basis βm = (,x,x, . . . ,xm), and from (ii),
we get the corresponding matrix. Using linear algebra, we will see that this matrix repre-
sentation is useful and gives interesting results.

Proposition. For anym ∈ N, letβm = (,x,x, . . . ,xm) be the canonicalC-basis ofCm[x].
Then thematrixMβm (Ta,d,N ) corresponding to the operator Ta,d,N (restricted toCm[x]) in the
basis βm is given by

Mβm (Ta,d,N ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sd, a–Sd, a–Sd, . . . a–mSd,m
 a–Sd, a–Sd, . . . a–m

(m

)
Sd,m–

  a–Sd, . . . a–m
(m

)
Sd,m–

   . . . a–m
(m

)
Sd,m–

...
...

...
...

   . . . a–mSd,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. ()

Remark . For any positive integer a ≥ , the eigenvalues Sd,,a–Sd,,a–Sd,, . . . ,
a–mSd, of thematrix () are distinct. Then from the theory of linear algebrawe deduce that
thematrix () is a diagonalizable. Again, thanks to linear algebra, we know that there exists
a sequence of polynomials (Pn,d,N )n∈N, which is a sequence of eigenpolynomials of (). For
more details, see the next section.

Theorem . The operators Ta,d,N and Tb,d,N commute if a≡ b ≡ (modN).

Proof We consider the linear operators Ta,d,N and Tb,d,N and we must show that

Ta,d,NTb,d,N = Tb,d,NTa,d,N

http://www.fixedpointtheoryandapplications.com/content/2013/1/92
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for all a≡ (modN). This equality is obviouswhenN = . ForN ≥ , we have the following
equalities:

(Ta,d,NTb,d,N )
(
P(x)

)
= Ta,d,N

(
Tb,d,N

(
P(x)

))
= Ta,d,N

( b–∑
k=

ξ
k
N P

(
x + dk

b

))
.

The linearity of the of the operator Ta,d,N implies that

(Ta,d,NTb,d,N )
(
P(x)

)
=

b–∑
k=

ξ
k
N Ta,d,N

(
P
(
x + dk

b

))
=

b–∑
k=

ξ
k
N

a–∑
k=

ξ
k
N P

( x+dk
b + dk

a

)
.

Then we deduce

(Ta,d,NTb,d,N )
(
P(x)

)
=

b–∑
k=

a–∑
k=

ξ
k
N ξ

k
N P

(
x + d(k + bk)

ab

)
.

By setting k = k + bk, we obtain

(Ta,d,NTb,d,N )
(
P(x)

)
=

ab–∑
k=

ξ k
NP

(
x + dk
ab

)
= Tab,d,N

(
P(x)

)
= Tba,d,N

(
P(x)

)
.

Finally, we get our desired equality

(Ta,d,NTb,d,N )
(
P(x)

)
= (Tb,d,NTa,d,N )

(
P(x)

)
. �

3 New characterization of Apostol-Bernoulli type polynomials
As an application of our main results, we study the polynomials P ∈ C[x] satisfying the
functional equation

Ta,d,N (P) = a–nP(x), ()

where a ≡ (N) and fixed integer n≥ .

Theorem . Let a, N be positive integers and d ∈ C\{} such that a ≡ (N). Then we
have the following properties:

(i) There exists an unique sequence of monic polynomials Pn,d,N ∈ C[x] with
degPn,d,N = n such that

Ta,d,N (Pn,d,N ) = a–nPn,d,N .

(ii) Polynomials Pn,d,N (x) are eigenfunctions for the operators Tn,d,N with eigenvalues
N–nζ (n, 

N ), that is

Td,N (Pn,d,N )(x) =N–nζ

(
n,


N

)
Pn,d,N (x),

where ζ (s,x) =
∑

k≥


(x+k)s is the Hurwitz zeta function.
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Proof The existence of a sequence of monic polynomials P is satisfied from Theorem .
and Theorem ..
Now we must observe the uniqueness of (Pn,d,N )n∈N. For this end, we take two different

monic polynomials Pn,d,N and Rn,d,N of degree n satisfying ().
Suppose that Pn,d,N (x) – Rn,d,N (x) = �m(x) = Axm + Axm– + · · · , where  ≤ m < n and

A �= . From () and the definition of Ta,d,N , we can write

a–∑
k=

χa,N (k)Pn,d,N

(
x + dk
a

)
= a–nPn,d,N (x) ()

and

a–∑
k=

χa,N (k)Rn,d,N

(
x + dk
a

)
= a–nRn,d,N (x). ()

Subtracting () from (), we get

a–∑
k=

χa,N (k)�m

(
x + dk
a

)
= a–n

(
Axm +Axm– + · · · ).

Identifying the coefficients of xm on both sides, we have A = a–nA, but this contradicts
our stipulations that A �= ,m < n, and a≥ . Hence, the proof of (i) is completed.
We prove (ii). It is easy to see that

Td,N (Pn,d,N )(x) =
∑

a≡(N)
a≥

Ta,d,N (Pn,d,N )(x) =

( ∑
a≡(N)
a≥

a–n
)
Pn,d,N (x)

and putting a =  + kN , we obtain

Td,N (Pn,d,N )(x) =
∑
k≥

( + kN)–nPn,d,N (x) =N–nζ

(
n,


N

)
· Pn,d,N (x). �

Thanks to Theorem ., we find the generating function of polynomials (Pn,d,N )n∈N sat-
isfying (). More precisely, we have the following theorem.

Theorem . For all n≥ , we have the following results:
(i) d

dxPn,d,N (x) = nPn–,d,N (x).
(ii) Pn,d,N (d) = ξ–

N Pn,d,N ().
(iii) The difference formula of (Pn,d,N )n∈N is given by

Pn,d,N (x + d) – ξ–
N Pn,d,N (x) =

⎧⎨
⎩nxn–, N = ;

( – ξ–
N )xn, N ≥ .

Proof We prove (i). From () and the definition of the operators Ta,d,N , we have

a–∑
k=

χa,N (k)Pn,d,N

(
x + dk
a

)
= a–nPn,d,N (x),
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we derive this equation and obtain

a–∑
k=

χa,N (k)
P′
n,d,N (

x+dk
a )

n
= a–n

P′
n,d,N (x)
n

.

Since
P′
n,d,N (x)

n is monic with degree n – , from Theorem .(i), we arrive at

P′
n,d,N (x)
n

= Pn–,d,N (x). ()

We prove (ii). For N ≥ , by taking χa,N (k) = ξ k
N and a =N + , we have

N∑
k=

ξ k
NPn,d,N

(
x + dk
N + 

)
= (N + )–nPn,d,N (x).

In the above equation, putting x =  and x = d, respectively, we arrive at

N∑
k=

ξ k
NPn,d,N

(
dk

N + 

)
= (N + )–nPn,d,N () ()

and

N∑
k=

ξ k
NPn,d,N

(
d(k + )
N + 

)
= (N + )–nPn,d,N (d). ()

Multiplying each side of () by ξN and then substrate it from (), we have the following
relation:

Pn,d,N () – ξN+
N Pn,d,N (d) = (N + )–n

(
Pn,d,N () – ξNPn,d,N (d)

)
.

Since ξN+
N = ξN , we obtain that Pn,d,N (d) = ξ–

N Pn,d,N () for all n≥  and N ≥ .
We prove (iii). We can write

Pn,d,N (x) =
n∑

k=

P(k)
n,d,N ()

xk

k!
, Pn,d,N (x + d) =

n∑
k=

P(k)
n,d,N (d)

xk

k!
.

On the other hand, by using Theorem .(i), we get

Pn,d,N (x) =
n∑

k=

(
n
k

)
Pn–k,d,N ()xk , ()

Pn,d,N (x + d) =
n∑

k=

(
n
k

)
Pn–k,d,N (d)xk . ()

We multiply the each side of () by ξN and then substrate () from (), we arrive to

ξNPn,d,N (x + d) – Pn,d,N (x) =
n∑

k=

(
n
k

)(
Pn–k,d,N (d) – ξNPn–k,d,N ()

)
xk .
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From Theorem .(ii) and equality P,d,N (d) = P,d,N (d) = , we get

ξNPn,d,N (x + d) – Pn,d,N (x) = –
((

n
n

)
P,d,N () –

(
n
n

)
ξNP,d,N ()

)
xn = (ξN – )xn.

Therefore, we obtain the desired result. �

Using Theorem . and Theorem ., we can establish the following result.

Theorem . For a ≡ (N), the generating function of (Pn,d,N )n∈N is given by

Fd,N (x, t) =

⎧⎨
⎩

dtext
edt– , if N = ;
(ξN–)ext
ξNedt– , if N ≥ .

Proof Let N ≥  integer and write

(ξN – )ext

ξNedt – 
=

∑
n≥

Qn,d(x, ξN )
tn

n!
.

Using the difference formula in Theorem ., we get

ξm–
N Pn,d,N (md) – ξ–

N Pn,d,N () =
(
 – ξ–

N
) m–∑

j=

ξ
j
N (jd)

n.

We consider the generating function

∑
n≥

(
ξm
N Pn,d,N (md) – Pn,d,N ()

) tn
n!

= (ξN – )
m–∑
j=

ξ
j
N

∑
n≥

(jdt)n

n!

= (ξN – )
ξm
N emdt – 
ξNedt – 

= ξm
N
(ξN – )emdt

ξNedt – 
–

(ξN – )
ξNedt – 

= ξm
N

∑
n≥

Qn,d(md, ξN )
tn

n!
–

∑
n≥

Qn,d(, ξN )
tn

n!

thus,

∑
n≥

(
ξm
N Pn,d,N (md) – Pn,d,N ()

) tn
n!

=
∑
n≥

{
ξm
N Qn,d(md, ξN ) –Qn,d(, ξN )

} tn
n!
.

We compare the coefficients of xn in the above equation and we obtain

ξm
N Pn,d,N (md) – Pn,d,N (, ξN ) = ξm

N Qn,d(md, ξN ) –Qn,d(, ξN ).

In particular, if we takem ≡ (N), then we have

Pn,d,N (md) – Pn,d,N (, ξN ) =Qn,d(md, ξN ) –Qn,d(, ξN ).

http://www.fixedpointtheoryandapplications.com/content/2013/1/92
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Therefore, wenote that the polynomialsPn,d,N (x)–Pn,d,N (, ξN ) andQn,d(x, ξN )–Qn,d(, ξN )
are equal on the infinite set {x =md: withm ≡ (modN)}. Thenwe canwrite for all x ∈C,

Pn,d,N (x) – Pn,d,N () =Qn,d(x, ξN ) –Qn,d(, ξN ).

Now, by derivation on x we get

nPn–,d,N (x) = P′
n,d,N (x) =Q′

n,d,N (xd) = nQn–,d,N (x).

We obtain the equality

Pn,d,N (x) =Qn,d,N (x).

Hence, we obtain the generating function of Pn,d,N . �

Remark . The case d =  of Theorem . recovers the so-called generalized Bernoulli
and Euler polynomials, which are studied in [].

4 Eigenpolynomials attached to Dirichlet characters
Let d be a positive integer, ψ be a Dirichlet character modulo d. We associate to ψ , d, N
the polynomials Pn,ψ ,d(x, ξN ) defined by the generating function

∑
n≥

Pn,ψ ,d(x, ξN )
tn

n!
=

⎧⎨
⎩(ξN – )

∑d
b=

ψ(b)e(x+b)t
ξNedt– , N ≥ ;∑d

b=
ψ(b)te(x+b)t

edt– , N = .
()

Then we have the interesting relations.

Theorem . Let d be a positive integer, ψ be a Dirichlet character modulo d. Then we
have the identity

Pn,ψ ,d(x, ξN ) =
d∑
b=

ψ(b)Pn,d,N (x + b)

which is equivalent to the following equality:

Pn,ψ ,d(x, ξN ) =
n∑

k=

(
n
k

) d∑
b=

ψ(b)Pn–k,d,N (x)bk .

Proof The proof forN =  is trivial, we omit it. ForN ≥ , by using equation (), we obtain

∑
n≥

Pn,ψ ,d(x, ξN )
tn

n!
=

d∑
b=

(ξN – )ψ(b)e(x+b)t

ξNedt – 
=

d∑
b=

ψ(b)
∑
n≥

Pn,d,N (x + b)
tn

n!
.

Taking the coefficients of tn
n! in the left and right sides of above equation, we have

Pn,ψ ,d(x, ξN ) =
d∑
b=

ψ(b)Pn,d,N (x + b).

http://www.fixedpointtheoryandapplications.com/content/2013/1/92
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Now we prove (ii). By equation () we have

∑
n≥

Pn,ψ ,d(x, ξN )
tn

n!
=

d∑
b=

(ξN – )ψ(b)e(x+b)t

ξNedt – 

=
(ξN – )ext

ξNedt – 

d∑
b=

ψ(b)ebt

=
(∑

n≥

Pn,d,N (x)
tn

n!

)(∑
n≥

d∑
b=

ψ(b)bn
tn

n!

)
,

then we have

∑
n≥

Pn,ψ ,d(x, ξN )
tn

n!
=

∑
n≥

( n∑
k=

(
n
k

) d∑
b=

ψ(b)Pn–k,d,N (x)bk
)
tn

n!
.

Comparing the coefficients of tn
n! in both sides in the last equality, we obtain the desired

result. �

Theorem . For any positive integers N and a such that a ≡ (N). Then the polynomials
Pn,ψ ,d are eigenpolynomials for Hecke type operators Ta,d,N .

Proof From Theorem ., we have

Ta,d,N
(
Pn,d,N (x)

)
= a–nPn,d,N (x),

then for any integer b we have

Ta,d,N
(
Pn,d,N (x + b)

)
ψ(b) = a–nPn,d,N (x + b)ψ(b).

Summing over all  ≤ b ≤ d

d∑
b=

ψ(b)Ta,d,N
(
Pn,d,N (x + b)

)
= a–n

d∑
b=

ψ(b)Pn,d,N (x + b).

Therefore, by linearity of the Hecke operator we obtain

Ta,d,N
(
Pn,χ ,d(x, ξN )

)
= Ta,d,N

( d∑
b=

χ (b)Pn,d,N (x + b)

)
=

d∑
b=

χ (b)Ta,d,N
(
Pn,d,N (x + b)

)
.

We then obtain our formula

Ta,d,N
(
Pn,χ ,d(x, ξN )

)
= a–n

d∑
b=

χ (b)Pn,d,N (x + b) = a–nPn,χ ,d(x, ξN ). �

Theorem . For all integer n≥ , the difference formula of (Pn,ψ ,d)(x, ξN ) is given by

Pn,ψ ,d(x + d, ξN ) – ξ–
N Pn,ψ ,d(x, ξN ) =

⎧⎨
⎩n

∑d
b= ψ(b)(x + b)n–, N = ;

( – ξ–
N )

∑d
b= ψ(b)(x + b)n, N ≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/92


Aygunes et al. Fixed Point Theory and Applications 2013, 2013:92 Page 10 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/92

Proof From Theorem ., we know that, for all n≥ ,

Pn,d,N (x + d) – ξ–
N Pn,d,N (x) =

⎧⎨
⎩nxn–, N = ;

( – ξ–
N )xn, N ≥ .

Let N ≥ . By using Theorem ., we get

Pn,ψ ,d(x + d, ξN ) =
d∑
b=

ψ(b)Pn,d,N (x + b + d)

and

–Pn,ψ ,d(x, ξN ) = –
d∑
b=

ψ(b)Pn,d,N (x + b).

Therefore,

Pn,ψ ,d(x + d, ξN ) – ξ–
N Pn,ψ ,d(x, ξN ) =

d∑
b=

ψ(b)
(
Pn,d,N (x + b + d) – ξ–

N Pn,d,N (x + b)
)

=
(
 – ξ–

N
) d∑

b=

ψ(b)(x + b)n.

Let N = . By using Theorem ., we get

Pn,ψ ,d(x + d, ξN ) =
d∑
b=

ψ(b)Pn,d,N (x + b + d)

and

–Pn,ψ ,d(x, ξN ) = –
d∑
b=

ψ(b)Pn,d,N (x + b).

Therefore,

Pn,ψ ,d(x + d, ξN ) – ξ–
N Pn,ψ ,d(x, ξN ) =

d∑
b=

ψ(b)
(
Pn,d,N (x + b + d) – Pn,d,N (x + b)

)

= n
d∑
b=

ψ(b)(x + b)n–. �
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