
Thanh Fixed Point Theory and Applications 2014, 2014:200
http://www.fixedpointtheoryandapplications.com/content/2014/1/200

RESEARCH Open Access

Strong convergence theorems for equilibrium
problems involving a family of nonexpansive
mappings
Do D Thanh*

*Correspondence:
doduythanh.edu@gmail.com
Department of Mathematics,
Haiphong University, Haiphong,
Vietnam

Abstract
We give new hybrid variants of extragradient methods for finding a common solution
of an equilibrium problem and a family of nonexpansive mappings. We present a
scheme that combines the idea of an extragradient method and a successive
iteration method as a hybrid variant. Then, this scheme is modified by projecting on a
suitable convex set to get a better convergence property under certain assumptions
in a real Hilbert space.
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1 Introduction
In this paper, we always assume thatH is a real Hilbert space with the inner product 〈·, ·〉
and the induced norm ‖ · ‖. Let C be a nonempty closed convex subset of H and the
bifunction f : C ×C →R. Then f is called strongly monotone on C with β >  iff

f (x, y) + f (y,x) ≤ –β‖x – y‖ ∀x, y ∈ C;

monotone on C iff

f (x, y) + f (y,x) ≤  ∀x, y ∈ C;

pseudomonotone on C iff

f (x, y) ≥  implies f (y,x) ≤  ∀x, y ∈ C;

Lipschitz-type continuous on C in the sense of Mastroeni [] iff there exist positive con-
stants c > , c >  such that

f (x, y) + f (y, z) ≥ f (x, z) – c‖x – y‖ – c‖y – z‖ ∀x, y, z ∈ C.

An equilibrium problem, shortly EP(f ,C), is to find a point in

Sol(f ,C) =
{
x∗ ∈ C : f

(
x∗, y

) ≥  ∀y ∈ C
}
.
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Let a mapping T of C into itself. Then T is called contractive with constant δ ∈ (, ) iff

∥∥T(x) – T(y)
∥∥ ≤ δ‖x – y‖ ∀x, y ∈ C.

Themapping T is called strictly pseudocontractive iff there exists a constant k ∈ [, ) such
that

∥∥T(x) – T(y)
∥∥ ≤ ‖x – y‖ + k

∥∥(I – T)(x) – (I – T)(y)
∥∥.

In the case k = , the mapping T is called nonexpansive on C. We denote by Fix(T) the set
of fixed points of T .
Let Ti : C → C, i ∈ �, be a family of nonexpansive mappings where � stands for an

index set. In this paper, we are interested in the problem of finding a common element of
the solution set of problem EP(f ,C) and the set of fixed points F =

⋂
i∈� Fix(Ti), namely:

Find x∗ ∈ F ∩ Sol(f ,C), (.)

where the function f and the mappings Ti, i ∈ �, satisfy the following conditions:

(A) f (x,x) =  for all x ∈ C and f is pseudomonotone on C,
(A) f is Lipschitz-type continuous on C with constants c >  and c > ,
(A) f is upper semicontinuous on C,
(A) For each x ∈ C, f (x, ·) is convex and subdifferentiable on C,
(A) F ∩ Sol(f ,C) �= ∅.
Under these assumptions, for each r >  and x ∈ C, there exists a unique element z ∈ C
such that

f (z, y) +

r
〈y – z, z – x〉 ≥  ∀y ∈ C. (.)

Problem (.) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, minimax problems, equilibrium equilibriums, fixed
point problems (see, e.g., [–]). Recently, it has become an attractive field for many re-
searchers in both theory and its solution methods (see, e.g., [, , –] and the references
therein). Most of these algorithms are based on inequality (.) for solving the underlying
equilibrium problem when F ∩Sol(f ,C) �= ∅. Motivated by this idea for finding a common
point of Sol(f ,C) and the fixed point set Fix(T) of a nonexpansive mapping T , Takahashi
and Takahashi [] first introduced an iterative scheme by the viscosity approximation
method. The sequence {xn} is defined by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

f (un, y) + 
rn 〈y – un,un – xn〉 ≥  ∀y ∈ C,

xn+ = αng(xn) + ( – αn)T(un) ∀n≥ ,

where g : C → C is contractive. Under certain conditions over the parameters {αn} and
{rn}, they showed that the sequences {xn} and {un} strongly converge to z =
PrFix(T)∩Sol(f ,C) g(z), where PrC denotes the projection on C. At each iteration n in all of
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these algorithms, it requires to solve approximation auxiliary equilibrium problems for
finding a common solution of an equilibrium problem and a fixed point problem. In order
to avoid this requirement, Anh [] recently proposed a hybrid extragradient algorithm
for finding a common point of the set Fix(T)∩ Sol(f ,C). Starting with an arbitrary initial
point x ∈ C, iteration sequences are defined by

⎧⎪⎪⎨
⎪⎪⎩
yk = argmin{λkf (xk , y) + 

‖y – xk‖ : y ∈ C},
tk = argmin{λkf (yk , t) + 

‖t – xk‖ : t ∈ C},
xk+ = αkx + ( – αk)T(xk).

(.)

Under certain conditions onto parameters {λk} and {αk}, he showed that the sequences
{xk}, {yk} and {tk} weakly converge to the point x ∈ Fix(T) ∩ Sol(f ,C) in a real Hilbert
space. At each main iteration n of the scheme, he only solved strongly convex problems
onC, but the proof of convergencewas still done under the assumptions that xn+–xn → .
For finding a common point of a family of nonexpansive mappings Ti (i ∈ �), as a corol-

lary of Theorem . in [], Zhou proposed the following iteration scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈H chosen arbitrarily,

C,i = C,C =
⋂

i∈� C,i,

x = PrC (x),

yn,i = ( – αn,i)xn + αn,iTi(xn),

Cn+,i = {z ∈ Cn,i : αn,i( – αn,i)‖xn – Ti(xn)‖ ≤ 〈xn – z, yn,i – Ti(yn,i)〉},
Cn+ =

⋂
i∈� Cn+,i,

xn+ = PrCn+ (x).

(.)

Under the restrictions of the control sequences  < lim infn→∞ αn,i ≤ lim supn→∞ αn,i ≤
ai < 

 , he showed that the sequence {xn} defined by (.) strongly converges to x∗ = PrF (x)
in a real Hilbert spaceH, where F =

⋂
i∈� Fix(Ti).

In this paper, motivated by Ceng et al. [, ], Wang and Guo [], Zhou [], Nadezhk-
ina and Takahashi [], Cho et al. [], Takahashi and Takahashi [], Anh [, ] and Anh
et al. [, ], we introduce several modified hybrid extragradient schemes to modify the
iteration schemes (.) and (.) to obtain new strong convergence theorems for a family
of nonexpansive mappings and the equilibrium problem EP(f ,C) in the framework of a
real Hilbert spaceH.
To investigate the convergence of this scheme, we recall the following technical lemmas

which will be used in the sequel.

Lemma . ([], Lemma .) Let C be a nonempty closed convex subset of a real Hilbert
space H. Let f : C × C → R be a pseudomonotone and Lipschitz-type continuous bifunc-
tion. For each x ∈ C, let f (x, ·) be convex and subdifferentiable on C. Suppose that the se-
quences {xn}, {yn}, {tn} are generated by scheme (.) and x∗ ∈ Sol(f ,C). Then

∥∥tn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – ( – λnc)
∥∥xn – yn

∥∥ – ( – λnc)
∥∥yn – tn

∥∥ ∀n≥ .
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Lemma . Let C be a closed convex subset of a real Hilbert space H, and let PrC be the
metric projection from H on to C (i.e., for x ∈ H, PrC is the only point in C such that ‖x –
PrC x‖ = inf{‖x – z‖ : z ∈ C}). Given x ∈ H and z ∈ C. Then z = PrC x if only if there holds
the relation 〈x – z, y – z〉 ≤  for all y ∈ C.

Lemma . LetH be a real Hilbert space. Then the following equations hold:
(i) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈H.
(ii) ‖tx + ( – t)y‖ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖ for all t ∈ [, ] and x, y ∈H.

2 Convergence theorems
Now, we prove the main convergence theorem.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert spaceH. Suppose
that assumptions (A)-(A) are satisfied and {Ti}i∈� is a family of nonexpansive mappings
from C into itself and a nonempty common fixed points set F . Let {xn} be a sequence gen-
erated by the following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈H chosen arbitrarily,

C,i =D,i = C,C =
⋂

i∈� C,i,D =
⋂

i∈� D,i,

x = PrC∩D x,

yn = argmin{λnf (xn, y) + 
‖y – xn‖ : y ∈ C},

zn = argmin{λnf (yn, y) + 
‖z – xn‖ : z ∈ C},

yn,i = ( – αn,i)zn + αn,iTizn,

Cn+,i = {z ∈ Cn,i : αn,i( – αn,i)‖zn – Tizn‖ ≤ 〈zn – z, yn,i – Tiyn,i〉},
Cn+ =

⋂
i∈� Cn+,i,

Dn+,i = {z ∈Dn,i : ‖yn,i – z‖ ≤ ‖xn – z‖},
Dn+ =

⋂
i∈� Dn+,i,

xn+ = PrCn+∩Dn+ x,

 < lim infαn,i ≤ lim supαn,i < ,

{λn} ⊂ [a,b] for some a,b ∈ (, L ), where L =max{c, c}.

Then the sequences {xn}, {yn} and {zn} strongly converge to the same point PrF∩Sol(f ,C) x.

Proof The proof of this theorem is divided into several steps.
Step . Claim that Cn and Dn are closed and convex for all n≥ .
We have to show that for any fixed point but arbitrary i ∈ �, Cn,i is closed and convex

for every n ≥ . This can be proved by induction on n. It is obvious that C,i = C is closed
and convex. Assume that Cn,i is closed and convex for some n ∈ N ∗ = {, , . . .}. We have
that the set

A =
{
z ∈ C : αn,i( – αn,i)

∥∥zn – Tizn
∥∥ ≤ 〈

zn – z, yn,i – Tiyn,i
〉}
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is closed and convex, and Cn+,i = Cn,i ∩ A, hence Cn+,i is closed and convex. Then Cn is
closed and convex for all n≥ . We can write Dn+,i under the form

Dn+,i =
{
z ∈Dn,i :

∥∥yn,i – xn
∥∥ + 

〈
yn,i – xn,xn – z

〉 ≤ 
}
.

Then Dn+,i is closed and convex. Thus, Dn is closed and convex.
Step . Claim that F ∩ Sol(f ,C) ⊆ Cn ∩Dn for all n ∈N ∗.
First, we show that F ⊆ Cn by induction on n. It suffices to show that F ⊆ Cn,i.
We have F ⊆ C = C,i is obvious. Suppose F ⊆ Cn,i for some n ∈ N . We have to show

that F ⊆ Cn+,i. Indeed, let w ∈ F , by inductive hypothesis, we have w ∈ Cn,i and

∥∥zn – Tizn
∥∥ =

〈
zn – Tizn, zn – Tizn

〉

=


αn,i

〈
zn – yn,i, zn – Tizn

〉

=


αn,i

〈
zn – yn,i, zn – Tizn –

(
yn,i – Tiyn,i

)〉
+


αn,i

〈
zn – yn,i, yn,i – Tiyn,i

〉

=


αn,i

〈
zn – yn,i, zn – Tizn –

(
yn,i – Tiyn,i

)〉

+


αn,i

〈
zn –w +w – yn,i, yn,i – Tiyn,i

〉

=


αn,i

〈
zn – yn,i, zn – yn,i

〉
+


αn,i

〈
zn – yn,i,Tiyn,i – Tizn

〉

+


αn,i

〈
zn –w, yn,i – Tiyn,i

〉
+


αn,i

〈
w – yn,i, yn,i – Tiyn,i

〉

≤ 
αn,i

∥∥zn – yn,i
∥∥ +


αn,i

〈
zn –w, yn,i – Tiyn,i

〉

+


αn,i

〈
w – yn,i, yn,i – Tiyn,i

〉
. (.)

On the other hand, for all w ∈ F and yn,i ∈ C, we have

∥∥w – yn,i
∥∥ ≥ 〈

Tiw – Tiyn,i,w – yn,i
〉

=
〈
w – Tiyn,i,w – yn,i

〉
=

〈
w – yn,i + yn,i – Tiyn,i,w – yn,i

〉
=

∥∥w – yn,i
∥∥ +

〈
yn,i – Tiyn,i,w – yn,i

〉
,

and hence

〈
w – yn,i, yn,i – Tiyn,i

〉 ≤ .

Combining this with (.), we obtain

∥∥zn – Tizn
∥∥ ≤ 

αn,i

∥∥zn – yn,i
∥∥ +


αn,i

〈
zn –w, yn,i – Tiyn,i

〉

≤ αn,i
∥∥zn – Tizn

∥∥ +


αn,i

〈
zn –w, yn,i – Tiyn,i

〉
.
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This follows that

αn,i( – αn,i)
∥∥zn – Tizn

∥∥ ≤ 〈
zn –w, yn,i – Tiyn,i

〉
.

By the definition of Cn+,i, we have w ∈ Cn+,i, and so F ⊆ Cn+,i for all i ∈ �, which deduces
that F ⊆ Cn. This shows that F ∩ Sol(f ,C) ⊆ Cn for all n ∈N ∗.
Next, wewill prove F∩Sol(f ,C) ⊆Dn by induction on n ∈N ∗. It suffices to show that F∩

Sol(f ,C) ⊆ Dn,i. Indeed, F ⊆ C = D,i so F ∩ Sol(f ,C) ⊆ D,i. Suppose that F ∩ Sol(f ,C) ⊆
Dn,i. Let x∗ ∈ F ∩ Sol(f ,C), then x∗ ∈Dn,i. Using Lemma ., we get

∥∥yn,i – x∗∥∥ =
∥∥( – αn,i)zn + αn,iTizn – x∗∥∥

≤ ( – αn,i)
∥∥zn – x∗∥∥ + αn,i

∥∥Tizn – Tix∗∥∥

≤ ∥∥zn – x∗∥∥

≤ ∥∥xn – x∗∥∥ – ( – λnc)
∥∥xn – yn

∥∥ – ( – λnc)
∥∥yn – zn

∥∥

≤ ∥∥xn – x∗∥∥. (.)

Then we have x∗ ∈Dn+,i and hence F ∩ Sol(f ,C) ⊆Dn+,i. This shows that F ∩ Sol(f ,C) ⊆
Dn, which yields that F ∩ Sol(f ,C) ⊆ Cn ∩Dn for all n ∈N ∗.
Step . Claim that the sequence {xn} is bounded and there exists the limit limn→∞ ‖xn –

x‖ = c.
From xn = PrCn∩Dn x, it follows that

〈
x – xn,xn – y

〉 ≥  ∀y ∈ Cn ∩Dn. (.)

Then, using Step , we have F ∩ Sol(f ,C) ⊆ Cn ∩Dn and

〈
x – xn,xn –w

〉 ≥  ∀w ∈ F ∩ Sol(f ,C). (.)

Combining this and assumption (A), the projection PrF∩Sol(f ,C) x is well defined and there
exits a unique point p such that p = PrF∩Sol(f ,C) x. So, we have

 ≤ 〈
x – xn,xn – p

〉
=

〈
x – xn,xn – x + x – p

〉
≤ –

∥∥x – xn
∥∥ +

∥∥x – xn
∥∥∥∥x – p

∥∥,
and hence

∥∥x – xn
∥∥ ≤ ∥∥x – p

∥∥.
Then the sequence {xn} is bounded. So, the sequences {yn}, {zn}, {yn,i}, {Tiyn,i} also are
bounded. Since xn+ ∈ Cn+ ∩Dn+ ⊂ Cn ∩Dn and (.), we have

 ≤ 〈
x – xn,xn – xn+

〉
=

〈
x – xn,xn – x + x – xn+

〉
≤ –

∥∥x – xn
∥∥ +

∥∥x – xn
∥∥∥∥x – xn+

∥∥,
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and hence ‖x –xn‖ ≤ ‖x –xn+‖. This together with the boundedness of {xn} implies that
the limit limn→∞ ‖xn – x‖ = c exists.
Step . We claim that limn→∞ xn = q ∈ C.
Since Cm ∩Dm ⊆ Cn ∩Dn, xm = PrCm∩Dm x ∈ Cn ∩Dn for any positive integerm≥ n and

(.), we have

〈
x – xn,xn – xn+m

〉 ≥ .

Then

∥∥xn – xn+m
∥∥ =

∥∥xn – x + x – xn+m
∥∥

=
∥∥xn – x

∥∥ +
∥∥x – xn+m

∥∥ – 
〈
x – xn,x – xn+m

〉
≤ ∥∥x – xn+m

∥∥ –
∥∥xn – x

∥∥ – 
〈
x – xn,xn – xn+m

〉
≤ ∥∥x – xn+m

∥∥ –
∥∥xn – x

∥∥. (.)

Passing the limit in (.) as n→ ∞, we get limn→∞ ‖xn – xn+m‖ =  ∀m ∈N ∗. Hence, {xn}
is a Cauchy sequence in a real Hilbert spaceH and so limn→∞ xn = q ∈ C.
Step . We claim that q = PrF∩Sol(f ,C) x, where q = limn→∞ xn.
First we show that q ∈ F∩Sol(f ,C). Since xn+ = PrCn+∩Dn+ x, we have xn+ ∈Dn+. Then

xn+ ∈Dn+,i and

∥∥yn,i – xn+
∥∥ ≤ ∥∥xn – xn+

∥∥,
which yields that

∥∥xn – yn,i
∥∥ ≤ ∥∥xn – xn+

∥∥ +
∥∥xn+ – yn,i

∥∥
≤ 

∥∥xn – xn+
∥∥.

Combining this and limn→∞ ‖xn – xm‖ =  for allm ∈N ∗, we get

lim
n→∞

∥∥xn – yn,i
∥∥ = . (.)

For each x∗ ∈ Sol(f ,C)∩ F , by (.) we have

( – bc)
∥∥xn – yn

∥∥ ≤ ( – λnc)
∥∥xn – yn

∥∥

≤ ∥∥xn – x∗∥∥ –
∥∥yn,i – x∗∥∥

=
(∥∥xn – x∗∥∥ +

∥∥yn,i – x∗∥∥)(∥∥xn – x∗∥∥ –
∥∥yn,i – x∗∥∥)

≤ (∥∥xn – x∗∥∥ +
∥∥yn,i – x∗∥∥)(∥∥xn – yn,i

∥∥)
.

Using this, the boundedness of sequences {xn}, {yn,i} and (.), we obtain

lim
n→∞

∥∥xn – yn
∥∥ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/200


Thanh Fixed Point Theory and Applications 2014, 2014:200 Page 8 of 11
http://www.fixedpointtheoryandapplications.com/content/2014/1/200

By a similar way, we also have limn→∞ ‖zn – yn‖ = . Then it follows from the inequality

∥∥xn – zn
∥∥ ≤ ∥∥xn – yn

∥∥ +
∥∥yn – zn

∥∥

that

lim
n→∞

∥∥xn – zn
∥∥ = . (.)

On the other hand, we have

∥∥yn,i – zn
∥∥ ≤ ∥∥yn,i – xn

∥∥ +
∥∥xn – zn

∥∥.
Combining this, (.) and (.), we obtain limn→∞ ‖yn,i – zn‖ = . By the definition of the
sequence {yn,i}, we have

∥∥yn,i – zn
∥∥ = αn,i

∥∥Tizn – zn
∥∥,

and hence

lim
n→∞

∥∥Tizn – zn
∥∥ = ,

which yields that

∥∥Tixn – xn
∥∥ ≤ ∥∥Tixn – Tizn

∥∥ +
∥∥Tizn – zn

∥∥ +
∥∥xn – zn

∥∥
≤ 

∥∥xn – zn
∥∥ +

∥∥Tizn – zn
∥∥

→  as n→ ∞

and

lim
n→∞

∥∥Tixn – xn
∥∥ = .

It follows from Step  that limn→∞ Tixn = q. Hence q ∈ F .
Now we show that q ∈ Sol(f ,C). By Step , we have yn → q as n → ∞.
Since yn is the unique solution of the strongly convex problem

min

{


∥∥y – xn

∥∥ + λnf
(
xn, y

)
: y ∈ C

}
,

we get

 ∈ ∂

(
λnf

(
xn, y

)
+


∥∥y – xn

∥∥
)(

yn
)
+NC

(
yn

)
.

From this it follows that

 = λnw + yn – xn + w̄,

http://www.fixedpointtheoryandapplications.com/content/2014/1/200
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where w ∈ ∂f (xn, ·)(yn) and w̄ ∈NC(yn). By the definition of the normal cone NC , we have

〈
yn – xn, y – yn

〉 ≥ λn
〈
w, yn – y

〉 ∀y ∈ C. (.)

On the other hand, since f (xn, ·) is subdifferentiable on C, by the well-known Moreau-
Rockafellar theorem, there exists w ∈ ∂f (xn, ·)(yn) such that

f
(
xn, y

)
– f

(
xn, yn

) ≥ 〈
w, y – yn

〉 ∀y ∈ C.

Combining this with (.), we have

λn
(
f
(
xn, y

)
– f

(
xn, yn

)) ≥ 〈
yn – xn, yn – y

〉 ∀y ∈ C.

Then, using {λn} ⊂ [a,b] ⊂ (, L ), (.), x
n → q, yn → q as n → ∞ and the upper semi-

continuity of f , we have

f (q, y) ≥  ∀q ∈ C.

This means that q ∈ Sol(f ,C). By taking the limit in (.), we have

〈
x – q,q –w

〉 ≥  ∀w ∈ F ∩ Sol(f ,C),

which implies that q = PrF∩Sol(f ,C) x. Thus, the subsequences {xn}, {yn}, {zn} strongly con-
verge to the same point q = PrF∩Sol(f ,C) x. This completes the proof. �

Now, notice that ∀w ∈ F

∥∥zn – Tizn
∥∥ =

∥∥zn –w +w – Tizn
∥∥

=
∥∥zn –w

∥∥ +
∥∥w – Tizn

∥∥ + 
〈
zn –w,w – Tizn

〉
≤ 

∥∥zn –w
∥∥ + 

〈
zn –w,w – zn + zn – Tizn

〉
= 

∥∥zn –w
∥∥ – 

∥∥zn –w
∥∥ + 

〈
zn –w, zn – Tizn

〉
= 

〈
zn –w, zn – Tizn

〉
.

Hence

∥∥yn,i –w
∥∥ =

∥∥( – αn,i)
(
zn –w

)
+ αn,i

(
Tizn –w

)∥∥

= ( – αn,i)
∥∥zn –w

∥∥ + αn,i
∥∥Tizn –w

∥∥ – αn,i( – αn,i)
∥∥Tizn – zn

∥∥

= ( – αn,i)
∥∥zn –w

∥∥ + αn,i
∥∥Tizn – zn + zn –w

∥∥

– αn,i( – αn,i)
∥∥Tizn – zn

∥∥

= ( – αn,i)
∥∥zn –w

∥∥ + αn,i
∥∥Tizn – zn

∥∥ + αn,i
∥∥zn –w

∥∥

+ αn,i
〈
Tizn – zn, zn –w

〉
– αn,i( – αn,i)

∥∥Tizn – zn
∥∥

≤ ∥∥zn –w
∥∥ + αn,i

〈
zn –w, zn – Tizn

〉
+ αn,i

〈
Tizn – zn, zn –w

〉

http://www.fixedpointtheoryandapplications.com/content/2014/1/200
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– αn,i( – αn,i)
∥∥Tizn – zn

∥∥

=
∥∥zn –w

∥∥ – αn,i( – αn,i)
∥∥Tizn – zn

∥∥. (.)

From (.) and using the methods in Theorem ., we can get the following convergence
result.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert spaceH. Suppose
that assumptions (A)-(A) are satisfied and {Ti}i∈� is a family of nonexpansive mappings
from C into itself and a nonempty common fixed points set F . Let {xn} be a sequence gen-
erated by the following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈H chosen arbitrarily,

C,i =D,i = C,C =
⋂

i∈� C,i,D =
⋂

i∈� D,i,

x = PrC∩D x,

yn = argmin{λnf (xn, y) + 
‖y – xn‖ : y ∈ C},

zn = argmin{λnf (yn, y) + 
‖z – xn‖ : z ∈ C},

yn,i = ( – αn,i)zn + αn,iTizn,

Cn+,i = {z ∈ Cn,i : ‖yn,i – z‖ ≤ ‖zn – z‖ – αn,i( – αn,i)‖zn – Tizn‖},
Cn+ =

⋂
i∈� Cn+,i,

Dn+,i = {z ∈Dn,i : ‖yn,i – z‖ ≤ ‖xn – z‖},
Dn+ =

⋂
i∈� Dn+,i,

xn+ = PrCn+∩Dn+ x,

 < lim infαn,i ≤ lim supαn,i < ,

{λn} ⊂ [a,b] for some a,b ∈ (, L ), where L =max{c, c}.

Then the sequences {xn}, {yn} and {zn} converge strongly to the same point PrF∩Sol(f ,C) x.
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