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Abstract
In this paper, two iteration processes are used to find the solutions of the
mathematical programming for the sum of two convex functions. In infinite Hilbert
space, we establish two strong convergence theorems as regards this problem. As
applications of our results, we give strong convergence theorems as regards the split
feasibility problem with modified CQ method, strong convergence theorem as
regards the lasso problem, and strong convergence theorems for the mathematical
programming with a modified proximal point algorithm and a modified
gradient-projection method in the infinite dimensional Hilbert space. We also apply
our result on the lasso problem to the image deblurring problem. Some numerical
examples are given to demonstrate our results. The main result of this paper entails a
unified study of many types of optimization problems. Our algorithms to solve these
problems are different from any results in the literature. Some results of this paper are
original and some results of this paper improve, extend, and unify comparable results
in existence in the literature.
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1 Introduction
Let R be the set of real numbers, H and H be (real) Hilbert spaces with inner product 〈·, ·〉
and norm ‖ ·‖. Let C and Q be nonempty, closed, convex subsets of H and H, respectively.
Let �(H) be the space of all proper lower semicontinuous convex functions from H to
(–∞,∞]. In this paper, we consider the following minimization problem:

arg min
x∈H

h(x) + g(x), (.)

where h, g ∈ �(H), and g : H →R is a Fréchet differential function.
Let A be a m × n real matrix, x ∈ R

n, b ∈ Rm, γ ≥  be a regularization parameter and
t ≥ . Tibshirani [] studied the following minimization problem:

min
x



‖Ax – b‖

 subject to ‖x‖ ≤ t, (.)
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where ‖x‖ =
∑n

i= |xi| for x = (x, x, . . . , xn) ∈ R
n, and ‖y‖

 =
∑m

i=(yi) for y = (y, y, . . . ,
ym) ∈R

m. Problem (.) is called lasso, an abbreviation of ‘the least absolute shrinkage and
select operator’. This is a special case of problem (.). Besides, we know that problem (.)
is equivalent to the following problem:

min
x



‖Ax – b‖

 + γ ‖x‖. (.)

Therefore, problems (.) and (.) are special cases of problem (.).
Due to the involvement of the � norm, which promotes the sparsity phenomena of many

real world problems arising from image/signal processing, statistical regression, machin-
ing learning and so on, the lasso receives much attention (see Combettes and Wajs [], Xu
[], and Wang and Xu []).

Let f : H → (–∞,∞] be proper and let C be a nonempty subset of dom(f ). Then f is said
to be uniformly convex on C if

f
(
αx + ( – α)y + α( – α)p

(‖x – y‖)) ≤ αf (x) + ( – α)f (y)

for all x, y ∈ C, and for all α ∈ (, ), where p : [,∞) → [,∞] is an increasing function, p
vanishes only at .

Let g ∈ �(H) and λ ∈ (,∞). The proximal operator of g is defined by

proxg x = arg min
v∈H

(

g(v) +


‖v – x‖

)

, x ∈ H .

The proximal operator of g ∈ �(H) of order λ ∈ (,∞) is defined as the proximal operator
of λg , that is,

proxλg x = arg min
v∈H

(

g(v) +

λ

‖v – x‖
)

, x ∈ H .

The following results are important results on the solution of the problem (.).

Theorem . (Douglas-Rachford-algorithm) [] Let f and g be functions in �(H) such
that (∂f + ∂g)– 
= ∅. Let {λn}n∈N be a sequence in [, ] such that

∑
n∈N λn( – λn) = +∞.

Let γ ∈ (,∞), and x ∈ H . Set

⎧
⎪⎨

⎪⎩

yn = proxγ g xn,
zn = proxγ f (yn – xn),
xn+ = xn + λn(zn – xn), n ∈N.

Then there exists x ∈ H such that the following hold:
(i) proxγ g x ∈ arg minx∈H(f + g)(x);

(ii) {yn – zn}n∈N converges strongly to ;
(iii) {xn}n∈N converges weakly to x;
(iv) {yn}n∈N and {zn}n∈N converge weakly to proxγ g x;
(v) suppose that one of the following holds:

(a) f is uniformly convex on every nonempty subset of dom ∂f ;
(b) g is uniformly convex on every nonempty bounded subset of dom ∂g .
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Then {yn}n∈N and {zn}n∈N converge strongly to proxγ g x, which is the unique minimizer of
f + g .

Theorem . (Forward-backward algorithm) [] Let f ∈ �(H), let g : H → R be con-
vex and differentiable with a 

β
-Lipschitz continuous gradient for some β ∈ (,∞), let

γ ∈ (, β), and set δ = min{, β

γ
} + 

 . Furthermore, let {λn}n∈N be a sequence in (, δ]
such that

∑
n∈N λn(δ – λn) = +∞. Suppose that arg min(f + g) 
= ∅ and let

{
yn = xn – γ∇g(xn),
xn+ = xn + λn(proxγ f yn – xn), n ∈N.

Then the following hold:
(i) (xn)n∈N converges weakly to a point in arg minx∈H (f + g)(x);

(ii) suppose that infn∈N λn ∈ (,∞) and one of the following hold:
(a) f is uniformly convex on every nonempty bounded subset of dom ∂f ;
(b) g is uniformly convex on every nonempty bounded subset of H .

Then {xn}n∈N converges strongly to the unique minimizer of f + g

Theorem . (Tseng’s algorithm) [] Let D be a nonempty subset of H , f ∈ �(H) be such
that dom ∂f ⊂ D, and let g ∈ �(H) be such that Gâteaux differentiable on D. Suppose that
C is a nonempty, closed, convex subset of D such that C ∩ arg minx∈H (f + g)(x) 
= ∅, and that
∇g is 

β
-Lipschitz continuous relative to C ∪ dom ∂f for some β ∈ (,∞). Let x ∈ C and

γ ∈ (,β), and set

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = xn – ∇g(xn),
zn = proxγ f yn,
rn = zn – γ∇g(zn),
xn+ = PC(xn – yn + rn), n ∈N.

Then
(a) {xn}n∈N and {zn}n∈N converges weakly to a point in C ∩ arg minx∈H (f + g)(x);
(b) suppose that f or g is uniformly convex on every nonempty subset of dom ∂f .

Then {xn}n∈N and {zn}n∈N converges strongly in C ∩ arg minx∈H (f + g)(x).

Combettes and Wajs [] used the proximal gradient method to generalize a sequence
{xn} by the algorithm: x ∈ H is chosen arbitrarily, and

xn+ = proxλng(I – λn∇f )xn.

We observed that Combettes and Wajs [] showed that {xn} converges weakly to a solu-
tion of the minimization problem (.) under suitable conditions. In , Xu [] gave an
iteration process and proved weak convergence theorems to the solution for the problem
(.). Next, Wang and Xu [] studied problem (.) by the following two types of iteration
processes:

(a) xn+ := proxλng(( – γn)xn – δn∇f (xn)) for all n ∈N;
(b) xn+ := (I – γn proxλng(I – δn∇f ))xn for all n ∈N.
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For these two iteration processes, Wang and Xu [] proved that they converge strongly to
a solution of the problem (.) under suitable conditions.

Let I be the identity function of H , and let f : C × C → H be a bifunction. Let g :
H → (–∞,∞] be a proper convex Fréchet differentiable function with Fréchet derivative
∇g on int(dom(g)), C ⊂ int(dom(g)), and h : H → (–∞,∞] be a proper convex lower
semicontinuous function. Let PC be the metric projection of H into C. Throughout this
paper, we use these notations unless specified otherwise.

Motivated by the results of the above problems, in this paper, we introduce the following
iterations to study problem (.).

Iteration (I) Let x ∈ C be chosen arbitrarily, and

{
yn = J

Af
λ PCxn,

xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn), n ∈ N,

where f(x, y) = 〈y – x,∇g(x)〉 + h(y) – h(x).

Iteration (II) Let x ∈ C be chosen arbitrarily, and

{
yn = J∂h

r (I – r∇g)xn,
xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn), n ∈ N.

Then we establish two strong convergence theorems without the uniformly convex as-
sumption on the functions we consider. Our results improve Combettes and Wajs [], Xu
[], Douglas-Rachford [], Theorem ., and Tseng []. Our results is also different from
Wang and Xu [].

We also apply our results to study the following problems.
(AP) Split feasibility problem:

Find x̄ ∈ H such that x̄ ∈ C and Ax̄ ∈ Q, (SFP)

where A : H → H is a linear and bounded operator.
In , the split feasibility problem (SFP) in finite dimensional Hilbert spaces was

first introduced by Censor and Elfving [] for modeling inverse problems which arise
from phase retrievals and in medical image reconstruction. Since then, the split feasibility
problem (SFP) has received much attention due to its applications in signal processing,
image reconstruction, with particular progress in intensity-modulated radiation therapy,
approximation theory, control theory, biomedical engineering, communications, and geo-
physics. For examples, one can refer to [–] and related literature.

In , Byrne [] first introduced the so-called CQ algorithm which generates a se-
quence {xn} by the following recursive procedure:

xn+ = PC
(
xn – ρnA∗(I – PQ)Axn

)
,

where the stepsize ρn is chosen in the interval (, /‖A‖), and PC and PQ are the met-
ric projections onto C ⊆ R

n and Q ⊆ R
m, respectively. Byrne [] used the CQ iteration
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method to study the split feasibility problem in finite dimensional spaces, but in the in-
finite dimensional Hilbert space, a strong convergence theorem may not be true for the
split feasibility problem by the CQ algorithm []. Hence, some modified CQ algorithms
are introduced.

In this paper, we give a new iteration to study the (SFP), we also give our modified CQ
method to study (SFP), we study two strong convergence theorem to the solution of this
problem. We establish a strong convergence of this problem. Our results are different from
Theorem . of Xu [] and improve other results of Xu [].

(AP) Lasso problem:

arg min
x∈Rn



‖Ax – b‖

 + γ ‖x‖.

We give two iterations to study the lasso problem, and we establish two strong convergence
theorems of the lasso problem.

(AP) Mathematical programming for convex function:

arg min
x∈H

h(x), where h ∈ �(H).

Rockafellar [] used a proximal point algorithm and proved a weak convergence theo-
rem to the solution of this problem. We establish a modified proximal point algorithm
and prove a strongly convergence theorem to study this problem. Our result improves the
results given by Rockafellar [].

(AP) Mathematical programming for convex Fréchet differentiable function:

Find arg min
x∈H

g(x), where g : H →R is a Fréchet differentiable function.

Recently, Xu [] studied weak convergence and strong convergence theorem of this prob-
lem with various types of relaxed gradient-projection iterations. He also used the viscosity
nature of the gradient-projection method and the regularized method to study strong con-
vergence theorems of this problem.

A special case of one of our iteration is modified gradient-projection algorithm. We use
this modified gradient-projection algorithm to establish a strong convergence theorem of
this problem (AP), and our results improve recent results given by Xu in [].

In this paper, we apply a recent result of Yu and Lin [] to find the solution of the math-
ematical programming for two convex functions, then we apply our results on mathemat-
ical programming for two convex functions to study the above problems. We establish a
strongly convergent theorem for these problems and apply our result on the lasso problem
to the image deblurring problem. Some numerical examples are given to demonstrate our
results. The main result of this paper gives a unified study of many types of optimization
problems. Our algorithms to solve these problems are different from any results in the
literature. Some results of this paper are original and some results of this paper improve,
extend, and unify comparable results existence in the literature.

2 Preliminaries
Throughout this paper, we denote the strong convergence of {xn} to x ∈ H by xn → x. Let
T : C → H be mapping, and let Fix(T) := {x ∈ C : Tx = x} denote the set of fixed points
of T . Thus:
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(i) T is called nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.
(ii) T is strongly monotone if there exists γ̄ >  such that 〈x – y, Tx – Ty〉 ≥ γ̄ ‖x – y‖

for all x, y ∈ C.
(iii) T is Lipschitz continuous if there exists L >  such that ‖Tx – Ty‖ ≤ L‖x – y‖ for all

x, y ∈ C.
(iv) Let α > . Then T is α-inverse-strongly monotone if 〈x – y, Tx – Ty〉 ≥ α‖Tx – Ty‖

for all x, y ∈ C. We denote T is α-ism if T is α-inverse-strongly monotone.
(v) T is firmly nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ –
∥
∥(I – T)x – (I – T)y

∥
∥ for every x, y ∈ C,

that is,

‖Tx – Ty‖ ≤ 〈x – y, Tx – Ty〉 for every x, y ∈ C.

Let B : H � H be a multivalued mapping. The effective domain of B is denoted by D(B),
that is, D(B) = {x ∈ H : Bx 
= ∅}. Thus:

(i) B is a monotone operator on H if 〈x – y, u – v〉 ≥  for all x, y ∈ D(B), u ∈ Bx and
v ∈ By.

(ii) B is a maximal monotone operator on H if B is a monotone operator on H and its
graph is not properly contained in the graph of any other monotone operator on H .

Lemma . [] Let G : H � H be maximal monotone. Let JG
r be the resolvent of G de-

fined by JG
r = (I + rG)– for each r > . Then the following hold:

(i) For each r > , JG
r is single-valued and firmly nonexpansive.

(ii) D(JG
r ) = H and Fix(JG

r ) = {x ∈D(G) :  ∈ Gx}.

Let C be a nonempty, closed, convex subset of a real Hilbert space H . Let g : C × C →R

be a function. The Ky Fan inequality problem [] is to find z ∈ C such that

g(z, y) ≥  for each y ∈ C. (EP)

The solution set of Ky Fan inequality problem (KF) is denoted by KF(C, g).
For solving the Ky Fan inequalities problem, let us assume that the bifunction g : C ×

C →R satisfies the following conditions:
(A) g(x, x) =  for each x ∈ C;
(A) g is monotone, i.e., g(x, y) + g(y, x) ≤  for any x, y ∈ C;
(A) for each x, y, z ∈ C, lim supt↓ g(tz + ( – t)x, y) ≤ g(x, y);
(A) for each x ∈ C, the scalar function y → g(x, y) is convex and lower semicontinuous.
We have the following result from Blum and Oettli [].

Lemma . [] Let g : C × C → R be a bifunction which satisfies conditions (A)-(A).
Then for each r >  and each x ∈ H , there exists z ∈ C such that

g(z, y) +

r
〈y – z, z – x〉 ≥ 

for all y ∈ C.
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In , Combettes and Hirstoaga [] established the following important properties
of resolvent operator.

Lemma . [] Let g : C ×C →R be a function satisfying conditions (A)-(A). For r > ,
define Tg

r : H → C by

Tg
r x =

{

z ∈ C : g(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Then the following hold:
(i) Tg

r is single-valued;
(ii) Tg

r is firmly nonexpansive, that is, ‖Tg
r x – Tg

r y‖ ≤ 〈x – y, Tg
r x – Tg

r y〉 for all x, y ∈ H ;
(iii) {x ∈ H : Tg

r x = x} = {x ∈ C : g(x, y) ≥ ,∀y ∈ C};
(iv) {x ∈ C : g(x, y) ≥ ,∀y ∈ C} is a closed and convex subset of C.

We call such Tg
r the resolvent of g for r > .

Takahashi et al. [] gave the following lemma.

Lemma . [] Let g : C × C → R be a bifunction satisfying the conditions (A)-(A).
Define Ag as follows:

Agx =

{
{z ∈ H : g(x, y) ≥ 〈y – x, z〉,∀y ∈ C} if x ∈ C,
∅ if x /∈ C.

(L.)

Then KF(C, g) = A–
g  and Ag is a maximal monotone operator with the domain of Ag ⊂ C.

Furthermore, for any x ∈ H and r > , the resolvent Tg
r of g coincides with the resolvent of

Ag , i.e., Tg
r x = (I + rAg)–x.

Let f : H → (–∞,∞] be proper. The subdifferential ∂f of f is the set valued operator,
defined ∂f = {u ∈ H : f (y) ≥ f (x) + 〈y – x, u〉 for all y ∈ H}.

Let x ∈ H . Then f is subdifferentiable at x if ∂f (x) 
= ∅. Then the elements of ∂f (x) are
called the subgradient of f at x.

The directional derivative of f at x in the direction y is

f ′(x, y) = lim
α↓

f (x + ay) – f (x)
α

,

provided that the limit exists in [–∞,∞].
Let x ∈ dom f and suppose that f ′(x, y) is linear and continuous, then f is said to be

Gâteaux differentiable at x. By the Riesz representation theorem, there exists a unique
vector ∇f (x) ∈ H such that f ′(x, y) = 〈y,∇f (x)〉 for all y ∈ H .

Let x ∈ H , let μ(x) denote the family of all neighborhood of x, let H be a Hilbert space,
let C ∈ μ(x) and let f : C → (–∞,∞]. Then f is said to be Fréchet differentiable at x if
there exists an operator ∇f (x) ∈ B(H ,R), called the Fréchet derivative of f at x, such that

lim

=‖y‖→

|f (x + y) – f (x) – 〈y,∇f (x)〉|
‖y‖ = .

Further, if f is Frêchet differentiable at x, then f is Gâteaux differentiable at x.
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Let C be a nonempty, closed, convex subset of H . The indicator function ιC defined by

ιCx =

{
, x ∈ C,
∅, x /∈ C,

is a proper lower semicontinuous convex function and its subdifferential ∂ιC defined by

∂ιCx =
{

z ∈ H : 〈y – x, z〉 ≤ ιC(y) – ιC(x),∀y ∈ H
}

is a maximal monotone operator (see Lemma .). Furthermore, we also define the normal
cone NCu of C at u as follows:

NCu =
{

z ∈ H : 〈z, v – u〉 ≤ ,∀v ∈ C
}

.

We can define the resolvent J∂iC
λ of ∂iC for λ > , i.e.,

J∂iC
λ x = (I + λ∂iC)–x

for all x ∈ H . Since

∂iCx =
{

z ∈ H : iCx + 〈z, y – x〉 ≤ iCy,∀y ∈ H
}

=
{

z ∈ H : 〈z, y – x〉 ≤ ,∀y ∈ C
}

= NCx

for all x ∈ C, we have

u = J∂iC
λ x ⇔ x ∈ u + λ∂iCu

⇔ x – u ∈ λNCu

⇔ 〈x – u, y – u〉 ≤ , ∀y ∈ C

⇔ u = PCx.

For details see [].

Lemma . [] Let g ∈ �(H) and λ ∈ (,∞). Thus:
(i) If C is a nonempty, closed, convex subset of H and g = iC is the indicator function of

C, then the proximal operator proxλg = PC for all λ ∈ (,∞), where PC is the metric
projection operator from H to C.

(ii) proxλg is firmly nonexpansive.
(iii) proxλg = (I + λ∂g)– = J∂g

λ .

Lemma . [] Let f , g ∈ �(H). Let x∗ ∈ H and λ ∈ (,∞). Assume that f is finite valued
and Fréchet differentiable function on H with Fréchet derivative ∇f . Then x∗ is a solution
to the problem arg minx∈H f (x) + g(x) if and only if x∗ = proxλg(I – λ∇f )x∗.

Lemma . [] Let C ⊂ H be nonempty, closed, convex subset, let A : H → H , and let
f : H → R be convex and Fréchet differentiable. Let A be the Fréchet derivative of f . Then
VI(C, A) = arg minx∈C f (x).
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Lemma . [] Let f ∈ �(H), then ∂f is maximum monotone.

Lemma . [] Let f and g be functions in �(H) such that one of the following holds:
(i) dom f ∩ int(dom)g 
= ∅;

(ii) dom g = H .
Then ∂(f + g) = ∂f + ∂g .

A mapping Tα : H → H is said to be averaged if Tα = ( – α)I + αT , where α ∈ (, ) and
T : H → H is nonexpansive. In this case, we say that Tα is α-averaged. Clearly, a firmly
nonexpansive mapping is 

 -averaged.

Lemma . [] Let T : H → H be a mapping. Then the following hold:
(i) T is nonexpansive if and only if the complement (I – T) is /-ism;

(ii) if S is υ-ism, then for γ > , γ S is υ/γ -ism;
(iii) S is averaged if and only if the complement I – S is υ-ism for some υ > /;
(iv) if S and T are both averaged, then the product (composite) ST is averaged;
(v) if the mappings {Ti}n

i= are averaged and have a common fixed point, then
⋂n

i= Fix(Ti) = Fix(T · · ·Tn).

Lemma . [] Let f : H → (–∞,∞] be proper and convex. Suppose that f is Gâteaux
differentiable at x. Then ∂f (x) = {∇f (x)}.

3 Common solution of variational inequality problem, fixed point, and Ky Fan
inequalities problem

For each i = , , let Fi : C → H be a κi-inverse-strongly monotone mapping of C into H
with κi > . For each i = , , let Gi be a maximal monotone mapping on H such that the
domain of Gi is included in C and define the set G–

i  as G–
i  = {x ∈ H :  ∈ Gix}. Let

JG
λ = (I + λG)– and JG

r = (I + rG)– for each n ∈ N, λ >  and r > . Let {θn} ⊂ H be
a sequence. Let V be a γ̄ -strongly monotone and L-Lipschitz continuous operator with
γ̄ >  and L > . Let T : C → H be a nonexpansive mapping. Throughout this paper, we
use these notations and assumptions unless specified otherwise.

In this paper, we say conditions (D) hold if the following conditions are satisfied:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;

(ii) limn→∞ βn = , and
∑∞

n= βn = ∞;
(iii) limn→∞ θn = .
The following strong convergence theorem is needed in this paper.

Theorem . [] Suppose that � = Fix(T)∩Fix(JG
λ (I –λF))∩Fix(JG

r (I –rF)) 
= ∅. Take
μ ∈ R such that  < μ < γ̄

L . A sequence {xn} ⊂ H is defined as follows: x ∈ C is chosen
arbitrarily,

⎧
⎪⎨

⎪⎩

yn = JG
λ (I – λF)JG

r (I – rF)xn,
sn = Tyn,
xn+ = αnxn + ( – αn)(βnθn + (I – βnV )sn)

for each n ∈ N, {λ, r} ⊂ (,∞), {αn} ⊂ (, ), and {βn} ⊂ (, ). Assume that conditions (D)
hold and  < λ < κ and  < r < κ. Then

lim
n→∞ xn = x̄,
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where

x̄ = P
Fix(T)∩Fix(JG

λ (I–λF))∩Fix(JG
r (I–rF))(x̄ – V x̄).

This point x̄ is also the unique solution to the hierarchical variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ Fix(T) ∩ Fix
(
JG
λ (I – λF)

) ∩ Fix
(
JG
r (I – rF)

)
.

For each i = , , let fi : C × C → R be a bifunction satisfying conditions (A)-(A). An
iteration is used to find common solutions of a variational inequality problem, Ky Fan
inequalities problems, and a fixed point set of a mapping:

{
Find x̄ ∈ H such that x̄ ∈ Fix(T) ∩ KF(C, f) ∩ KF(C, f) and
〈V x̄, q – x̄〉 ≥ , ∀q ∈ Fix(T) ∩ KF(C, f) ∩ KF(C, f).

Theorem . For each i = , , let fi : C ×C →R be a bifunction satisfying conditions (A)-
(A), and let Afi be defined as (L.) in Lemma .. Suppose that � := Fix(T)∩KF(C, f)∩
KF(C, f) 
= ∅. Take μ ∈ R such that  < μ < γ̄

L . A sequence {xn} ⊂ H is defined as follows:
x ∈ C chosen arbitrarily, and

⎧
⎪⎨

⎪⎩

yn = J
Af
λ J

Af
r xn,

sn = Tyn,
xn+ = αnxn + ( – αn)(βnθn + (I – βnV )sn)

for each n ∈ N, {λ, r} ⊂ (,∞), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then
limn→∞ xn = x̄, where x̄ = P� (x̄ – V x̄). This point x̄ ∈ � is also the unique solution to the
hierarchical variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �.

Proof For each i = , , by Lemma ., we know that Afi is a maximal monotone operator
with the domain of Afi ⊂ C and KF(C, fi) = A–

fi . For each i = , , let Fi = , and Gi = Afi
in Theorem .. By Lemma .(ii), we have, for each i = , ,

Fix
(
JGi
λ (I – λFi)

)
= Gi

– = A–
fi  = KF(C, fi).

This implies that � = �. By Theorem ., limn→∞ xn = x̄, where x̄ = P� (x̄ – V x̄). This
point x̄ ∈ � is also the unique solution to the hierarchical variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �.

Thus,

x̄ ∈ Fix(T) ∩ KF(C, f) ∩ KF(C, f)

and

〈V x̄, q – x̄〉 ≥ , ∀q ∈ Fix(T) ∩ KF(C, f) ∩ KF(C, f).

Therefore, the proof is completed. �
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As a simple consequence of Theorem ., we study the common solution of the Ky Fan
inequalities problems.

Theorem . Let f : C × C → R be a bifunction satisfying conditions (A)-(A) and let
Af be defined as (L.) in Lemma .. Suppose that � := KF(C, f) 
= ∅. Take μ ∈ R such
that  < μ < γ̄

L . A sequence {xn} ⊂ H is defined as follows: x ∈ C is chosen arbitrarily, and

{
yn = J

Af
λ PCxn,

xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)

for each n ∈ N, {λ, r} ⊂ (,∞), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then
limn→∞ xn = x̄, where x̄ = P� (x̄ – V x̄). This point x̄ ∈ KF(C, f) is also the unique solution
to the hierarchical variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �.

Proof Let I|C and iC be the restriction of the identity function on C and the indicate func-
tion on C respectively and let T = I|C , f = iC in Theorem ., then Theorem . follows
from Theorem .. �

Theorem . Let � := Fix(T) 
= ∅. Take μ ∈R such that  < μ < γ̄

L . A sequence {xn} ⊂ H

is defined as follows: x ∈ C is chosen arbitrarily, and

{
sn = TPCxn,
xn+ = αnxn + ( – αn)(βnθn + ( – βn)sn)

for each n ∈N, and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then limn→∞ xn = x̄,
where x̄ = P� (x̄ – V x̄). This point x̄ ∈ Fix(T) is also the unique solution to the hierarchical
variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �.

Proof For each i = , , let fi = iC , Afi = ∂iC in Theorem ., where iC is the indicator func-
tion of C. Then KF(C, fi) = C and J

Afi
r = PC . Therefore, Theorem . follows immediately

from Theorem .. �

4 Mathematical programming for the sum of two convex functions
In the following theorem, an iteration is used to find the solution of the optimization prob-
lem for the sum of two convex functions:

arg min
y∈C

(g + h)(y).

Theorem . Let g : H → (–∞,∞) be a convex Fréchet differentiable function with
Fréchet derivative ∇g on H , and h : H → (–∞,∞] be a proper convex lower semicon-
tinuous function. Let f(x, y) = 〈y – x,∇gx〉 + h(y) – h(x) for all x, y ∈ H and let Af be
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defined as (L.) in Lemma .. Take μ ∈ R such that  < μ < γ̄

L . Suppose that � :=
H – VI(C,∇g, h) 
= ∅, where

H – VI(C,∇g, h) =
{

x ∈ C : 〈y – x,∇gx〉 + h(y) – h(x) ≥  for all y ∈ C
}

.

A sequence {xn} ⊂ H is defined as follows: x ∈ C is chosen arbitrarily, and

{
yn = J

Af
λ PCxn,

xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)

for each n ∈ N, λ ∈ (,∞), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then
limn→∞ xn = x̄, where x̄ = P� (x̄ – V x̄). Further, x̄ is the unique solution to the hierarchical
variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �.

Proof Since ∇g is the Fréchet derivative of the convex function g, it follows from Corol-
lary . of [] that ∇g is continuous on C. By Proposition . of [], ∇g is monotone
on C. Hence, ∇g is bounded on any line segment of C. By Proposition . of [],

〈
y – x,∇g(x)

〉 ≤ g(y) – g(x) for all x, y ∈ C. (.)

Since h : C →R is a proper convex lower semicontinuous function, it is easy to see that
for each x, y, z ∈ C,

lim sup
t↓

f
(
tz + ( – t)x, y

)

≤ lim sup
t↓

〈
y –

(
tz + ( – t)x

)
,∇g

(
tz + ( – t)x

)〉
+ lim sup

t↓

(
h(y) – h

(
tz + ( – t)x

))

= lim sup
t↓

(〈
y – tz – ( – t)x – (y – x),∇g

(
tz + ( – t)x

)〉
+

〈
(y – x),∇g

(
tz + ( – t)x

)〉)

+ lim sup
t↓

(
h(y) – h

(
tz + ( – t)x

))

≤ 〈y – x,∇gx〉 + h(y) – h(x)

= f(x, y).

This shows that condition (A) is satisfied. It is easy to see that f also satisfies conditions
(A), (A), and (A). We see KF(C, f) = H – VI(C,∇g, h) and � = � 
= ∅. By Theo-
rem ., limn→∞ xn = x̄, where x̄ = P� (x̄ – V x̄), x̄ ∈ KF(C, f). This point x̄ ∈ � is also the
unique solution to the hierarchical variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �.

By � = � and x̄ ∈ KF(C, f), we have

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �
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and

〈
y – x̄,∇g(x̄)

〉
+ h(y) – h(x̄) ≥  for all y ∈ C. (.)

By (.) and (.), we have

g(y) + h(y) – g(x̄) – h(x̄) ≥ 〈
y – x,∇g(x)

〉
+ h(y) – h(x̄) ≥ 

for all y ∈ C. Then x̄ ∈ arg miny∈C(g + h)(y). �

Example . Let h(x) = x, g(x) = x + x + , C = [–, ], H = R, λ = , V = I , αn = 


for all n ∈ N, βn = 
,n , C = [–, ], θn = , f(x, y) = 〈y – x,∇g(x)〉 + h(y) – h(x). Then

f(x, y) = (y – x)(x + y + x + ), this implies that f(– 
 , y) = (y + 

 ) ≥  for all y ∈ [–, ], and
– 

 ∈ H – VI([–, ],∇g, h) 
= ∅.
We also see Af (–) = (–∞, –], Af () = [,∞), and Af (x) = x +  if x ∈ (–, ). Let

yn = J
Af
 PCxn, xn+ = 

 xn + 
 ( – 

,n )yn.
It is easy to see that PCxn = yn +  and yn = 

 (PCxn – ).
Hence xn+ = 

 xn + 
 ( – 

,n )(PCxn – ). It is easy to see all the conditions of Theo-
rem . are satisfied.

Let x = , then x = –., x = –., x = –., x = –., . . . ,
we see limn→∞ xn = x̄ = – 

 ∈ arg minx∈[–,] gx + hx.

Next, an iteration is used to find the solution of the following optimization problem for
the convex differentiable function:

arg min
y∈C

g(y).

Corollary . Let g : H → R be a convex Fréchet differentiable function with Fréchet
derivative ∇g. Let f(x, y) = 〈y – x,∇gx〉 for all x, y ∈ H and let Af be defined as (L.)
in Lemma .. Suppose that �, := arg miny∈C g(y) 
= ∅. Take μ ∈ R such that  < μ < γ̄

L .
A sequence {xn} ⊂ H is defined as follows: x ∈ C is chosen arbitrarily, and

{
yn = J

Af
λ PCxn,

xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)

for each n ∈ N, λ ∈ (,∞) and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then
limn→∞ xn = x̄, where x̄ = P�, (x̄ – V x̄). Further, x̄ is also the unique solution to the hierar-
chical variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �,.

Proof By Lemma ., we know that VI(C,∇g) = arg miny∈C g(y). Therefore, Corollary .
follows immediately from Theorem . by letting h = . �

Next, another iteration is used to find the solution of the following optimization problem
for a convex function:

arg min
z∈C

h(z).
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Corollary . Let f(x, y) = h(y) – h(x), for all x, y ∈ C, and let Af be defined as (L.)
in Lemma .. Suppose that �, := arg miny∈C h(y) 
= ∅. Take μ ∈ R such that  < μ < γ̄

L .
A sequence {xn} ⊂ H is defined as follows: x ∈ C is chosen arbitrarily, and

{
yn = J

Af
λ PCxn,

xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)

for each n ∈ N, λ ∈ (,∞), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then
limn→∞ xn = x̄, where x̄ = P�, (x̄ – V x̄). Further, x̄ is also the unique solution to the hierar-
chical variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �,.

Proof Put g =  in Theorem .. Then Corollary . follows from Theorem .. �

In the following theorem, an iteration is used to find the solution of the following opti-
mization problem for the sum of two convex functions:

arg min
y∈H

g(y) + h(y).

Theorem . Let g : H → (–∞,∞) be a convex Fréchet differentiable function with
Fréchet derivative ∇g on H , and h : H → (–∞,∞] be a proper convex lower semi-
continuous function. Suppose that ∇g is Lipschitz with Lipschitz constant 

L
and � :=

arg minx∈H (g + h)(x) 
= ∅. Take μ ∈ R such that  < μ < γ̄

L . A sequence {xn} ⊂ H is de-
fined as follows: x ∈ H is chosen arbitrarily, and

{
yn = proxrh (I – r∇g)xn = J∂h

r (I – r∇g)xn,
xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)

for each n ∈ N, r ∈ (, 
L

), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then
limn→∞ xn = x̄, where x̄ = P� (x̄ – V x̄). Further, x̄ is also the unique solution to the hierar-
chical variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �.

We give two different proofs for this theorem.

Proof I Put C = H , G = ∂h, F = ∇g, T = I|C , F = , G = ∂iH in Theorem ., where
I|C is the restriction of I on C and iC is the indicate function of C. Since ∇g is Lipschitz
continuous with Lipschitz constant L, it follows from Corollary  of [] that ∇g is


L
-strongly-inverse-monotone. Since h is a proper convex lower semicontinuous func-

tion, it follows from Lemma . that ∂h is a set valued maximum monotone mapping.
By Lemma ., ∂g = {∇g}. It follows from dom(f ) ∩ int(dom(g)) 
= ∅, dom(g) = H , and
Lemma . that

∂(h + g)(x) = ∂h(x) + ∂g(x) = ∂h(x) + ∇g(x).
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Hence,

� = arg min
y∈H

(g + h)(y) =
{

x ∈ H : x ∈ (∂h + ∇g)–
}

= Fix(I|C) ∩ Fix
(
J
∂h
 (I – ∇g)

) ∩ Fix(PC)

= Fix(T) ∩ Fix
(
J
∂h
 (I – ∇g)

) ∩ Fix
(
J∂iH


)

= �.

Therefore, we get the conclusion of Theorem . from Theorem .. �

Proof II Let C = H , T = proxrh (I – r∇g) in Theorem .. Since ∇g is Lipschitz con-
stant L, it follows from Corollary  of [] that ∇g is 

L
-inverse- strongly-monotone.

By Lemma ., r∇g is 
rL

-ism and (I – r∇g) is averaged. Since ∂h is maximum mono-
tone, it follows from Lemma ., proxrh = J∂h

r is firmly nonexpansive. Hence proxrh is

 -averaged. Then by Lemma ., T is averaged and nonexpansive. We have

Fix(T) = Fix
(
J∂h
r (I – r∇g)PH

)

= Fix
(
proxrh (I – r∇g)

) ∩ Fix(PH )

= arg min
x∈H

g(x) + h(x) ∩ H

= arg min
x∈C

g(x) + h(x).

Hence, � = �, and we get the conclusion of Theorem . from Theorem .. �

Remark .
(a) The iterations in Theorems . and . are different.
(b) Theorem ., Theorem ., Theorem ., and the results given by Combettes and

Wajs [], and Xu [] are weak convergence theorems for the problem:

arg min
x∈H

g(x) + h(x).

Further, Theorem ., Theorem ., and Theorem . gave strong convergence theorems
of this problem under the uniform convex assumption on h or g. Therefore, Theorem .
is different from these results. Besides, Theorem . is also different from the result given
by Wang and Xu [] and related algorithms in the literature.

Example . Let h(x) = x, g(x) = x + x + , H = R, α = , V = I , αn = 
 for all n ∈ N,

βn = 
,n , C = [–, ], θn = . Then ∂h(x) = {x}, ∇g(x) = x + , θn =  for all n ∈ N. We

see – 
 ∈ arg minx∈R g(x) + h(x) 
= ∅, let

{
yn = J∂h

 (I – ∇hg)xn = (I + ∂h)–(I – ∇g)xn,
xn+ = 

 xn + 
 ( – 

,n )yn

for each n ∈ N.
We see all conditions of Theorem . are satisfied.
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We obtain (I – ∇g)xn = (I + ∂h)yn = yn + yn = yn = xn – xn – .
From this we obtain yn = –(xn+)

 and

xn+ =



xn +



(

 –


,n

)

yn

=



xn –



(

 –


,n

)
(xn + )



=



xn –
(

 –


,n

)
(xn + )


.

Let x = , then x = ., x = –., x = –., x = –, x =
–., x = –., x = –., x = –., x = –.,
x = –., x = –, x = –., . . . . From the relation

xn+ =



xn –
(

 –


,n

)
–(xn + )



and x = , it is easy to see that the sequence {xn}n∈N is nonincreasing for some n ≥ m and
bounded. Hence limn→∞ xn exists. Let limn→∞ xn = x̄. From the relation

xn+ =



xn –
(

 –


,n

)
(xn + )


,

we see that x̄ = 
 x̄ – x̄+

 . Therefore x̄ = – 
 ∈ arg minx∈H g(x) + h(x).

In the following corollary, an iteration is used to find the solution of the following opti-
mization problem:

Find x̄ ∈ arg min
y∈H

h(y).

Corollary . Let h : H → (–∞,∞] be a proper convex lower semicontinuous function.
Take μ ∈ R such that  < μ < γ̄

L . Suppose that �, := arg miny∈H h(y) 
= ∅. A sequence
{xn} ⊂ H is defined as follows: x ∈ H is chosen arbitrarily, and

{
yn = J∂h

α xn,
xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)

for each n ∈ N, α ∈ (,∞) and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then
limn→∞ xn = x̄, where x̄ = P�, (x̄ – V x̄). Further, x̄ is also the unique solution to the hierar-
chical variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �,.

Remark . In , Rockafellar [] proved the following in the Hilbert space setting: If
h is a proper convex lower semicontinuous function on H , the solution set arg miny∈H h(y)
is nonempty and lim infn→∞ βn > . Let

xn+ = arg min
y∈H

{

h(y) +


βn
‖y – xn‖

}

= proxβnh xn = J∂h
βn xn, n ∈N, (.)
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then {xn} converges weakly to a minimizer of h. We see that Corollary . gives a dif-
ferent iteration which converges strongly to the solution of the following problem: Find
x̄ ∈ arg miny∈H h(y).

Next, a modified gradient-projection algorithm is used to find the solution of the fol-
lowing mathematical program:

Find x̄ ∈ arg min
y∈C

g(y).

Theorem . Let g : H → (–∞,∞) be a convex Fréchet differentiable function with
Fréchet derivative ∇g on H . Take μ ∈R such that  < μ < γ̄

L . Suppose that ∇g is Lipschitz
continuous with Lipschitz constant L and � := arg miny∈C g(y) 
= ∅. A sequence {xn} ⊂ H
is defined as follows: x ∈ C is chosen arbitrarily, and

{
yn = PC(I – α∇g)xn,
xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)

for each n ∈ N, α ∈ (, 
L

), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then
limn→∞ xn = x̄, where x̄ = P� (x̄ – V x̄). Further, x̄ is the unique solution to the hierarchical
variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �.

Proof Let h = iC , where iC denotes the indicator function of C. From Lemma ., proxλh =
PC , and

arg min
x∈C

(
h(x) + g(x)

)
= arg min

x∈C
g(x),

Theorem . follows immediately from Theorem .. �

Remark . We know an iteration, defined by

xn+ = PC(I – αn∇g)xn, n ∈N,

is called a gradient-projection algorithm, where ∇g is Lipschitz continuous. In , Xu
[] used the gradient-projection algorithm and the relaxed gradient-projection algorithm
and studied the problem

Find x̄ ∈ arg min
y∈C

g(y),

and gave weak convergence theorems. Xu also used the viscosity nature of the gradient-
projection algorithms and regularized algorithm to study strong convergence theorems
for this problem []. In Theorem ., we establish a strong convergence theorem for
this problem by a different modified gradient-projection algorithm and a different ap-
proach.
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In the end of this section, an iteration is used to find the solution of the following opti-
mization problem:

Find x̄ ∈ arg min
y∈H

g(y).

Corollary . Let g : H → (–∞,∞) be a convex Fréchet differentiable function with
Fréchet derivative ∇g on H . Take μ ∈ R such that  < μ < γ̄

L . Suppose that ∇g is
Lipschitz continuous with Lipschitz constant L and �, := arg miny∈H g(y) 
= ∅. A sequence
{xn} ⊂ H is defined as follows: x ∈ H is chosen arbitrarily, and

{
yn = (I – α∇g)xn,
xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)

for each n ∈ N, α ∈ (, 
L

), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then
limn→∞ xn = x̄, where x̄ = P�, (x̄ – V x̄). Further, x̄ is also the unique solution to the hierar-
chical variational inequality:

〈V x̄, q – x̄〉 ≥ , ∀q ∈ �,.

Proof Let h = iH . By Lemma ., we know that proxλh = J∂iH
λ = PH = I , and

arg min
x∈H

(
h(x) + g(x)

)
= arg min

x∈H
g(x).

Hence, Corollary . follows immediately from Theorem .. �

5 Split feasibility problems and lasso problems
In the following theorem, a modified Byrne CQ iteration is used to find the solution of the
following split feasibility problem: Find x̄ ∈ C such that Ax̄ ∈ Q.

Theorem . Let A : H → H be a bounded linear operator, A∗ be the adjoint of A. Take
μ ∈ R such that  < μ < γ̄

L . Suppose that � := {x ∈ C : Ax ∈ Q} 
= ∅. A sequence {xn} ⊂ H
is defined as follows: x ∈ C is chosen arbitrarily, and

{
yn = PC(I – αA∗(A – PQA))xn,
xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)

for each n ∈ N, α ∈ (, 
‖A‖ ), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then

limn→∞ xn = x̄, where x̄ = P� (x̄ – V x̄). Further, x̄ is also the unique solution to the hierar-
chical variational inequality:

〈V x̄ – θ , q – x̄〉 ≥ , ∀q ∈ �.

Proof Let g(x) = ‖Ax–PQAx‖


 . It is easy to see that g(x) = miny∈Q

‖Ax – y‖ is a convex

function. Then for any v ∈ H, we have

g(x + v) – g(x) – 
〈
Av, (I – PQ)Ax

〉

=
〈
(I – PQ)A(x + v), (I – PQ)A(x + v)

〉
–

〈
(I – PQ)Ax, (I – PQ)Ax

〉
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– 
〈
Av, (I – PQ)Ax

〉

=
〈
Ax + Av – PQAx +

(
PQAx – PQA(x + v)

)
, Ax + Av – PQAx

+
(
PQAx – PQA(x + v)

)〉
–

〈
(I – PQ)Ax, (I – PQ)Ax

〉
– 

〈
Av, (I – PQ)Ax

〉

= 〈Av, Av〉 +
〈
PQAx – PQA(x + v), PQAx – PQA(x + v)

〉

+ 
〈
(I – PQ)Ax, PQAx – PQA(x + v)

〉
+ 

〈
Av, PQAx – PQA(x + v)

〉
. (.)

PQ is a self-adjoint operator and P
Q = PQ, therefore, we have

∣
∣
〈
(I – PQ)Ax, PQAx – PQA(x + v)

〉∣
∣

=
∣
∣
〈
(I – PQ)Ax, PQAx

〉
–

〈
(I – PQ)Ax, PQA(x + v)

〉∣
∣

=
〈
PQ(I – PQ)Ax, Ax

〉
–

〈
PQ(I – PQ)Ax, A(x + v)

〉
= . (.)

Since PQ : H → Q is a nonexpansive mapping, we have

∣
∣
〈
PQAx – PQA(x + v), PQAx – PQA(x + v)

〉∣
∣

=
∥
∥PQAx – PQA(x + v)

∥
∥



≤ ∥
∥Ax – (Ax + Av)

∥
∥



= ‖Av‖


≤ ‖A‖
 · ‖v‖

 (.)

and


∣
∣
〈
Av, PQAx – PQA(x + v)

〉∣
∣

≤ 
∣
∣‖Av‖

∥
∥PQAx – PQA(x + v)

∥
∥



∣
∣

≤ ‖Av‖
∥
∥Ax – A(x + v)

∥
∥



≤ ‖Av‖‖Av‖

≤ ‖A‖
 · ‖v‖

. (.)

We also see that

〈Av, Av〉 ≤ ‖A‖
 · ‖v‖

. (.)

By (.), (.), (.), (.), and (.), we have

lim
v→

|g(x + v) – g(x) – 〈v, A∗(I – PQ)Ax〉|
‖v‖

= lim
v→

|g(x + v) – g(x) – 〈v, A∗(I – PQ)Ax〉|
‖v‖

≤ lim
v→

‖A‖
‖v‖

= . (.)
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This shows that g is Fréchet differentiable with Fréchet derivative ∇g = A∗(A – PQA).
Since A is a bounded operator and PQ is a firmly nonexpansive mapping,

∥
∥∇g(x) – ∇g(y)

∥
∥ =

∥
∥A∗(A – PQA)x – A∗(A – PQA)y

∥
∥

≤ ‖A‖∥∥(I – PQ)Ax – (I – PQ)Ay
∥
∥

≤ ‖A‖‖Ax – Ay‖
≤ ‖A‖ · ‖x – y‖. (.)

This shows that ∇g is a Lipschitz function with Lipschitz constant ‖A‖. By the assump-
tion � 
= ∅, we know that � = �. Then we get the conclusion of Theorem . from
Theorem .. �

Remark . In , Xu [] used various algorithms to establish weak convergence the-
orems in infinite dimensional Hilbert spaces for the split feasibility problem (see Theo-
rems ., ., ., . and . of []). Also, Xu [] established a strongly theorem for this
problem in the infinite dimensional Hilbert space (see Theorem . of []). Now, Theo-
rem . gives an algorithm to study the split feasibility problem which converges strongly
to the split feasibility problem, and this result improves Byrne’s CQ algorithm [], and the
results given by Xu [].

By Theorem ., we get the following result for split feasibility problem.

Corollary . Let A : H → H be a bounded linear operator, A∗ be the adjoint of A. Take
μ ∈ R such that  < μ < . Suppose that � := {x ∈ C : Ax ∈ Q} 
= ∅. A sequence {xn} ⊂ H is
defined as follows: x ∈ C is chosen arbitrarily, and

{
yn = PC(I – αA∗(A – PQA))xn,
xn+ = αnxn + ( – αn)(( – βn)yn)

for each n ∈ N, α ∈ (, 
‖A‖ ), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then

limn→∞ xn = x̄, where x̄ = P� .

Proof Let θn = θ =  for all n ∈ N and V = I in Theorem ., then Corollary . follows
from Theorem .. �

Next, an iteration is used to find the solution of the following lasso problem:

Find x̄ ∈ arg min
x∈Rn

(


‖Ax – b‖

 + γ ‖x‖

)

.

Theorem . Let A be a m×n real matrix, x ∈R
n, b ∈ R

m, and γ ≥  be a regularization
parameter. Take μ ∈ R such that  < μ < γ̄

L . Suppose that � := arg minx∈Rn 
‖Ax – b‖

 +
γ ‖x‖ 
= ∅. A sequence {xn} ⊂ H is defined as follows: x ∈R

n is chosen arbitrarily, and

{
yn = J∂γ ‖·‖

α (xn – αA∗(Axn – b)),
xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)
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for each n ∈ N, α ∈ (, 
‖A‖ ), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then

limn→∞ xn = x̄, where x̄ = P� (x̄ – V x̄). Further, x̄ is also the unique solution to the hierar-
chical variational inequality:

〈V x̄ – θ , q – x̄〉 ≥ , ∀q ∈ �.

Proof Let g(x) = 
‖Ax – b‖

, and h(x) = γ ‖x‖. For each v ∈R
n,

lim
v→

|g(x + v) – g(x) – 〈v, A∗(Ax – b)〉|
‖v‖

= lim
v→

|〈A(x + v) – b, A(x + v) – b〉 – 〈Ax – b, Ax – b〉 – 〈v, A∗(Ax – b)〉|
‖v‖

= . (.)

Then ∇g(x) = A∗(Ax – b), and h is a proper convex and lower semicontinuous function
on H . Hence,

∥
∥∇g(x) – ∇g(y)

∥
∥ =

∥
∥A∗(Ax – b) – A∗(Ay – b)

∥
∥

 ≤ ‖A‖‖x – y‖

and ∇g is a Lipschitz function with Lipschitz constant ‖A‖. Therefore, Theorem .
follows from Theorem .. �

The following is a special case of Theorem ..

Corollary . Let A be a m×n real matrix, x ∈R
n, b ∈ Rm, and γ ≥  be a regularization

parameter. Take μ ∈ R such that  < μ < . Suppose that � := arg minx∈Rn 
‖Ax – b‖

 +
γ ‖x‖ 
= ∅. A sequence {xn} ⊂R

n is defined as follows: x ∈R
n is chosen arbitrarily, and

{
yn = J∂γ ‖·‖

α (xn – αA∗(Axn – b)),
xn+ = αnxn + ( – αn)(( – βn)yn)

for each n ∈ N, α ∈ (, 
‖A‖ ), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then

limn→∞ xn = x̄, where x̄ = P� ().

Proof Let θn = θ =  for all n ∈ N and V = I in Theorem ., then Corollary . follows
from Theorem .. �

Apply Corollary ., an iteration is used to find the solution to the split feasibility prob-
lem: Find x̄ ∈ C, Ax̄ ∈ Q.

Theorem . Let A : H → H be a bounded linear operator, A∗ be the adjoint of A. Let
Af be defined as (L.) in Lemma .. Take μ ∈ R such that  < μ < γ̄

L . Suppose that
� := {x ∈ C : Ax ∈ Q} 
= ∅. Let f(x, y) = 〈y – x, A∗(A – PQA)x〉. A sequence {xn} ⊂ H is
defined as follows: x ∈ C is chosen arbitrarily, and

{
yn = J

Af
λ PCxn,

xn+ = αnxn + ( – αn)(βnθn + (I – βnV )yn)
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for each n ∈ N, α ∈ (, 
‖A‖ ), and {αn,βn} ⊂ (, ). Assume that conditions (D) hold. Then

limn→∞ xn = x̄, where x̄ = P� (x̄ – V x̄). Further, x̄ is also the unique solution to the hierar-
chical variational inequality:

〈V x̄ – θ , q – x̄〉 ≥ , ∀q ∈ �.

Proof Let g(x) = ‖Ax–PQAx‖


 , then shows that g is Fréchet differentiable with Fréchet
derivative ∇g = A∗(A – PQA), and ∇g a Lipschitz function with Lipschitz constant ‖A‖.
Applying Corollary . and following the same argument as Theorem ., we can prove
Theorem .. �

6 Image deblurring problem
This section mainly focuses on the image deblurring problems, which has received a lot
of attention in recent years. Until now, some researchers have proposed many novel al-
gorithms for this problem based on different deblurring models; for examples, see [].
Now, by Corollary ., we can consider the image deblurring problem.

All pixels of the original images described in the examples were first scaled into the range
between  and .

The image went through a Gaussian blur of size  ×  and standard deviation  (applied
by the MATLAB functions imfilter and fspecial) followed by an additive zero-mean white
Gaussian noise with standard deviation –. The original and observed images are given
in Figures -.

Remark . In the literature, we may observe that there are many fast algorithms for
the image deblurring problem. Here, we show that we can also consider this problem by
Corollary ..

Figure 1 The original image.

Figure 2 The blurred image.

Figure 3 The deblurred image.
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7 Conclusion and remarks
In this paper, we apply a recent fixed point theorem in [] to study mathematical pro-
gramming for the sum of two convex functions, mathematical programming of convex
function, the split feasibility problem, and the lasso problem. We establish strong conver-
gence theorems as regards these problems. The study of such problems will give many
other applications in science, nonlinear analysis, and statistics.
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