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Abstract
Very recently, Fang (Fuzzy Sets Syst. 267:86-99, 2015) gave some fixed point theorems
for probabilistic ϕ-contractions in Menger spaces. Fang’s results improve the one of
Jachymski (Nonlinear Anal. 73:2199-2203, 2010) by relaxing the restriction on the
gauge function ϕ . In this paper, inspired by the results of Fang, we prove a new fixed
point theorem for a probabilistic ϕ-contraction in Menger spaces in which a weaker
condition on the function ϕ is required. Our result improves the corresponding one
of Fang and some others. Finally, an example is given to illustrate our result.
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1 Introduction
Let (X, F ,Δ) be a probabilistic metric space and T : X → X be a mapping. If there exists a
gauge function ϕ : R+ →R

+ such that

FTx,Ty
(
ϕ(t)

) ≥ Fx,y(t) for all x, y ∈ X and t > ,

then the mapping T is called a probabilistic ϕ-contraction. The probabilistic ϕ-contraction
is a generalization of probabilistic k-contraction given by Sehgal and Bharucha-Reid []. In
literature, many authors investigated fixed point theorems for probabilistic ϕ-contractions
in Menger spaces; see [–]. On the fixed point theorems for other types of contractions
in Menger or fuzzy metric spaces, please see [–]. Recently, Jachymski [] proved a
new fixed point theorem for a probabilistic ϕ-contraction in which the condition on the
function ϕ is weakened. More precisely, the author gave the following result.

Theorem . ([]) Let (X, F ,Δ) be a complete Menger probabilistic metric space with a
continuous t-norm Δ of H-type, and let ϕ : R+ →R

+ be a function satisfying conditions:

 < ϕ(t) < t and lim
n→∞ϕn(t) =  for all t > .

If T : X → X is a probabilistic ϕ-contraction, then T has a unique fixed point x∗ ∈ X, and
{Tnx} converges to x∗ for each x ∈ X.
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Although Theorem . has been a very perfect result in which the condition on the gauge
function ϕ is very simple, Fang [] improves Theorem . by giving a new condition on ϕ

recently. Let ϕ : R+ →R
+ be a function satisfying the following condition:

for each t >  there exists r ≥ t such that lim
n→∞ϕn(t) = . (.)

Let �w denote the set of all functions ϕ : R+ → R
+ satisfying the condition (.) and let �

denote the set of all functions ϕ : R+ →R
+ satisfying the condition that limn→∞ ϕn(t) = 

for all t > . In [], Fang gave an example of ϕ ∈ �w but ϕ /∈ �.
By using the condition (.), Fang gave the following result.

Theorem . ([]) Let (X, F ,Δ) be a complete Menger space with a t-norm Δ of H-type. If
T : X → X is a probabilistic ϕ-contraction, where ϕ ∈ �w , then T has a unique fixed point
x∗ ∈ X, and {Tnx} converges to x∗ for each x ∈ X.

Since the condition (.) is weaker than the one in Theorem ., Theorem . improves
Theorem .. In [], Fang asked the following question:

Can the condition (.) in Theorem . be replaced by a more weak condition?

In this paper, we give a positive answer to the question of Fang by proving a new fixed
point theorem for a probabilistic ϕ-contraction in Menger spaces. In our result, the func-
tion ϕ is required to satisfy a more weak condition than (.) and the t-norm is not required
to be of H-type. Our result improves the corresponding one of Fang [] and some others.
Finally, an example is given to illustrate our result.

2 Preliminaries
In the rest of this paper, let R = (–∞, +∞), R+ = [, +∞) and N denote the set of all natural
numbers.

A mapping F : R → [, ] is called a distribution function if it is non-decreasing and
left-continuous with inft∈R F(t) = . If in addition F() = , then F is called a distance dis-
tribution function. A distance distribution function F satisfying limt→∞ F(t) =  is called
a Menger distance distribution function.

The set of all Menger distance distribution functions is denoted by D+. It is known that
D+ is partially ordered by the usual pointwise ordering of functions, that is, F ≤ G if and
only if F(t) ≤ G(t) for all t ≥ . The maximal element in D+ on this order is the distance
distribution function ε defined by

ε(t) =

{
, t = ,
, t > .

Definition . ([]) A binary operation Δ : [, ]× [, ] → [, ] is a t-norm if Δ satisfies
the following conditions:

() Δ is associative and commutative;
() Δ(a, ) = a for all a ∈ [, ];
() Δ(a, b) ≤ Δ(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [, ].

Two typical examples of the continuous t-norm are ΔP(a, b) = ab and ΔM(a, b) =
min{a, b} for all a, b ∈ [, ].
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Definition . ([]) A t-norm Δ is said to be of Hadžić-type (for short H-type) if the
family of functions {Δm(t)}∞m= is equicontinuous at t = , where

Δ(t) = Δ(t, t), Δm+(t) = Δ
(
t,Δm(t)

)
, m = , , . . . , t ∈ [, ].

It is easy to see that ΔM is a t-norm of H-type but ΔP is not of H-type. Here we give a
new t-norm of H-type by ΔM and ΔP .

Example . Let Δ(x, ) = Δ(, x) = x for all x ∈ [, ], Δ(x, y) = ΔP(x, y) for all x, y ∈ [, ]
with max{x, y} ∈ [, 

 ] and Δ(x, y) = ΔM(x, y) for all x, y ∈ [, ] with max{x, y} ∈ ( 
 , ]. It is

easy to check that Δ is a t-norm. Now we show that it is of H-type. For any given ε ∈ (, 
 ),

set δ = ε. Then  – δ =  – ε > 
 . Thus, for all t ∈ ( – δ, ), one has Δn(t) = t >  – δ =  – ε

for all n ∈N. For ε ∈ [ 
 , ), taking δ ∈ (, 

 ) arbitrarily, then we have  – δ > 
 ≥  – ε. Thus

for all t ∈ ( – δ, ), Δn(t) = t >  – δ > 
 ≥  – ε for all n ∈ N. Therefore, Δ is a t-norm of

H-type.

Example . Let δ ∈ (, ] and let Δ be a t-norm. Define Δδ by Δδ(x, y) = Δ(x, y), if
max{x, y} ≤ –δ, and Δδ(x, y) = min{x, y}, if max{x, y} > –δ. then Δδ is a t-norm of H-type;
see []. However, if Δδ(x, ) = Δδ(, x) = x for all x ∈ [, ], Δδ(x, y) = δ for all x, y ∈ [δ, )
and Δδ(x, y) =  for all x, y ∈ [, ] with min{x, y} ∈ [, δ), then Δδ is a t-norm but not of
H-type.

For other t-norms of H-type, the reader may refer to [].

Definition . ([]) A triple (X, F ,Δ) is called a Menger probabilistic metric space (for
short, Menger space) if X is a nonempty set, Δ is a t-norm, and F is a mapping from
X × X →D+ satisfying the following conditions (for x, y ∈ X, denote F(x, y) by Fx,y):

(PM-) Fx,y(t) = ε(t) for all t ∈R if and only if x = y;
(PM-) Fx,y(t) = Fy,x(t) for all t ∈R;
(PM-) Fx,y(t + s) ≥ Δ(Fx,z(t), Fz,y(s)) for all x, y, z ∈ X and t, s > .

Definition . ([]) Let (X, F ,Δ) be a Menger space and {xn} be a sequence in X. The
sequence {xn} is said to be convergent to x ∈ X if limn→∞ Fxn ,x(t) =  for all t > ; the se-
quence {xn} is said to be a Cauchy sequence if for any given t >  and ε ∈ (, ), there exists
Nε,t ∈ N such that Fxn ,xm (t) >  – ε whenever m, n > Nt,ε ; the Menger space (X, F ,Δ) is said
to be complete, if each Cauchy sequence in X is convergent to some point in X.

3 Main results
In this section, let �w∗ denote the set of all functions ϕ : R+ → R

+ satisfying the following
condition:

for each t, t >  there exists r ≥ max{t, t} and N ∈N

such that ϕn(r) < min{t, t} for all n > N . (.)

Obviously, the condition (.) implies that

for each t >  there exists r ≥ t and N ∈N

such that ϕn(r) < t for all n > N . (.)
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It is easy to see that for each ϕ ∈ �w, ϕ ∈ �w∗ . In fact, if ϕ ∈ �w , then for each t, t > ,
there exist r ≥ t and r ≥ t such that limn→∞ ϕn(r) = limn→∞ ϕn(r) = . Assume that
t ≤ t. Then there exists N ∈ N such that ϕn(r) < t for all n > N . Thus ϕ ∈ �w∗ .

However, if ϕ ∈ �w∗ , then it is unnecessary that ϕ ∈ �w .

Example . Let ϕ : R+ → R
+ by ϕ(t) = t for all t ∈ [, ], ϕ(t) = t –  for all t ∈ (,∞).

Then ϕ ∈ �w∗ . In fact, for each t, t ∈ (,∞), there exists N ∈ N such that r =  + N + ε >
max{t, t}, where ε ∈ (, min{t, t, }). Then we have ϕn(r) = ε < min{t, t} for all n > N + .
So ϕ ∈ �w∗ . However, since limn→∞ ϕn(r) �=  for all r > , ϕ /∈ �w .

From Example . we see that �w∗ is a proper subclass of �w. On �w∗ , �w , and �, we
have � ⊂ �w ⊂ �w∗ .

Lemma . Let ϕ ∈ �w∗ . Then for each t > , there exists r ≥ t such that ϕ(r) < t.

Proof Suppose that there is t >  such that ϕ(r) ≥ t for all r ≥ t. By induction, we obtain
ϕn(r) ≥ t for all n ∈ N. From (.) it follows that there exist r ≥ t and N ∈ N such that
ϕn(r) < t for all n > N , which contradicts ϕn(r) ≥ t for all r ≥ t and n ∈N. Thus for each
t > , there exists r ≥ t such that ϕ(r) ≤ t. This completes the proof. �

Lemma . Let (X, F ,Δ) be a Menger space and x, y ∈ X. If there exists a function ϕ ∈ �w∗

such that

Fx,y
(
ϕ(t)

) ≥ Fx,y(t), ∀t > , (.)

then x = y.

Proof First by a similar proof with Lemma . of [] we can show that for all n ∈ N and
t > , one has ϕn(t) > . By induction, from (.) it follows that

Fx,y
(
ϕn(t)

) ≥ Fx,y(t) for all n ∈N and t > . (.)

Next we show that Fx,y(t) =  for all t > . In fact, if there exists t >  such that Fx,y(t) < ,
then since limt→∞ Fx,y(t) =  there is t > t such that

Fx,y(t) > Fx,y(t) for all t ≥ t. (.)

Since ϕ ∈ �w∗ , there exist t ≥ max{t, t} and N ∈ N such that ϕn(t) < min{t, t} for all
n > N . By the monotonicity of Fx,y(·), from (.) and (.) it follows that, for each n > N ,

Fx,y(t) ≥ Fx,y
(
ϕn(t)

) ≥ Fx,y(t) ≥ Fx,y(t) > Fx,y(t).

It is a contradiction. Therefore, Fx,y(t) =  for all t > , i.e., x = y. This completes the
proof. �

Lemma . Let (X, F ,Δ) be a Menger space where Δ is continuous at (, ) and let {xn}
be a sequence in X. Suppose that there exists a function ϕ ∈ �w∗ satisfying the following
conditions:
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() ϕ(t) >  for all t > ;
() Fxn ,xm (ϕ(t)) ≥ Fxn–,xm– (t) for all n, m ∈ N and t > .

Then limn→∞ Fxn ,xn+k (t) =  for all k ∈N and t > .

Proof It is easy to see that the condition () implies that ϕn(t) >  for all t >  and the
condition () implies that

Fxn ,xn+

(
ϕn(t)

) ≥ Fx,x (t), ∀n ∈ N and ∀t > . (.)

We first prove that

lim
n→∞ Fxn ,xn+ (t) = , ∀t > . (.)

Since limt→∞ Fx,x (t) = , for any ε ∈ (, ), there exists t >  such that Fx,x (t) > –ε. For
each t > , since ϕ ∈ �w∗ , there exist t ≥ max{t, t} and N ∈ N such that ϕn(t) < min{t, t}
for all n ≥ N . By the monotonicity of Fx,y(·), from (.) we have

Fxn ,xn+ (t) ≥ Fxn ,xn+

(
ϕn(t)

)

≥ Fx,x (t) ≥ Fx,xn (t)

>  – ε for all n ≥ N ,

which implies that (.) holds. Assume that limn→∞ Fxn ,xn+k (t) =  for each k ∈N and t > .
Since Δ is continuous at (, ), we have

Fxn ,xn+k+ (t) ≥ Δ
(
Fxn ,xn+k (t/), Fxn+k ,xn+k+ (t/)

) → Δ(, ) =  as n → ∞.

By induction we conclude that

lim
n→∞ Fxn ,xn+k (t) = , ∀k ∈N and ∀t > .

This completes the proof. �

Lemma . Let (X, F ,Δ) be a Menger space where Δ is of H-type and continuous at (, )
and let {xn} be a sequence in X. Suppose that there exists a function ϕ ∈ �w∗ satisfying the
conditions () and () in Lemma .. Then {xn} is a Cauchy sequence.

Proof Let t > . By Lemma . there is r ≥ t such that ϕ(r) < t. We show by induction that

Fxn ,xn+k (t) ≥ Δk(Fxn ,xn+

(
t – ϕ(r)

))
, ∀k ∈N. (.)

Obviously, (.) holds for k = . Assume that (.) holds for some k ∈ N. By () in
Lemma . we have

Fxn ,xn+k+ (t) ≥ Δ
(
Fxn ,xn+

(
t – ϕ(r)

)
, Fxn+,xn+k+

(
ϕ(r)

))

≥ Δ
(
Fxn ,xn+

(
t – ϕ(r)

)
, Fxn ,xn+k (r)

)
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≥ Δ
(
Fxn ,xn+

(
t – ϕ(r)

)
, Fxn ,xn+k (t)

)

≥ Δ
(
Fxn ,xn+

(
t – ϕ(r)

)
,Δk(Fxn ,xn+

(
t – ϕ(r)

)))

= Δk+(Fxn ,xn+

(
t – ϕ(r)

))
.

It follows that (.) holds for k + . So (.) holds for all k ∈N.
Let t > . Define an = infk≥ Fxn ,xn+k (t). Since ϕ ∈ �w∗ , by Lemma . there exists t ≥ t

such that ϕ(t) < t. So by the condition () we have

an = inf
k≥

Fxn ,xn+k (t)

≥ inf
k≥

Fxn ,xn+k

(
ϕ(t)

)

≥ inf
k≥

Fxn–,xn–+k (t)

≥ inf
k≥

Fxn–,xn–+k (t)

= an– for all n ∈N.

So {an} is non-decreasing. Since {an} is bounded, there exists a ∈ [, ] such that an → a
as n → ∞. Assume that a < . Then there exists η ∈ (, ) such that a + η < . For any given
ε ∈ (, /), by the definition of an there exists k = k(ε, n) ∈N such that

an ≥ Fxn ,xn+k (t) – ε/. (.)

By Lemma . one has limn→∞ Fxn ,xn+ (t – ϕ(r)) = . Therefore there exist δ ∈ (, ) and
N ∈ N such that Fxn ,xn+ (t –ϕ(r)) ∈ (–δ, ) for all n > N . Since Δ is of H-type, Δk(Fxn ,xn+ (t –
ϕ(r))) >  – ε/ for all n > N and all k ∈N. Further combing (.) and (.) we get

 > a + η > an ≥  – ε

for all n > N , which implies that

 > a + δ > a ≥ .

It is a contradiction. So a = . Since an →  as n → ∞, there exists N ′ ∈ N such that an >
 – ε for all n > N . Then by the definition of {an}, we have

Fxn ,xn+k(t) >  – ε

for all n ∈N with n > N ′ and all k ∈N. Thus {xn} is a Cauchy sequence. This completes the
proof. �

Theorem . Let (X, F ,Δ) be a complete Menger space where Δ is of H-type and continu-
ous at (, ). Let T : X → X be a probabilistic ϕ-contraction, where ϕ ∈ �w∗ satisfies ϕ(t) > 
for all t > . Then T has a unique fixed point x∗ ∈ X, and {Tnx} converges to x∗ for each
x ∈ X.
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Proof Take x ∈ X arbitrarily and define the sequence {xn} by xn = Txn– for each n ∈ N.
Since T is a probabilistic ϕ-contraction, we have

Fxn ,xm

(
ϕ(t)

)
= FTxn–,Txm–

(
ϕ(t)

) ≥ Fxn–,xm– (t), ∀m, n ∈ N and ∀t > .

So, from Lemma . it follows that {xn} is a Cauchy sequence. Since X is complete, there
exists x∗ ∈ X such that xn → x∗ as n → ∞.

Next we show that x∗ is a fixed point of T . For any t > , Lemma . shows that there
exists r ≥ t such that ϕ(r) < t. By the monotonicity of Δ we get

Fx∗ ,Tx∗ (t) ≥ Δ
(
Fx∗ ,xn+

(
t – ϕ(r)

)
, Fxn+,Tx∗

(
ϕ(r)

))

= Δ
(
Fx∗ ,xn+

(
t – ϕ(r)

)
, FTxn ,Tx∗

(
ϕ(r)

))

≥ Δ
(
Fx∗ ,xn+

(
t – ϕ(r)

)
, Fxn ,x∗ (r)

)

≥ Δ(cn, cn), (.)

where cn = min{Fx∗ ,xn+ (t – ϕ(r)), Fxn ,x∗ (r)}. Since cn →  as n → ∞ and Δ is continuous at
(, ), from (.) we have

Fx∗ ,Tx∗ (t) ≥ Δ(cn, cn) → Δ(, ) = ,

which implies that x∗ = Tx∗.
Finally, we prove that x∗ is the unique fixed point of T . Suppose that T has another fixed

point x′ ∈ X. Then we have

Fx∗ ,x′
(
ϕ(t)

)
= FTx∗ ,Tx′

(
ϕ(t)

) ≥ Fx∗ ,x′ (t), ∀t > .

From Lemma . it follows that x∗ = x′. Thus x∗ is the unique fixed point of T . This com-
pletes the proof. �

Corollary . Let (X, F ,Δ) be a complete Menger space where Δ is of H-type and contin-
uous at (, ). Let T, T : X → X be two mappings such that

FTx,Ty
(
ϕ(t)

) ≥ Fx,y(t) and FTx,Ty(t) ≥ Fx,y(t) for all x, y ∈ X and t > , (.)

where ϕ ∈ �w∗ satisfies ϕ(t) >  for all t > . If T commutes with T, then T and T have
a unique common fixed point in X.

Proof Let T = TT. Then (.) implies that T is a probabilistic ϕ-contraction. From The-
orem . it follows that T has a unique fixed point x∗ ∈ X. Since T commutes with T, we
have TTx∗ = TTx∗. Further we have T(Tx∗) = (TT)(Tx∗) = T(TTx∗) = T(Tx∗) =
Tx∗, which implies that Tx∗ is a fixed point of T . Since T has a unique fixed point x∗, one
has Tx∗ = x∗. Similarly, we have Tx∗ = x∗. Thus x∗ is the common fixed point of T and T.
Assume that x′ ∈ X is another common fixed point of T and T. Since T commutes with
T, we have T(Tx′) = (TT)(Tx′) = T(TTx′) = T(TTx′) = Tx′, which implies that
Tx′ is the fixed point of T . Since x∗ is a unique fixed point of T , one has x′ = Tx′ = x∗.
Thus x∗ is the unique common fixed point of T and T. This completes the proof. �
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Finally, we give an example to illustrate Theorem ..

Example . Let X = {n+ : n ∈ N} ∪ {, } and define the mapping F : X × X → D+ by
Fx,y() =  for all x, y ∈ X, Fx,x(t) =  for all x ∈ X and t > ,

F,(t) = F,(t) =

{

 ,  < t ≤ ,
, t > 

and Fx,y(t) = Fy,x(t) =

{

 ,  < t ≤ |x – y|,
, t > |x – y|

for all x, y ∈ X with x �= y and {x, y} �= {, }. It is easy to see that (X, F ,ΔM) is a complete
Menger space.

Let T : X → X be a mapping defined by T = T = T =  and Tn+ = n+ for each
n ∈N. Let ϕ : R+ →R

+ be a function defined by

ϕ(t) =

{
t, if  ≤ t ≤ ,
t – , if t > .

Then ϕ ∈ �w∗ , but ϕ /∈ �w ; see Example ..
Next we show that T is a probabilistic ϕ-contraction, i.e., T satisfies the following con-

dition:

FTx,Ty
(
ϕ(t)

) ≥ Fx,y(t) for all x, y ∈ X and t > . (.)

First, it is easy to see that for x, y ∈ {, , }, (.) holds for all t >  since T = T =
T = . Next we show that (.) holds for all x, y ∈ X with x �= y and {x, y} � {, , }
and t > . Obviously, if |Tx – Ty| < ϕ(t), then FTx,Ty(ϕ(t)) =  ≥ Fx,y(t). So (.) holds. Now
we consider all x, y ∈ X with x �= y and {x, y} � {, , } and t >  with |Tx – Ty| ≥ ϕ(t) by
the following cases:

(a) For (x, y) ∈ {(, n+), (, n+), (, n+) : n ∈ N}, it is easy to conclude that
ϕ(t) ≤ |Tx – Ty| implies that t ≤ |x – y| for all t > . Thus if ϕ(t) ≤ |Tx – Ty|, then

FTx,Ty
(
ϕ(t)

)
=




= Fx,y(t) for all t > .

Therefore (.) holds.
(b) For (x, y) ∈ {(n+, m+) : m, n ∈N with m > n}, we have

ϕ(t) ≤ |Tx – Ty| = m+ – n+ < (m+ – n+) = |y – x| for t ∈ (, ]. For t > , from
ϕ(t) = t –  ≤ |Tx – Ty| = m+ – n+, we have
t ≤ m+ – n+ +  < m+ – n+ = |x – y| since
m+ – n+ – m+ + n+ = (m+ – n+) > . So ϕ(t) ≤ |Tx – Ty| implies that
t ≤ |x – y| for all t > . Thus if ϕ(t) ≤ |Tx – Ty|, then

FTx,Ty
(
ϕ(t)

)
=




= Fx,y(t) for all t > .

Therefore (.) holds.

By the discussion above, (.) holds for all x, y ∈ X and t > . Therefore, T is a proba-
bilistic ϕ-contraction. All the conditions of Theorem . are satisfied. By Theorem ., T
has a unique fixed point x∗ ∈ X. Obviously, x∗ =  is the unique fixed point of T . However,
since ϕ /∈ �w , Theorem ., i.e., Theorem . of [] cannot be applied to this example.
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4 Conclusion
In this paper, we prove a new fixed point theorems for a probabilistic ϕ-contraction in
Menger spaces. In the theorem, a more weak condition on the gauge function ϕ is required.
Thus our result improves Theorem . of Fang [] and some others, such as Jachymski
[], Ćirić [], and Xiao et al. []. By using Theorem ., it is easy to prove some fixed
point theorems for ϕ-contraction in fuzzy metric spaces like Theorems .-. in [].
For shortening the length of this paper, we omit the proofs of these theorems.
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