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Abstract
In this paper, we prove Browder’s convergence theorem for G-nonexpansive
mappings in a Hilbert space with a directed graph. Moreover, we also prove strong
convergence of the Halpern iteration process to a fixed point of G-nonexpansive
mappings in a Hilbert space endowed with a directed graph. The main results
obtained in this paper extend and generalize many well-known results in the
literature.
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1 Introduction
Let (X, d) be a metric space. A mapping T : X → X is said to be contraction if there is  <
k <  such that d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X. A mapping T is said to be nonexpansive
if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X. We use the notation F(T) to stand for the set of all
fixed points of T , i.e., x ∈ F(T) if and only if x = Tx.

The study of contractive-type mappings is a famous topic in a metric fixed point theory.
Banach [] proved a classical theorem, known as the Banach contraction principle, which
is a very important tool for solving existence problems in many branches of mathematics
and physics.

Theorem . ([]) Let (X, d) be a complete metric space and T : X → X a contraction
mapping. Then T has a unique fixed point.

There are many generalizations of the Banach contraction principle in the literature (see
[–]).

Let G = (V (G), E(G)) be a directed graph where V (G) is a set of vertices of graph and
E(G) be a set of its edges. Assume that G has no parallel edges. We denote by G– the
directed graph obtained from G by reversing the direction of edges. That is,

E
(
G–) =

{
(x, y) : (y, x) ∈ E(G)

}
.
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If x and y are vertices in G, then a path in G from x to y of length n ∈N∪{} is a sequence
{xi}n

i= of n +  vertices such that x = x, xn = y, (xi–, xi) ∈ E(G) for i = , , . . . , n. A graph G
is connected if there is a (directed) path between any two vertices of G.

In , Jachymski [] combined the concept of fixed point theory and graph theory to
study fixed point theory in a metric space endowed with a directed graph. He introduced
a concept of G-contraction and generalized the Banach contraction principle in a metric
space endowed with a directed graph.

Definition . ([]) Let (X, d) be a metric space and let G = (V (G), E(G)) be a directed
graph such that V (G) = X and E(G) contains all loops, i.e., � = {(x, x) : x ∈ X} ⊆ E(G).

We say that a mapping f : X → X is a G-contraction if f preserves edges of G, i.e.,

x, y ∈ X, (x, y) ∈ E(G) ⇒ (
f (x), f (y)

) ∈ E(G) (.)

and there exists α ∈ (, ) such that for any x, y ∈ X,

(x, y) ∈ E(G) ⇒ d
(
f (x), f (y)

) ≤ αd(x, y).

Using this concept, he proved in [] the following theorem.

Theorem . ([]) Let (X, d) be complete, and let a triple (X, d, G) have the following prop-
erty:

for any (xn)n∈N if xn → x and (xn, xn+) ∈ E(G) for n ∈ N

and there is a subsequence (xkn )n∈N with (xkn , x) ∈ E(G) for n ∈N.

Let f be a G-contraction, and Xf = {x ∈ X : (x, f (x)) ∈ E(G)}. Then F(T) 	= ∅ if and only if
Xf 	= ∅.

The above theorem has been improved and extended in many ways, see [–] for exam-
ples.

Let C be a nonempty convex subset of a Banach space, G = (V (G), E(G)) be a directed
graph such that V (G) = C and T : C → C. Then T is said to be G-nonexpansive if the
following conditions hold:

() T is edge-preserving, i.e., for any x, y ∈ C such that (x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G);
() ‖Tx – Ty‖ ≤ ‖x – y‖, whenever (x, y) ∈ E(G) for any x, y ∈ C.

Example . Let c be the Banach space of convergent sequences and k > . Let G =
(X, E(G)), where X = c and

E(G) =
{(

(xn), (yn)
) | for all n ∈N, xn, yn ∈ Z and yn = xn + , n ≥ 

}
.

Define a mapping T : X → X by

T(x, x, . . . , xi, . . .) =

⎧
⎨

⎩
(, x, x, x, . . .) if xn ∈ Z for all n ∈ Z,

(kx, kx, kx, . . .) if xn /∈ Z for some n ∈ Z.

Note that T is G-nonexpansive, but it is not nonexpansive.
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We note that E(G) in the above example is not convex in C × C, while E(G) in the fol-
lowing example is convex.

Example . Let c be a closed unit ball of the space l with the norm ‖{xk}‖ =
∑

k |xk|. Let
G = (C, E(G)) be the graph on C defined by

E(G) =
{
({x}k , {yk}

)
: |xk| + |yk| ≤  and

∥∥{xk} – {yk}
∥∥ ≤ 



}
.

It is easy to show that E(G) is convex. Now let T : C → C be defined by

T
({xk}

)
=

{
x

k
}

, {xk} ∈ C.

We can easily show that T is G-nonexpansive. However, it is not nonexpansive because
‖Tx – Ty‖ > ‖x – y‖ where {x} = { 

 , , , . . .} and {y} = {, , , . . .}.

The study of fixed point theorems for nonexpansive mappings and the structure of their
fixed point sets on both Hilbert and Banach spaces were widely investigated by many au-
thors (see [–]). In , Browder [] proved a strong convergence theorem to a fixed
point of a nonexpansive mapping in a Hilbert space by using the Banach contraction prin-
ciple.

Very recently, in , Alfuraidan [] proved a fixed point theorem for a G-nonexpan-
sive mapping T : C → C in a Banach space X which satisfies the τ -Opial condition and C
is a bounded convex τ -compact subset of X.

In this paper, we prove Browder’s convergence theorem for a G-nonexpansive mapping
in a Hilbert space endowed with a directed graph and we also prove a strong convergence
theorem of the Halpern iteration process for this type of mappings.

2 Preliminaries
In this section, we give some basic and useful definitions and well-known results that will
be used in the other sections.

Proposition . ([]) Let X be a Hilbert space. For any x, y ∈ X. If ‖x + y‖ = ‖x‖ + ‖y‖,
then there exists t ≥  such that y = tx or x = ty.

Definition . A sequence {xn} in a Hilbert space X is said to converge weakly to x ∈ X if
〈xn, y〉 → 〈x, y〉 for all y ∈ X. In this case, we write xn ⇀ x.

The following useful result is due to [].

Theorem . ([]) Let X be a Banach space. Then X is reflexive if and only if every closed
convex bounded subset C of X is weakly compact, i.e., every bounded sequence in C has a
weakly convergent subsequence.

Let C be a nonempty closed convex subset of a real Hilbert space X. For every point
x ∈ X, there exists a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖ for all y ∈ C.

PC is called the metric projection of X onto C.
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The following lemma shows some useful properties of PC on a Hilbert space.

Lemma . ([], Lemma ..) Let C be a convex subset of a Hilbert space H and let x ∈ H
and y ∈ C. Then the following are equivalent:

() ‖x – y‖ = d(x, C);
() (x – y, y – z) ≥  for every z ∈ C.

Theorem . ([]) Let X be a Hilbert space. Let {xn} be a sequence of X with xn ⇀ x. If
x 	= y, then

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖.

The following property is useful for our main results.

Property G Let C be a nonempty subset of a normed space X and let G = (V (G), E(G)),
where V (G) = C, be a directed graph. Then C is said to have Property G if every se-
quence {xn} in C converging weakly to x ∈ C, there is a subsequence {xnk } of {xn} such
that (xnk , x) ∈ E(G) for all k ∈N.

Definition . Let C be a nonempty closed convex subset of a Hilbert space H and G =
(V (G), E(G)) be a directed graph such that V (G) = C. Then T is said to be G-monotone if
〈Tx – Ty, x – y〉 ≥  whenever (x, y) ∈ E(G) for any x, y ∈ C.

In order to obtain our main result, we need some basic definitions of domination in
graphs [, ].

Let G = (V (G), E(G)) be a directed graph. A set X ⊆ V (G) is called a dominating set if
every v ∈ V (G) \ X there exists x ∈ X such that (x, v) ∈ E(G) and we say that x dominates
v or v is dominated by x. Let v ∈ V , a set X ⊆ V is dominated by v if (v, x) ∈ E(G) for any
x ∈ X and we say that X dominates v if (x, v) ∈ E(G) for all x ∈ X. In this paper, we always
assume that E(G) contains all loops.

3 Main result
In this section, we prove a fixed point theorem for G-nonexpansive mapping in a Hilbert
space endowed with a directed graph. First, we begin with the property of G-nonexpansive
mapping and the structure of its fixed point set.

Lemma . Let X be a normed space and G = (V (G), E(G)) a directed graph with
V (G) = X. Suppose T : X → X is a G-nonexpansive mapping. If X has a Property G, then
T is continuous.

Proof Let {xn} be a sequence in X such that xn → x. We will show that Txn → Tx. To
show this, let {Txnk } be a subsequence of {Txn}. Since xnk → x, by Property G, there is a
subsequence (xmk ) such that (xmk , x) ∈ E(G) for each k ∈ N. Since T is G-nonexpansive
and (xmk , x) ∈ E(G), we obtain

‖Txmk – Tx‖ ≤ ‖xmk – x‖ →  as k → ∞.



Tiammee et al. Fixed Point Theory and Applications  (2015) 2015:187 Page 5 of 12

Hence Txmk → Tx. By the double extract subsequence principle, we conclude that Txn →
Tx. Therefore T is continuous. �

We now discuss the structure of the fixed point set of G-nonexpansive mappings.

Theorem . Let X be a normed space and C be a subset of X having Property G. Let
G = (V (G), E(G)) be a directed graph such that V (G) = C and E(G) is convex. Suppose
T : C → C is a G-nonexpansive mapping and F(T) × F(T) ⊆ E(G). Then F(T) is closed
and convex.

Proof Suppose F(T) 	= ∅. Let {xn} be a sequence in F(T) such that xn → x. Since C has
Property G, there is a subsequence {xnk } of {xn} such that (xnk , x) ∈ E(G) for all k ∈ N.
Since T is G-nonexpansive, we obtain

‖x – Tx‖ ≤ ‖x – xnk ‖ + ‖xnk – Tx‖
= ‖x – xnk ‖ + ‖Txnk – Tx‖
= ‖x – xnk ‖ + ‖xnk – x‖ → .

Therefore x = Tx, i.e., x ∈ F(T). This shows that F(T) is closed.
Next, we will show that F(T) is convex. Let x, y ∈ F(T) and λ ∈ [, ]. Then (x, x), (x, y) ∈

E(G). Denote z = λx + ( – λ)y. Since E(G) is convex, we obtain

(x, z) =
(
λx + ( – λ)x,λx + ( – λ)y

) ∈ E(G).

Similarly, we also have (y, z) ∈ E(G). Since T is G-nonexpansive, we obtain

‖x – Tz‖ = ‖Tx – Tz‖ ≤ ‖x – z‖ = ( – λ)‖x – y‖ (.)

and

‖y – Tz‖ = ‖Ty – Tz‖ ≤ ‖y – z‖ = λ‖x – y‖. (.)

Hence

‖x – y‖ =
∥
∥(x – Tz) + (Tz – y)

∥
∥

≤ ‖x – Tz‖ + ‖Tz – y‖
≤ ‖x – z‖ + ‖y – z‖ = ‖x – y‖.

This implies that ‖x – y‖ = ‖x – Tz‖ + ‖Tz – y‖ = ‖x – z‖ + ‖y – z‖ and

∥∥(x – Tz) + (Tz – y)
∥∥ = ‖x – Tz‖ + ‖Tz – y‖.

By (.) and (.), we can conclude that

‖x – Tz‖ = ‖x – z‖ and ‖y – Tz‖ = ‖y – z‖.
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By Proposition ., there exists t ≥  such that x – Tz = t(Tz – y), so

Tz = βx + ( – β)y, where β =


 + t
.

Hence x – Tz = ( –β)(x – y) = –β

–λ
(x – z), which implies that x – Tz = x – z. Therefore z = Tz,

i.e., z ∈ F(T). Thus F(T) is convex. �

Proposition . Let C be a nonempty closed convex subset of a Hilbert space H and G =
(V (G), E(G)) a directed graph such that V (G) = C. If T is G-nonexpansive, then I – T is
G-monotone, where I is the identity mapping on C.

Proof Let x, y ∈ C be such that (x, y) ∈ E(G). By the Cauchy-Schwarz inequality and
G-nonexpansiveness of T , we have

 ≤ ‖Tx – Ty‖‖x – y‖ – 〈Tx – Ty, x – y〉
≤ ‖x – y‖ – 〈Tx – Ty, x – y〉
= 〈x – y, x – y〉 – 〈Tx – Ty, x – y〉
=

〈
(x – y) – (Tx – Ty), x – y

〉

=
〈
(I – T)x – (I – T)y, x – y

〉
.

Hence I – T is G-monotone. �

Next, we prove a Browder’s fixed point theorem for a G-nonexpansive mapping.

Theorem . Let C be a bounded closed convex subset of a Hilbert space H and let
G = (V (G), E(G)) a directed graph such that V (G) = C and E(G) is convex. Suppose C has
Property G. Let T : C → C be a G-nonexpansive. Assume that there exists x ∈ C such that
(x, Tx) ∈ E(G). Define Tn : C → C by

Tnx = ( – αn)Tx + αnx

for each x ∈ C and n ∈ N, where {αn} is a sequence in (, ) such that αn → . Then the
following hold:

(i) Tn has a fixed point un ∈ C;
(ii) F(T) 	= ∅;

(iii) if F(T) × F(T) ⊆ E(G) and Px is dominated by {un}, then the sequence {un}
converges strongly to w = Px where P is the metric projection onto F(T).

Proof (i) Let x be such that (x, Tx) ∈ E(G). We first show that Tn is G-contraction for
all n ∈ N. Let n ∈ N and x, y ∈ C such that (x, y) ∈ E(G). Since T is G-nonexpansive, we
obtain

‖Tnx – Tny‖ = ( – αn)‖Tx – Ty‖ ≤ ( – αn)‖x – y‖.

Since T is edge-preserving, (Tx, Ty) ∈ E(G). By convexity of E(G), we have

(Tnx, Tny) =
(
( – αn)Tx + αnx, ( – αn)Ty + αnx

) ∈ E(G).



Tiammee et al. Fixed Point Theory and Applications  (2015) 2015:187 Page 7 of 12

Therefore Tn is G-contraction. For any sequence {xn} in C such that xn → x and (xn, xn+) ∈
E(G), by Property G of C, there is a subsequence (xnk ) such that (xnk , x) ∈ E(G) for k ∈ N.
Since E(G) is convex and (x, x) ∈ E(G), we have

(x, Tnx) =
(
( – αn)x + αnx, ( – αn)Tx + αnx

) ∈ E(G).

Therefore all conditions of Theorem . are satisfied, so Tn has a fixed point, i.e., un = Tnun.
(ii) We will show that F(T) 	= ∅. Since {un} is bounded, by Theorem ., there is a subse-

quence {uni} of {un} such that uni ⇀ v for some v ∈ C. Suppose Tv 	= v. By Property G, with-
out loss of generality, we may assume that (uni , v) ∈ E(G) for all i ∈N. Since uni – Tuni → 
as i → ∞, by Theorem ., we have

lim inf
i→∞ ‖uni – v‖ < lim inf

i→∞ ‖uni – Tv‖

= lim inf
i→∞ ‖uni – Tuni + Tuni – Tv‖

= lim inf
i→∞ ‖Tuni – Tv‖

≤ lim inf
i→∞ ‖uni – v‖,

which is a contradiction. Hence Tv = v.
(iii) Next, assume that F(T)×F(T) ⊆ E(G) and {Px} is dominated by {un}. We will show

that un → w = Px. Let {uni} be a subsequence of {un}, we denote vi = uni . For each i, vi is
a fixed point of Tni . Hence we have

αni vi + ( – αni )(vi – Tvi) = αni x.

Since w is a fixed point of T , we have

αni w + ( – αni )(w – Tw) = αni w.

If we subtract these two equations and take the inner product of the difference with vi –w,
we obtain

αni〈vi – w, vi – w〉 + ( – αni )〈Uvi – Uw, vi – w〉 = αni〈x – w, vi – w〉, (.)

where U = I – T and I is the identity map. Since Px is dominated by {un}, we obtain
(vi, w) ∈ E(G) for all i ∈N. By Proposition ., U is G-monotone, so 〈Uvi – Uw, v – w〉 ≥
 for all i ∈N. This together with (.) shows

αni‖vi – w‖ ≤ αni〈x – w, vi – w〉.

Hence

‖vi – w‖ ≤ 〈x – w, vi – w〉
= 〈x – w, v – w〉 + 〈x – w, vi – v〉.
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By Lemma ., we know that 〈x – w, v – w〉 ≤ , so we get

‖vi – w‖ ≤ 〈x – w, vi – v〉 →  as i → ∞,

because vi ⇀ v. Hence vi → w = Px. By the double extract subsequence principle, we
can conclude that un → w = Px. �

Next, we give an example which supports Theorem ..

Example . Let H = R and C = [, 
 ] with the usual norm ‖x – y‖ = |x – y| and let

G = (V (G), E(G)) be such that V (G) = C, E(G) = {(x, y) : x, y ∈ [, 
 ] such that |x – y| ≤ 

 }.
Define T : C → C by

Tx =

⎧
⎨

⎩


 x if x ∈ [, 

 ),

 if x = 

 .

Proof We see that F(T) = {}. Choose x = 
 , so (x, Tx) ∈ E(G). It is easy to see that E(G)

is convex. Let (x, y) ∈ E(G). Then x, y ∈ [, 
 ] and |x – y| ≤ 

 . So, we have |Tx – Ty| = 
 |x –

y| ≤ 
 |x+y||x–y| ≤ |x–y| ≤ 

 , which implies that (Tx, Ty) ∈ E(G) and ‖Tx–Ty‖ ≤ ‖x–y‖.
Thus T is G-nonexpansive. Next, for each n ∈ N, define Tn : C → C by

Tnx =


(n + )
+

(
 –


n + 

)
Tx.

Then the unique fixed point of Tn is un = n+–
√


√

n+n+
(n+) . By using elementary calculus,

we can show that un ≤ 
 for all n ∈N. Thus (un, Px) = (un, ) ∈ E(G), i.e., Px is dominated

by {un} and un →  = Px as n → ∞. �

It is noted that T is not nonexpansive because
∥∥
∥∥T

(



)
– T

(



)∥∥
∥∥ =

∥∥
∥∥




–



∥∥
∥∥ =




>



=
∥∥
∥∥




–



∥∥
∥∥.

Open question It is noted that the set C in the above example has no Property G but
we still have the Browder convergence theorem for a G-nonexpansive mapping T . Is it
possible to obtain Theorem . with a property which is weaker than the Property G or
without the Property G?

As a consequence of Theorem ., by putting E(G) = C × C, we obtain the Browder
convergence theorem.

Corollary . ([]) Let C be a bounded closed convex subset of a Hilbert space H and let
T be a nonexpansive mapping of C into itself. Let x be an arbitrary point of C and define
Tn : C → C by

Tn =
(

 –

n

)
Tx +


n

x

for each x ∈ C and n ∈ N. Then the following hold:
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• Tn has a unique fixed point un in C;
• the sequence {un} converges strongly to Px ∈ F(T), where P is the metric projection

onto F(T).

4 Convergence of Halpern iteration process
In this section, we prove strong convergence of Halpern iteration process for G-nonexpan-
sive mappings in a Hilbert space endowed with a graph.

Definition . ([]) Let C be a nonempty convex subset of a linear space and T : C → C
a mapping. Let u ∈ C and {αn} be a sequence in [, ]. Then a sequence {xn} defined by

⎧
⎨

⎩
x ∈ C,

xn+ = αnu + ( – αn)Txn, n ≥ ,
(.)

is called the Halpern iteration.

In , Wittmann [] proved the strong convergence of the Halpern iteration for a
nonexpansive mapping in a Hilbert space and {αn} satisfies

αn ∈ [, ],
∞∑

n=

αn = ∞, lim
n→∞αn =  and

∞∑

n=

|αn+ – αn| < ∞. (.)

The following is also useful for proving our main result.

Lemma . ([]) Let (sn) be a sequence of non-negative real numbers satisfying

sn+ ≤ ( – αn)sn + αnβn + γn, n ≥ ,

where (αn), (βn), and (γn) satisfy the conditions:
. (αn) ⊂ [, ],

∑∞
n= αn = ∞, or equivalently,

∏∞
n=( – αn) = ;

. lim supn→∞ βn ≤ ;
. γn ≥  for all n ≥  and

∑∞
n= γn < ∞.

Then limn→∞ sn = .

Definition . Let G = (V (G), E(G)) be a directed graph. A graph G is called transitive if
for any x, y, z ∈ V (G) such that (x, y) and (y, z) are in E(G), then (x, z) ∈ E(G).

The following result is needed for proving strong convergence of Halpern iteration pro-
cess for G-nonexpansive mapping in Hilbert spaces endowed with a directed graph.

Proposition . Let C be a convex subset of a vector space X and G = (V (G), E(G)) a
directed graph such that V (G) = C and E(G) is convex. Let G be transitive and T : C → C be
edge-preserving. Let {xn} be a sequence defined by (.), where u = x and (x, Tx) ∈ E(G).
If {xn} dominates x, then (xn, xn+), (x, xn), and (xn, Txn) are in E(G) for any n ∈ N.

Proof We prove by induction. Since E(G) is convex, (x, x) and (x, Tx) are in E(G),
we have (x, x) ∈ E(G). Then (Tx, Tx) ∈ E(G), since T is edge-preserving. Because G
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is transitive, we have (x, Tx) ∈ E(G). By convexity of E(G) and (x, Tx), (Tx, Tx) ∈ E(G),
we get (x, Tx) ∈ E(G). By assumption, (x, x) ∈ E(G). So, by convexity of E(G), we get
(x, x) ∈ E(G). Next, assume that (xk , xk+), (x, Txk), and (xk , Txk) are in E(G). Then
(Txk , Txk+) ∈ E(G), since T is edge-preserving. By transitivity of G, we have (x, Txk+) ∈
E(G). By convexity of E(G) and (x, Txk+), (Txk , Txk+) ∈ E(G), we get (xk+, Txk+) ∈ E(G).
Since {x} is dominated by {xn}, we have (xk+, x) ∈ E(G). By convexity of E(G), we get
(xk+, xk+) ∈ E(G). So, by induction, we can conclude that (xn, xn+), (x, xn), and (xn, Txn)
are in E(G) for any n ∈N. �

We now ready to prove the strong convergence theorem.

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and let G =
(V (G), E(G)) be a directed graph such that V (G) = C, E(G) is convex and G is transitive.
Suppose C has Property G. Let T : C → C be a G-nonexpansive mapping. Assume that there
exists x ∈ C such that (x, Tx) ∈ E(G). Suppose that F(T) 	= ∅ and F(T) × F(T) ⊆ E(G).
Let {αn} be a sequence satisfying (.). Let {xn} be a sequence defined by Halpern iteration,
where u = x. If {xn} is dominated by Px and {xn} dominates x, then {xn} converges strongly
to Px, where P is the metric projection on F(T).

Proof Let z = Px. From Proposition ., (xn, xn+) ∈ E(G) for all n ∈N. First we will show
that {xn} is bounded. Since z ∈ F(T) and z = Px is dominated by {xn}, we have (xn, z) ∈
E(G), we get

‖xn+ – z‖ ≤ ( – αn)‖Txn – z‖ + αn‖x – z‖
= ( – αn)‖Txn – Tz‖ + αn‖x – z‖
≤ ( – αn)‖xn – z‖ + αn‖x – z‖
≤ max

{‖xn – z‖,‖x – z‖
}

for all n ∈ N. Therefore {xn} is bounded. Moreover, {Txn} is bounded. By (.) and
(xn, xn+) ∈ E(G), we have

‖xn+ – xn‖ ≤ |αn – αn–‖
(‖x‖ + ‖Txn–‖

)
+ ( – αn)‖xn – xn–‖

≤ ‖αn – αn–‖K + ( – αn)‖xn – xn–‖, (.)

where K = sup{‖x‖ + ‖Txn‖ : n ∈N}. By using (.), for m, n ∈N, we have

‖xn+m+ – xn+m‖

≤
(n+m–∑

k=m

|αk+ – αk|
)

K +

(n+m–∏

k=m

| – αk+|
)

‖xm+ – xm‖

≤
(n+m–∑

k=m

|αk+ – αk|
)

K + exp

(

–
n+m–∑

k=m

αk+

)

‖xm+ – xm‖.

Since {xn} is bounded and
∑∞

k= αk = ∞, we obtain

lim sup
n→∞

‖xn+ – xn‖ = lim sup
n→∞

‖xn+m+ – xn+m‖ ≤
( ∞∑

k=m

|αk+ – αk|
)

K
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for all m ∈N. Hence, by
∑∞

n= |αn+ – αn| < ∞, we get

lim
n→∞‖xn+ – xn‖ = . (.)

For each n ∈N, we have

‖xn – Txn‖ ≤ ‖xn – xn+‖ + ‖xn+ – Txn‖
= ‖xn – xn+‖ + αn‖x – Txn‖.

Because {Txn} is bounded with (.), we obtain

‖xn – Txn‖ →  (.)

as n → ∞. We next show that

lim sup
n→∞

〈xn – z, x – z〉 ≤ .

Indeed, take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈xn – z, x – z〉 = lim
k→∞

〈xnk – z, x – z〉.

Because all the xnk lie in the weakly compact set C and C has Property G, we may assume
without loss of generality that xnk ⇀ y for some y ∈ C and (xnk , y) ∈ E(G). Suppose y 	= Ty.
By Theorem ., (.), and G-nonexpansiveness of T , we get

lim inf
k→∞

‖xnk – y‖ < lim inf
k→∞

‖xnk – Ty‖

≤ lim inf
k→∞

(‖xnk – Txnk ‖ + ‖Txnk – Ty‖)

= lim inf
k→∞

‖Txnk – Ty‖

≤ lim inf
k→∞

‖xnk – y‖,

which is a contradiction. So y = Ty. Hence, by Lemma ., we get

lim
k→∞

〈xnk – z, x – z〉 = 〈y – z, x – z〉 ≤ . (.)

Therefore lim supn→∞〈xn – z, x – z〉 ≤ .
Since ( – αn)(Txn – z) = (xn+ – z) – αn(x – z), we have

∥∥( – αn)(Txn – z)
∥∥ = ‖xn+ – z‖ + α

n‖x – z‖ – αn〈xn+ – z, x – z〉
≥ ‖xn+ – z‖ – αn〈xn+ – z, x – z〉.

This implies, by G-nonexpansiveness of T and (z, xn) ∈ E(G), that

‖xn+ – z‖ ≤ ( – αn)‖xn – z‖ + αn〈xn+ – z, x – z〉
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for each n ∈ N. By Lemma ., we can conclude that

lim
n→∞‖xn – z‖ = .

Therefore {xn} converges strongly to z = Px. �
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