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Abstract
In this paper we study the existence of best proximity points of a nonself upper
semicontinuous multivalued mapping T : A→ 2B in a strictly convex Banach space.
This multivalued mapping commutes with affine, noncyclic, and relatively
u-continuous single-valued mapping f : A∪ B → A∪ B. Also, we study the case when
T commutes with a family of commuting, affine, noncyclic, and relatively
u-continuous single-valued mappings on A∪ B. Moreover, we present some
examples to illustrate our results.
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1 Introduction
Let A, B be nonempty subsets of a metric space (X, d) and T : A → B, where B is the
family of all nonempty subsets of B. If A ∩ B = ∅, the operator inclusion x ∈ T(x) has no
solution. In this case, it is logical to look for a point x ∈ A such that dist(x, T(x)) is mini-
mum. Because dist(x, T(x)) is at least dist(A, B), the point x is the solution of the equation
dist(x, T(x)) = dist(A, B) = inf{d(x, y) : x ∈ A, y ∈ B}. This point is called the best proximity
point of T . Indeed, best proximity point theorems examine the existence of such optimal
approximate solutions of the operator inclusion x ∈ T(x) when there is no exact solution.
If A ∩ B �= ∅, the best proximity point is the fixed point of T .

For multivalued mappings, the existence of best proximity points was established by
many authors, e.g., Abkar and Gabeleh in [] and [], Al-Thagafi and Shahzad in [],
Amini-Harandi in [], De la Sen in [], Kirk et al. in [] and Włodarczyk et al. in [].
Best proximity point theorems for relatively nonexpansive single-valued mapping were
studied in [] in . Since then there has been a lot of activity in this area and a num-
ber of results appeared by various authors. Best proximity point theorems for relatively
u-continuous mapping were proved in [] and []. For other related results, we refer the
reader to [–] and []. In this paper, we study the existence of best proximity points for
an upper semicontinuous multivalued mapping with nonempty, compact, and convex val-
ues T : A → B which commutes with an affine and relatively u-continuous single-valued
mapping f : A ∪ B :→ A ∪ B such that f (A) ⊆ A and f (B) ⊆ B (noncyclic). In addition,
we present some support examples for our results and we also give an example showing
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that the condition ‘T(x) ∩ B �= ∅ for each x ∈ A’ is necessary. Moreover, we add a similar
theorem for a multivalued mapping which commutes with a family of commuting, affine,
noncyclic, and relatively u-continuous single-valued mappings on A ∪ B.

2 Preliminaries
Definition . [] Let A, B be nonempty subsets of a metric space X. A mapping f : A ∪
B → A ∪ B is said to be relatively u-continuous if for each ε >  there exists δ >  such that
d(f (x), f (y)) < ε + dist(A, B) whenever d(x, y) < δ + dist(A, B) for each x ∈ A, y ∈ B.

Definition . [] Let A, B be nonempty subsets of a metric space X. A mapping f : A ∪
B → A ∪ B is called relatively nonexpansive if d(f (x), f (y)) ≤ d(x, y) for each x ∈ A, y ∈ B.

Every relatively nonexpansive mapping is relatively u-continuous. However, the con-
verse is not true (see []).

Definition . [] Let A, B be nonempty subsets of a metric space X and T : A → B a
multivalued mapping. A point x ∈ A is called a (i) fixed point of T if x ∈ T(x) and (ii) best
proximity point of T if dist(x, T(x)) = dist(A, B). Note that if dist(A, B) = , then we get a
fixed point of T .

Definition . Let A, B be nonempty subsets of a metric space X. A multivalued mapping
T : A → B is called upper semicontinuous if T–(C) = {x ∈ A : T(x) ∩ C �= ∅} is closed in
A whenever C is closed in B.

Proposition . [] Let X be a strictly convex Banach space, A a nonempty, compact,
and convex subset of X, and B a nonempty closed subset of X. Let {xn} be a sequence in A
and y ∈ B. If ‖xn – y‖ → dist(A, B), then xn → PA(y).

Definition . [] Let A, B be nonempty convex subsets of a Banach space X. A mapping
f : A ∪ B → A ∪ B is called affine if f (αx + βy) = αf (x) + βf (y) for all x, y ∈ A or x, y ∈ B and
α,β ∈ [, ] with α + β = .

Lemma . [] If A is a nonempty, compact, and convex subset of a Banach space, and
T : A → A can be expressed as a composition of finitely many upper semicontinuous multi-
valued mappings with nonempty, compact, and convex values, then T has a fixed point.

Let A, B be nonempty subsets of a Banach space X. f : A ∪ B → A ∪ B a relatively nonex-
pansive mapping such that f (A) ⊆ A, f (B) ⊆ B, T : A → KC(B), where KC(B) is the set of all
nonempty, compact, and convex subsets of B. The mapping f and T are said to commute
if for each x ∈ A, f (T(x)) ⊆ T(f (x)). Define

A =
{

x ∈ A : ‖x – y‖ = dist(A, B) for some y ∈ B
}

,

B =
{

y ∈ B : ‖x – y‖ = dist(A, B) for some x ∈ A
}

.

Remark . Note that if A and B are nonempty, compact, and convex sets, then A and
B are nonempty, compact, and convex sets with dist(A, B) = dist(A, B). For details see
[] and []. Also, f (A) ⊆ A and f (B) ⊆ B [].



AlNemer et al. Fixed Point Theory and Applications  (2015) 2015:237 Page 3 of 10

Remark . [, ] Let A be a nonempty subset of a normed space X. The metric projec-
tion operator is defined by PA(x) = {y ∈ A : ‖x – y‖ = dist(x, A)} for each x ∈ X. If A is a
nonempty, compact, and convex subset of a Banach space X, then PA is upper semicon-
tinuous with nonempty, compact, and convex values. Observe that when A is a nonempty,
compact, and convex subset of a strictly convex Banach space X, PA is a single-valued
mapping from X to A.

Theorem . [] Let A, B be nonempty, compact, and convex subsets of a strictly convex
Banach space X. If f : A ∪ B :→ A ∪ B is relatively u-continuous such that f (A) ⊆ A and
f (B) ⊆ B. Then there exists (x, y) ∈ A × B such that f (x) = x, f (y) = y, and ‖x – y‖ =
dist(A, B).

3 Main results
The following proposition is a noncyclic version of Proposition . in [].

Proposition . Let A, B be nonempty, compact, and convex subsets of a strictly convex
Banach space X. Let f : A ∪ B → A ∪ B be a relatively u-continuous mapping such that
f (A) ⊆ A and f (B) ⊆ B. P : A ∪ B → A ∪ B is a mapping defined by

P(x) =

{
PB(x) if x ∈ A,
PA(x) if x ∈ B.

Then f (P(x)) = P(f (x)) for each x ∈ A ∪ B, i.e., PA(f (y)) = f (PA(y)) for each y ∈ B and
PB(f (x)) = f (PB(x)) for each x ∈ A.

Proof Let x ∈ A. Then there exists y ∈ B such that ‖x – y‖ = dist(A, B). So, y = PB(x) and
x = PA(y). Then for each δ > , ‖x – y‖ < δ + dist(A, B). Since f is relatively u-continuous,
for each ε >  we have dist(A, B) ≤ ‖f (x) – f (y)‖ < ε + dist(A, B). Thus, ‖f (x) – f (y)‖ =
dist(A, B). So, f (x) = PA(f (y)) and f (y) = PB(f (x)). Since A, B are nonempty, compact, and
convex subsets of a strictly convex Banach space, the metric projection is unique. Now,
x = PA(y) �⇒ f (x) = f (PA(y)) �⇒ PA(f (y)) = f (PA(y)) for each y ∈ B. Also, y = PB(x) �⇒
f (y) = f (PB(x)) �⇒ PB(f (x)) = f (PB(x)) for each x ∈ A. Hence, f (P(x)) = P(f (x)) for each
x ∈ A ∪ B. �

A cyclic version of the following proposition can be found in [] (see the proof of The-
orem . in []).

Proposition . Let A, B be nonempty, compact, and convex subsets of a strictly convex
Banach space X. Let f : A ∪ B → A ∪ B be a relatively u-continuous mapping such that
f (A) ⊆ A and f (B) ⊆ B. Then f is continuous on A and B.

Proof Let x ∈ A and {xn} ⊆ A such that xn → x. We want to show that f (xn) → f (x).
Using the triangle inequality, we obtain

∥∥xn – PB(x)
∥∥ ≤ ‖xn – x‖ +

∥∥x – PB(x)
∥∥

= ‖xn – x‖ + dist(A, B)

→ dist(A, B).
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Then for each δ >  there exists N ∈N such that for each n ≥ N, we have |‖xn – PB(x)‖–
dist(A, B)| < δ. So, n ≥ N �⇒ ‖xn – PB(x)‖ < δ + dist(A, B). By relative u-continuity of f ,
‖f (xn) – f (PB(x))‖ < ε + dist(A, B) for each n ≥ N. Since {f (xn)} ⊆ A and PB(f (x)) ∈ B,
Proposition . gives

f (xn) → PA
(
f
(
PB(x)

))
= f

(
PA

(
PB(x)

))
= f (x).

Hence, f (xn) → f (x). Since x ∈ A was arbitrary, f is continuous on A. Similarly, f is
continuous on B. Therefore, f is continuous on A ∪ B. �

Theorem . Let A, B be nonempty, compact, and convex subsets in a strictly convex
Banach space X. Suppose f : A ∪ B → A ∪ B is an affine relatively u-continuous mapping
with f (A) ⊆ A, f (B) ⊆ B. Then there exists (x, y) ∈ A × B such that f (x) = x, f (y) = y

and ‖x – y‖ = dist(A, B).
In addition, if T : A → KC(B) is an upper semicontinuous multivalued mapping, f and

T commute, and T(x) ∩ B �= ∅ for each x ∈ A, then there exists a ∈ A such that f (a) = a
and dist(a, T(a)) = dist(A, B).

Proof For u ∈ A, there is a v ∈ B such that ‖u – v‖ = dist(A, B). Then by the relative
u-continuity of f , ‖f (u) – f (v)‖ = dist(A, B), implying that f (u) ∈ A. Therefore, the com-
pact convex set A is invariant under the continuous mapping f , and the Schauder fixed
point theorem implies the existence of a fixed point x = f (x) ∈ A. Let y be the unique
closest point to x in B. Then by the relative u-continuity of f and the uniqueness of the
closest point projection onto B, y = f (y) and ‖x – y‖ = dist(A, B).

Now, we will prove that there exists a ∈ A such that dist(a, T(a)) = dist(A, B). Define
Fix(f ) = {x ∈ A ∪ B : f (x) = x}, FixA(f ) = Fix(f ) ∩ A and FixB(f ) = Fix(f ) ∩ B. Clearly,
FixA(f ) and FixB(f ) are nonempty, because x ∈ FixA(f ) and y ∈ FixB(f ). The set FixA(f )
is closed. Indeed, let {xn} ⊆ FixA(f ) such that xn → x. Since {xn} ⊆ A and A is closed
by Remark ., we have x ∈ A ⊆ A. Using Proposition ., f (xn) → f (x). But f (xn) = xn

for each n. So xn → f (x). Consequently x = f (x). Thus x ∈ FixA(f ). Therefore, FixA(f )
is closed. Similarly, FixB(f ) is closed. So, FixA(f ) and FixB(f ) are compact sets as they are
closed subsets of the compact sets A, B. In addition, FixA(f ) is a convex set. Indeed,
let x, y ∈ FixA(f ) and α,β ∈ [, ] with α + β = . Since f is affine, f (αx + βy) = αf (x) +
βf (y) = αx + βy, i.e., αx + βy ∈ Fix(f ). Also, αx + βy ∈ A as A is convex and x, y ∈ A.
Consequently, αx + βy ∈ Fix(f ) ∩ A = FixA(f ). Similarly, FixB(f ) is a convex set.

Assume x ∈ FixA(f ) and choose v ∈ T(x). Since f and T commute, f (v) ∈ T(f (x)) = T(x),
which implies that T(x) is invariant under f . Then the invariance of B under f shows that
the compact convex set T(x) ∩ B is invariant under f . Since f is continuous on B, by
the Schauder fixed point theorem f has a fixed point in T(x) ∩ B, implying that T(x) ∩
FixB(f ) �= ∅ for each x ∈ FixA(f ).

Now, define F : FixA(f ) → FixB(f ) by F(x) = T(x) ∩ FixB(f ) for each x ∈ FixA(f ). Then F
is an upper semicontinuous multivalued mapping with nonempty, compact, and convex
values. Note that PA : FixB(f ) → FixA(f ). To see this, let x ∈ FixB(f ) ⊆ B. Then there exists
y ∈ A such that ‖x – y‖ = dist(A, B). So, y = PA(x) and x = PB(y). For each δ > , we have
‖x – y‖ < δ + dist(A, B). Using the relative u-continuity for any f , dist(A, B) ≤ ‖f (x) – f (y)‖ <
ε +dist(A, B) for each ε > . Thus, ‖f (x)– f (y)‖ = dist(A, B). This implies that f (y) = PA(f (x))
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and f (x) = PB(f (y)). Since x ∈ FixB(f ) and y = PA(x), we have f (y) = f (PA(x)) = PA(f (x)) =
PA(x) and so PA(x) ∈ FixA(f ) ⊆ A. Note that PA ◦ F : FixA(f ) → FixA(f ). By Lemma .,
there exists a ∈ FixA(f ) ⊆ A such that a ∈ (PA ◦ F)(a), i.e., a = f (a) and a ∈ PA(F(a)). So,
there exists b ∈ F(a) = T(a) ∩ FixB(f ) ⊆ B such that a = PA(b) ⊆ FixA(f ). As a = PA(b),
‖a – b‖ = dist(b, A). Since b ∈ F(a) = T(a) ∩ FixB(f ) ⊆ B, then b ∈ T(a) and b ∈ B. Since
b ∈ B, there exists a′ ∈ A such that ‖a′ – b‖ = dist(A, B). Since a ∈ A and T(a) ⊆ B, we
have

dist(A, B) ≤ dist
(
a, T(a)

)

≤ ‖a – b‖
= dist(b, A)

≤ ∥∥b – a′∥∥

= dist(A, B).

Thus, dist(a, T(a)) = dist(A, B). �

Remark . The condition T(x)∩B �= ∅ for each x ∈ A is necessary in Theorem .. For
example, in the real space if A = [, ] × [–, ], B = [–, –

 ] × [–, ]. Define

f : A ∪ B → A ∪ B by f (x, y) =
(

x,
y + 



)

and

T : A → KC(B) by T(x, y) =
[

–,
–
x

]
× {y}.

Clearly, T is upper semicontinuous and f is affine and relatively u-continuous. Also,
f (A) ⊆ A and f (B) ⊆ B. There are fixed points of f , x = (, ) ∈ A, y = ( –

 , ) ∈ B such
that ‖x – y‖ = dist(A, B) = .. In addition, f and T commute. Suppose that there exists
a ∈ Fix(f ) ∩ A such that dist(a, T(a)) = .. Then a = (z, ), for some  ≤ z ≤ . So,

dist
(
a, T(a)

)
= dist

(
(z, ),

[
–,

–
z

]
× {}

)
=

∥∥∥∥(z, ) –
(

–
z , 

)∥∥∥∥ = ..

Consequently, z – .z +  = . So, z = . + .i, z =
. – .i, which are not real numbers, and z =
–., which does not belong to [, ]. Note that A = {}× [–, ], B = {–

 }×
[–, ]. For x = (, y) ∈ A, we have T(x) = T(, y) = {(–, y)}. So, T(x) ∩ B = {(–, y)} ∩
{( –

 , y) : – ≤ y ≤ } = ∅.

Corollary . Let A, B be nonempty, compact, and convex sets in a strictly convex Banach
space X. If T : A → KC(B) is an upper semicontinuous multivalued mapping and T(x) ∩
B �= ∅ for each x ∈ A, then there exists a ∈ A such that dist(a, T(a)) = dist(A, B).

Proof Taking f = I (the identity mapping on A ∪ B) in Theorem ., we obtain the desired
result. �
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Corollary . Let A be a nonempty, compact, and convex set in a strictly convex Banach
space. Suppose f : A → A is an affine continuous mapping. If T : A → KC(A) is an upper
semicontinuous multivalued mapping and f , T commute, then there exists a ∈ A such that
a ∈ Fix(f ) ∩ Fix(T).

Proof Since any continuous mapping on a compact set is relatively u-continuous on that
set, taking A = B in Theorem ., we see that there exists a ∈A such that f (a) = a and
dist(a, T(a)) = dist(A, A) = , i.e., a ∈ T(a). So, f (a) = a ∈ T(a). Therefore, a ∈ Fix(f ) ∩
Fix(T). �

Theorem . Let X be a strictly convex Banach space. Let A, B be nonempty, compact,
and convex subsets of X and let f , g : A ∪ B → A ∪ B be commuting, affine, and relatively
u-continuous mappings such that f (A) ⊆ A, f (B) ⊆ B and g(A) ⊆ A, g(B) ⊆ B. Then there
exist points x ∈ A and y ∈ B such that x = f (x) = g(x), y = f (y) = g(y) and ‖x –y‖ =
dist(A, B).

Proof For u ∈ A, there is a v ∈ B such that ‖u – v‖ = dist(A, B). Then by the relative
u-continuity of f , ‖f (u) – f (v)‖ = dist(A, B), implying that f (u) ∈ A. Therefore, the com-
pact convex set A is invariant under the continuous mapping f , and the Schauder fixed
point theorem implies the existence of a fixed point x = f (x) ∈ A. The set of fixed points
of f in A (denoted by FixA(f )) is closed and convex since f is continuous and affine. If
x ∈ FixA(f ), commutativity of f and g implies f (g(x)) = g(f (x)) = g(x). Therefore, FixA(f )
is invariant under g , and since g is continuous it has a fixed point in FixA(f ). Let x be a
common fixed point of f and g in A, that is, x = f (x) = g(x), and let y be the unique
closest point to x in B. Then by the relative u-continuity of f and g and the uniqueness of
the closest point projection onto B, y = f (y) = g(y) and ‖x – y‖ = dist(A, B). �

The previous theorem can be extended to an arbitrary family of commuting affine and
noncyclic mappings. The proof depends on the following common fixed point result for
commuting affine u-continuous mappings in strictly convex Banach spaces. The proof of
this result is adapted from Przebieracz ([], Theorem .) and is included for convenience
of the reader.

Lemma . (Markov-Kakutani theorem) Let X be a strictly convex Banach space. Let A,
B be nonempty, compact, and convex subsets of X and let F be a family of commuting affine
and relatively u-continuous mappings on A ∪ B such that f (A) ⊆ A and f (B) ⊆ B. Then
there is an x ∈ A such that f (x) = x for every f ∈ F. There is a y ∈ B such that f (y) = y

for every f ∈ F.

Proof Notice that the mappings in the family F are continuous on A ∪ B. Let Fix(f ) =
{x ∈ A ∪ B : f (x) = x}, FixA(f ) = Fix(f ) ∩ A, f ∈ F. As shown in the proof of Theorem .,
FixA(f ) �= ∅ and FixA(f ) is convex and compact. To prove that

⋂
f ∈F FixA(f ) �= ∅, consider

any finite collection from F, say f, . . . , fn. Assume that

C =
⋂

≤i≤n

FixA(fi) �= ∅.
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For each x ∈ C and k ∈ {, . . . , n}, fkfn+(x) = fn+fk(x) = fn+(x), which implies that fn+(x) ∈ C.
Therefore, the compact convex set C is invariant under fn+, implying that FixA(fn+) ∩ C �=
∅ since fn+ is continuous on A. Since every finite collection of the sets FixA(f ), f ∈ F, has
a nonempty intersection, we have

⋂
f ∈F FixA(f ) �= ∅. Similarly,

⋂
f ∈F FixB(f ) �= ∅. �

Theorem . Let X be a strictly convex Banach space. Let A, B be nonempty, compact, and
convex subsets of X and let F be a family of commuting affine and relatively u-continuous
mappings on A ∪ B such that f (A) ⊆ A and f (B) ⊆ B. Then there exist points x ∈ A and
y ∈ B such that x = f (x) and y = f (y), for all f ∈ F where ‖x – y‖ = dist(A, B).

Proof By Lemma . the mappings in the family F have a common fixed point x ∈ A, that
is, f (x) = x for f ∈ F. Let y ∈ B be the unique closest point to x in B. Then, for any f ∈ F,
‖f (x) – y‖ = dist(A, B), but by the relative u-continuity of f , ‖f (x) – f (y)‖ = dist(A, B).
By the uniqueness of the closest point, y = f (y) for f ∈ F. �

Theorem . Let A, B be nonempty, compact, and convex subsets of a strictly convex
Banach space X and let F be a family of commuting, affine and relatively u-continuous
mappings on A ∪ B with f (A) ⊆ A, f (B) ⊆ B for each f ∈ F. Let T : A → KC(B) be an upper
semicontinuous mapping such that T(x)∩B �= ∅ for each x ∈ A. If F and T commute, then
there exists a point a ∈ A such that f (a) = a for each f ∈ F and dist(a, T(a)) = dist(A, B).

Proof By Lemma .,
⋂

f ∈F FixA(f ) and
⋂

f ∈F FixB(f ) are nonempty.
As in the proof of Theorem ., T(x) is invariant under each f ∈ F, for x ∈ FixA(f ). Since

⋂
f ∈F FixA(f ) �= ∅, for x ∈ ⋂

f ∈F FixA(f ), T(x) is invariant under F. Also, B is invariant un-
der F. Therefore as in the proof of Theorem ., since T(x) ∩ B is a compact convex set,
T(x) ∩ (

⋂
f ∈F FixB(f )) �= ∅. By the proof of Theorem ., FixA(f ) and FixB(f ) are compact

and convex sets for f ∈ F. Therefore,
⋂

f ∈F FixA(f ) and
⋂

f ∈F FixB(f ) are compact and con-
vex.

Now define F :
⋂

f ∈F FixA(f ) → 
⋂

f ∈F FixB(f ) by F(x) = T(x) ∩ (
⋂

f ∈F FixB(f )) for each x ∈
⋂

f ∈F FixA(f ). Clearly, F is an upper semicontinuous multivalued mapping with compact
convex values. Now, PA :

⋂
f ∈F FixB(f ) → ⋂

f ∈F FixA(f ). To see this, let x ∈ ⋂
f ∈F FixB(f ).

Then x ∈ B and f (x) = x for each f ∈ F. So, there exists y ∈ A such that ‖x – y‖ = dist(A, B).
This implies x = PB(y) and y = PA(x). For each δ > , we have ‖x – y‖ < δ + dist(A, B). Us-
ing the relative u-continuity for any f ∈ F, dist(A, B) ≤ ‖f (x) – f (y)‖ < ε + dist(A, B) for
each ε > . Thus, ‖f (x) – f (y)‖ = dist(A, B). Therefore, f (y) = PA(f (x)) and f (x) = PB(f (y))
for each f ∈ F. Now, y = PA(x) �⇒ f (y) = f (PA(x)) �⇒ PA(x) = f (PA(x)) for each f ∈ F.
Hence, PA(x) ∈ ⋂

f ∈F FixA(f ) for each x ∈ ⋂
f ∈F FixB(f ). Note that PA ◦ F :

⋂
f ∈F FixA(f ) →


⋂

f ∈F FixA(f ). By Lemma ., PA ◦ F has a fixed point. So, there exists a ∈ ⋂
f ∈F FixA(f ) such

that a ∈ (PA ◦ F)(a). So, f (a) = a for each f ∈ F and a ∈ PA(F(a)), i.e., there exists b ∈ F(a)
such that a = PA(b). Since b ∈ F(a), b ∈ T(a) ∩ (

⋂
f ∈F FixB(f )). So, b ∈ T(a), b ∈ B, and

f (b) = b for each f ∈ F. a = PA(b) implies ‖a – b‖ = dist(b, A). Since b ∈ B, there exists
a′ ∈ A such that ‖a′ – b‖ = dist(A, B). Since a ∈ A and T(a) ⊆ B, we have

dist(A, B) ≤ dist
(
a, T(a)

)

≤ ‖a – b‖
= dist(b, A)
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≤ ∥∥b – a′∥∥

= dist(A, B).

Thus, dist(a, T(a)) = dist(A, B). �

Corollary . Let A be a nonempty, compact, and convex subset of a strictly convex Ba-
nach space X and let F be a family of commuting, affine and continuous self-mappings of A.
Let T : A → KC(A) be an upper semicontinuous mapping. If F and T commute, then there
exists a point a ∈ A such that a = f (a) ∈ T(a) for each f ∈ F.

4 Examples
Examples . to . are related to Theorem .. On other hand, the last two examples are
related to Theorem . (and Theorem .).

Example . Let X = R
 with the usual metric. The sets A = {(x, y) :  ≤ x ≤ ,  ≤ y ≤

}, B = {(x, ) :  ≤ x ≤ } are nonempty, compact, and convex with dist(A, B) = . Define
f : A ∪ B → A ∪ B by f (x, y) = ( x+

 , y) and T : A → KC(B) by T(x, y) = [x, ] × {}. Then
T is upper semicontinuous and f is relatively u-continuous and affine with f (A) ⊆ A and
f (B) ⊆ B. As Fix(f ) = {(, y) :  ≤ y ≤  or y = }, we get x = (, ) ∈ Fix(f ) ∩ A, y = (, ) ∈
Fix(f ) ∩ B with ‖x – y‖ = . In addition, f and T commute. Indeed, f (T(x, y)) = f ([x, ] ×
{}) = { z+

 : z ∈ [x, ]}×{} and T(f (x, y)) = T( x+
 , y) = [ x+

 , ]×{}. For z ∈ [x, ], z+
 ∈

[ x+
 , ] ⊆ [ x+

 , ]. Thus, f (T(x, y)) ⊆ T(f (x, y)) for each (x, y) ∈ A. Also, T(x) ∩ B �= ∅ for
each x ∈ A since A = {(x, ) :  ≤ x ≤ } and B = B. For (, ) ∈ A, we have f (a) = a and
dist(a, T(a)) = dist(A, B) = .

Example . Let X = R
 with the usual metric. The sets A = {(, a) :  ≤ a ≤ }, B = {(x, y) :

 ≤ x ≤ ,  ≤ y ≤ } are nonempty, compact, and convex with dist(A, B) = . Define f :
A ∪ B → A ∪ B by f (x, y) = (x, y+

 ) and T : A → KC(B) by T(, a) = [, a] × {}. Then T
is upper semicontinuous and f is relatively u-continuous and affine with f (A) ⊆ A and
f (B) ⊆ B. As Fix(f ) = {(x, ) : x =  or  ≤ x ≤ }, we get x = (, ) ∈ Fix(f ) ∩ A, y = (, ) ∈
Fix(f ) ∩ B with ‖x – y‖ = . In addition, f and T commute. Indeed, f (T(, a)) = f ([, a] ×
{}) = [, a] × {} and T(f (, a)) = T(, a+

 ) = [, a+
 ] × {}. For a ∈ [, ], a+

 ≥ a, i.e.,
[, a] ⊆ [, a+

 ]. Thus, f (T(, a)) ⊆ T(f (, a)) for each (, a) ∈ A. Also, T(x) ∩ B �= ∅ for
each x ∈ A since A = A and B = {(, y) :  ≤ y ≤ }. For a = (, ) ∈ A, we have f (a) = a
and dist(a, T(a)) = dist(A, B) = .

Example . Let X = R
 with the usual metric. The sets A = {(x, y) : – ≤ x ≤ –., – ≤

y ≤ }, B = {(x, y) :  ≤ x ≤ , – ≤ y ≤ } are nonempty, compact, and convex with
dist(A, B) = .. Define f : A ∪ B → A ∪ B by f (x, y) = (x, y+

 ) and T : A → KC(B) by
T(x, y) = [, x] × {y}. Then T is upper semicontinuous and f is relatively u-continuous
and affine with f (A) ⊆ A and f (B) ⊆ B. As Fix(f ) = {(x, ) : – ≤ x ≤ –. or  ≤ x ≤ },
we get x = (–., ) ∈ Fix(f )∩A, y = (, ) ∈ Fix(f )∩B with ‖x –y‖ = .. In addition,
f and T commute. Also, T(x) ∩ B �= ∅ for each x ∈ A since A = {(–., y) : – ≤ y ≤ }
and B = {(, y) : – ≤ y ≤ }. For a = (–., ) ∈ A, we have f (a) = a and dist(a, T(a)) =
dist(A, B) = ..
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Example . Let X = R
 with the usual metric. The sets A = {(x, y) : – ≤ x ≤ , – ≤

y ≤ –.}, B = {(x, y) : – ≤ x ≤ ,  ≤ y ≤ } are nonempty, compact, and convex with
dist(A, B) = .. Define f : A∪B → A∪B by f (x, y) = ( x

 , y) and T : A → KC(B) by T(x, y) =
{x} × [, y]. Then T is upper semicontinuous and f is relatively u-continuous and affine
with f (A) ⊆ A and f (B) ⊆ B. As Fix(f ) = {(, y) :  ≤ y ≤  or –  ≤ y ≤ –.}, we get
x = (, –.) ∈ Fix(f )∩A, y = (, ) ∈ Fix(f )∩B with ‖x – y‖ = .. In addition, f and
T commute. Also, T(x) ∩ B �= ∅ for each x ∈ A since A = {(x, –.) : – ≤ x ≤ } and
B = {(x, ) : – ≤ x ≤ }. For a = (, –.), we have f (a) = a and dist(a, T(a)) = dist(A, B) =
..

Example . Let X = R
 with the usual metric. The sets A = {(x, y) :  ≤ x ≤ , y = –},

B = {(x, y) : – ≤ x ≤ , y = } are nonempty, compact, and convex subsets of a strictly
convex Banach space with dist(A, B) = . Define f , g : A ∪ B → A ∪ B by f (x, y) = ( x

 , y)
and g(x, y) = ( x

 , y). Then f , g are relatively u-continuous and affine with f (A) ⊆ A, f (B) ⊆
B, g(A) ⊆ A, and g(B) ⊆ B. Also f , g commute. Now, define T : A → KC(B) by T(x, y) =
[–, –x] × {y}. Then T is upper semicontinuous with nonempty, compact, and convex
values. In addition, T commutes with f and g . Clearly, A = {(, –)}, B = {(, )}, and
(, ) ∈ T(, –) = [–, ] × {}. For a = (, –) ∈ A and b = (, ) ∈ B, we have f (a) = g(a) =
a, f (b) = g(b) = b, and ‖a – b‖ = dist(A, B) = . Moreover, dist(a, T(a)) = dist(A, B).

Example . Let X = R
 with the usual metric. The sets A = {(x, y) : – ≤ x ≤ –, – ≤

y ≤ }, B = {(x, y) :  ≤ x ≤ , – ≤ y ≤ } are nonempty, compact, and convex subsets of
a strictly convex Banach space with dist(A, B) = . Define f , g : A ∪ B → A ∪ B by f (x, y) =
(x, y

 ) and g(x, y) = (x, y
 ). Then f , g are relatively u-continuous and affine with f (A) ⊆ A,

f (B) ⊆ B, g(A) ⊆ A, and g(B) ⊆ B. Also f , g commute. Now, define T : A → KC(B) by
T(x, y) = [, –x] × {y}. Then T is upper semicontinuous with nonempty, compact, and
convex values. In addition, T commutes with f and g . Clearly, A = {(–, y) : – ≤ y ≤ },
B = {(, y) : – ≤ y ≤ }. So, (, y) ∈ T(–, y) ∩ B = ([, ] ×{y}) ∩ B for each (–, y) ∈ A.
For a = (–, ) ∈ A and b = (, ) ∈ B, we have f (a) = g(a) = a, f (b) = g(b) = b, and ‖a – b‖ =
dist(A, B) = . Moreover, dist(a, T(a)) = dist(A, B).
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