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Abstract
Let (X ,d) be a metric space. Suppose that the set X is equipped with two partial
orders �1 and �2. Let T ,A,B,C,D : X → X be given operators. We provide sufficient
conditions for the existence of a fixed point of T satisfying the two constraint
inequalities: Ax �1 Bx and Cx �2 Dx.
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1 Introduction and basic definitions
Recently there have been many developments concerning the existence of fixed points for
operators defined in a metric space equipped with a partial order. This trend was initiated
by Turinici []. Next, Ran and Reurings [] extended the Banach contraction principle to
continuous monotone operators defined in a partially ordered metric space. They also
presented some applications to the existence of positive solutions to certain classes of
nonlinear matrix equations. The result obtained in [] was extended and generalized by
many authors in different directions (see [–] and the references therein).

Let (X, d) be a metric space. Suppose that the set X is endowed with two partial orders
� and �. Let us consider five self-operators T , A, B, C, D : X → X. In this paper, we are
concerned with the following problem: Find x ∈ X such that

⎧
⎪⎨

⎪⎩

x = Tx,
Ax � Bx,
Cx � Dx.

(.)

We obtain sufficient conditions for the existence of at least one solution to (.).
The following definitions will be used throughout the paper.

Definition . Let X be a nonempty set. Let � be a binary relation on X. We say that �
is a partial order on X if the following conditions are satisfied:

(i) For every x ∈ X , we have x � x.
(ii) For every x, y, z ∈ X , we have

x � y, y � z �⇒ x � z.

(iii) For every x, y ∈ X , we have

x � y, y � x �⇒ x = y.
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Definition . Let (X, d) be a metric space and � be a partial order on X. We say that
the partial order � is d-regular if the following condition is satisfied: For every sequences
{an}, {bn} ⊂ X, we have

lim
n→∞ d(an, a) = lim

n→∞ d(bn, b) = , an � bn for all n �⇒ a � b,

where (a, b) ∈ X × X.

Example . Let (X,‖ · ‖) be a Banach space and P be a cone on X. Let us consider the
partial order on X defined by

(x, y) ∈ X × X, x �P y ⇐⇒ y – x ∈ P.

Consider the metric d on X defined by

d(x, y) = ‖x – y‖, (x, y) ∈ X × X.

Then �P is d-regular. In fact, suppose that {an} and {bn} are two sequences in X such that

an �P bn for all n

and

lim
n→∞ d(an, a) = lim

n→∞ d(bn, b) = 

for some (a, b) ∈ X × X. Since bn – an ∈ P for all n and the sequence {bn – an} converges
to b – a, the closure of the cone P yields b – a ∈ P, that is, a �P b.

Definition . Let X be a nonempty set endowed with two partial orders � and �. Let
T , A, B, C, D : X → X be given operators. We say that the operator T is (A, B, C, D,�,�)-
stable, if the following condition is satisfied:

x ∈ X, Ax � Bx �⇒ CTx � DTx.

Example . Let X = R and consider the standard order ≤ on X. Let A, B, C, D : X → X
be the operators defined by

Ax = x, Bx = x, Cx = exp(x),

Dx = exp
(
x – x + 

)
, Tx = x + , x ∈R.

Then the operator T is (A, B, C, D,≤,≤)-stable. In fact, let x ∈ X be such that

Ax = x ≤ Bx = x.

Then

x +  ≤ x + ,
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which yields

exp(x + ) ≤ exp
(
x + 

)
,

that is,

CTx ≤ DTx.

Example . Let X = R
. We consider the two partial orders � and � on X defined by

(a, b), (c, d) ∈ X, (a, b) � (c, d) ⇐⇒ a ≤ c, b ≤ d

and

(a, b), (c, d) ∈ X, (a, b) � (c, d) ⇐⇒ a ≤ c, b ≥ d.

Let us consider the operators T , A, B, C, D : X → X defined by

T(a, b) = (b, a + ),

A(a, b) = (a, b),

B(a, b) = (a, b),

C(a, b) =
(|a|, b

)
,

D(a, b) =
(

(a + )|a|
|a| + 

, b – 
)

for all (a, b) ∈ X. We claim that T is (A, B, C, D,�,�)-stable. In order to prove this claim,
we take x = (a, b) ∈ X such that

Ax � Bx,

which is equivalent (from the definition of �) to

b ≥ .

On the other hand, under the above inequality, we have

CTx = C(b, a + ) =
(|b|, a + 

)
= (b, a + )

and

DTx = D(b, a + ) =
(

(b + )|b|
|b| + 

, a
)

= (b, a – ).

Clearly (from the definition of �), we have

CTx � DTx.

Then our claim is proved.
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Now, we are ready to state and prove our main result.

2 Main result
Let us denote by � the set of functions ϕ : [,∞) → [,∞) satisfying the following condi-
tions:

(�) ϕ is a lower semi-continuous function.
(�) ϕ–({}) = {}.

Our main result in this paper is giving by the following theorem.

Theorem . Let (X, d) be a complete metric space endowed with two partial orders �

and �. Let T , A, B, C, D : X → X be given operators. Suppose that the following conditions
are satisfied:

(i) �i is d-regular, i = , .
(ii) A, B, C, and D are continuous.

(iii) There exists x ∈ X such that

Ax � Bx.

(iv) T is (A, B, C, D,�,�)-stable.
(v) T is (C, D, A, B,�,�)-stable.

(vi) There exists ϕ ∈ � such that

Ax � Bx, Cy � Dy �⇒ d(Tx, Ty) ≤ d(x, y) – ϕ
(
d(x, y)

)
.

Then:
(I) The sequence {Tnx} converges to some x∗ ∈ X satisfying

Ax∗ � Bx∗ and Cx∗ � Dx∗.

(II) The point x∗ ∈ X is a solution to (.).

Proof Let us prove (I). Let x ∈ X be such that

Ax � Bx.

Such a point exists from (iii). Let us consider the sequence {xn} ⊂ X defined by

xn = Tnx, n = , , , . . . .

Since T is (A, B, C, D,�,�)-stable (see (iv)), we have

Ax � Bx �⇒ CTx � DTx,

that is,

Cx � Dx.
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Then we have

Ax � Bx and Cx � Dx.

Since T is (C, D, A, B,�,�)-stable (see (v)),

Cx � Dx �⇒ ATx � BTx,

that is,

Ax � Bx.

Again, T is (A, B, C, D,�,�)-stable; this yields

Ax � Bx �⇒ CTx � DTx,

that is,

Cx � Dx.

Thus we have

Ax � Bx and Cx � Dx.

By induction, we get

Axn � Bxn and Cxn+ � Dxn+, n = , , , . . . . (.)

Using (.) and (vi), by symmetry, we have

d(xn+, xn) = d(Txn, Txn–) ≤ d(xn–, xn) – ϕ
(
d(xn–, xn)

)
, n = , , , . . . , (.)

which yields

d(xn+, xn) ≤ d(xn, xn–), n = , , , . . . .

Then {d(xn+, xn)} is a decreasing sequence of positive numbers. Therefore, there exists
some r ≥  such that

lim
n→∞ d(xn+, xn) = r. (.)

From (.), we have

d(xn+, xn) + ϕ
(
d(xn–, xn)

) ≤ d(xn–, xn), n = , , , . . . ,

which yields

lim inf
n→∞

(
d(xn+, xn) + ϕ

(
d(xn–, xn)

)) ≤ lim inf
n→∞ d(xn–, xn).



Jleli and Samet Fixed Point Theory and Applications  (2016) 2016:18 Page 6 of 14

Using (.) and the lower semi-continuity of ϕ, we obtain

r + ϕ(r) ≤ r,

which implies that

r ∈ ϕ–({}).

Since ϕ–({}) = {}, we get r = , i.e.,

lim
n→∞ d(xn+, xn) = . (.)

Now, we show that {xn} is a Cauchy sequence in (X, d). Suppose that {xn} is not a Cauchy
sequence. Then there exists some ε >  for which we find two sequences of positive inte-
gers {m(k)} and {n(k)} such that, for all positive integers k,

n(k) > m(k) > k, d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)–) < ε. (.)

From (.), we have

ε ≤ d(xm(k), xn(k))

≤ d(xm(k), xn(k)–) + d(xn(k)–, xn(k))

< ε + d(xn(k)–, xn(k)).

Then, for all k, we have

ε ≤ d(xm(k), xn(k)) < ε + d(xn(k)–, xn(k)).

Passing to the limit as k → ∞ and using (.), we get

lim
k→∞

d(xm(k), xn(k)) = ε. (.)

On the other hand, we have

∣
∣d(xn(k)+, xm(k)) – d(xm(k), xn(k))

∣
∣ ≤ d(xn(k)+, xn(k)) →  as k → ∞ (from (.)).

Then from (.), we have

lim
k→∞

d(xn(k)+, xm(k)) = ε. (.)

We have also

∣
∣d(xm(k), xn(k)) – d(xn(k), xm(k)–)

∣
∣ ≤ d(xm(k)–, xm(k)) →  as k → ∞ (from (.)).

Then from (.), we have

lim
k→∞

d(xn(k), xm(k)–) = ε. (.)
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Similarly,

∣
∣d(xn(k)+, xm(k)) – d(xn(k)+, xm(k)+)

∣
∣ ≤ d(xm(k), xm(k)+) →  as k → ∞ (from (.)).

Then from (.), we have

lim
k→∞

d(xn(k)+, xm(k)+) = ε. (.)

Observe that, for all k, there exists a positive integer  ≤ i(k) ≤  such that

n(k) – m(k) + i(k) ≡ ().

From (.), for all k > , we have

Axn(k) � Bxn(k) and Cxm(k)–i(k) � Dxm(k)–i(k)

or

Axm(k)–i(k) � Bxm(k)–i(k) and Cxn(k) � Dxn(k).

Then from (vi), by symmetry, we have

d(Txn(k), Txm(k)–i(k)) ≤ d(xn(k), xm(k)–i(k)) – ϕ
(
d(xn(k), xm(k)–i(k))

)
, k > ,

that is,

d(xn(k)+, xm(k)–i(k)+) ≤ d(xn(k), xm(k)–i(k)) – ϕ
(
d(xn(k), xm(k)–i(k))

)
, k > . (.)

Set

� =
{

k >  : i(k) = 
}

and � =
{

k >  : i(k) = 
}

.

We consider two cases.
• Case . |�| = ∞.
From (.), we get

d(xn(k)+, xm(k)+) + ϕ
(
d(xn(k), xm(k))

) ≤ d(xn(k), xm(k)), k ∈ �,

which gives us

lim inf
k→∞

(
d(xn(k)+, xm(k)+) + ϕ

(
d(xn(k), xm(k))

)) ≤ lim inf
k→∞

d(xn(k), xm(k)).

Using (.), (.), and the lower semi-continuity of ϕ, we obtain

ε + ϕ(ε) ≤ ε,
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which yields

ε ∈ ϕ–({}).

Since ϕ–({}) = {}, we get ε = , which is a contradiction with ε > .
• Case . |�| < ∞.
In this case, we have |�| = ∞. Moreover, from (.), we have

d(xn(k)+, xm(k)) + ϕ
(
d(xn(k), xm(k)–)

) ≤ d(xn(k), xm(k)–), k ∈ �,

which gives us

lim inf
k→∞

(
d(xn(k)+, xm(k)) + ϕ

(
d(xn(k), xm(k)–)

)) ≤ lim inf
k→∞

d(xn(k), xm(k)–).

Using (.), (.), and the lower semi-continuity of ϕ, we obtain

ε + ϕ(ε) ≤ ε,

which yields ε ∈ ϕ–({}) = {}, that is, a contradiction with ε > .
Therefore, we deduce that {xn} is a Cauchy sequence in (X, d). Since (X, d) is complete,

there exists some x∗ ∈ X such that

lim
n→∞ d

(
xn, x∗) = . (.)

On the other hand, from (.), we have

Axn � Bxn, n = , , , . . . .

Using the continuity of A and B, it follows from (.) that

lim
n→∞ d

(
Axn, Ax∗) = lim

n→∞ d
(
Bxn, Bx∗) = .

Since � is d-regular, we get

Ax∗ � Bx∗. (.)

Similarly, from (.), we have

Cxn+ � Dxn+, n = , , , . . . .

Using the continuity of C and D, it follows from (.) that

lim
n→∞ d

(
Cxn+, Cx∗) = lim

n→∞ d
(
Dxn+, Dx∗) = .

Since � is d-regular, we get

Cx∗ � Dx∗. (.)

Thus we proved (I).
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Now, let us prove (II). Using (.), (.), (.), and (vi), we have

d
(
Tx∗, x∗) ≤ d

(
Tx∗, Txn

)
+ d

(
xn+, x∗)

≤ d
(
x∗, xn

)
– ϕ

(
d
(
x∗, xn

))
+ d

(
xn+, x∗), n = , , , . . . ,

that is,

d
(
Tx∗, x∗) + ϕ

(
d
(
x∗, xn

)) ≤ d
(
x∗, xn

)
+ d

(
xn+, x∗), n = , , , . . . .

Then

lim inf
n→∞

(
d
(
Tx∗, x∗) + ϕ

(
d
(
x∗, xn

))) ≤ lim inf
n→∞

(
d
(
x∗, xn

)
+ d

(
xn+, x∗)).

Using the lower semi-continuity of ϕ, the fact that ϕ() = , and (.), we obtain

d
(
x∗, Tx∗) = ,

which yields

Tx∗ = x∗. (.)

Therefore, from (.), (.), and (.), we deduce that x∗ ∈ X is a solution to (.). This
ends the proof. �

In the next section, we present some consequences following from Theorem ..

3 Some consequences
3.1 A fixed point problem under one constraint equality
Here, we are concerned with the following problem: Find x ∈ X such that

{
x = Tx,
Ax = Bx,

(.)

where T , A, B : X → X are given operators and (X, d) is a metric space endowed with a
certain partial order �. Observe that (.) is equivalent to (.) with

� =� =�, C = B and D = A.

Then from Theorem ., we obtain the following result.

Corollary . Let (X, d) be a complete metric space endowed with a certain partial or-
der �. Let T , A, B : X → X be three given operators. Suppose that the following conditions
are satisfied:

(i) � is d-regular.
(ii) A and B are continuous.
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(iii) There exists x ∈ X such that

Ax � Bx.

(iv) For all x ∈ X , we have

Ax � Bx �⇒ BTx � ATx.

(v) For all x ∈ X , we have

Bx � Ax �⇒ ATx � BTx.

(vi) There exists ϕ ∈ � such that

Ax � Bx, By � Ay �⇒ d(Tx, Ty) ≤ d(x, y) – ϕ
(
d(x, y)

)
.

Then:
(I) The sequence {Tnx} converges to some x∗ ∈ X satisfying Ax∗ = Bx∗.

(II) The point x∗ ∈ X is a solution to (.).

3.2 A common fixed point problem
Let us consider the following problem: Find x ∈ X such that

{
x = Tx,
x = Bx,

(.)

where T , B : X → X are given operators and (X, d) is a metric space endowed with a certain
partial order �. Observe that (.) is equivalent to (.) with A = IX , the identity mapping
on X. So, take A = IX in Corollary ., We obtain the following result.

Corollary . Let (X, d) be a complete metric space endowed with a certain partial or-
der �. Let T , B : X → X be two given operators. Suppose that the following conditions are
satisfied:

(i) � is d-regular.
(ii) B is continuous.
(iii) There exists x ∈ X such that

x � Bx.

(iv) For all x ∈ X , we have

x � Bx �⇒ BTx � Tx.

(v) For all x ∈ X , we have

Bx � x �⇒ Tx � BTx.
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(vi) There exists ϕ ∈ � such that

x � Bx, By � y �⇒ d(Tx, Ty) ≤ d(x, y) – ϕ
(
d(x, y)

)
.

Then:
(I) The sequence {Tnx} converges to some x∗ ∈ X satisfying x∗ = Bx∗.

(II) The point x∗ ∈ X is a solution to (.).

Next, we present an example that illustrates the above result.

Example . Let X ⊂R
 be the set defined by

X =
{

(, ), (, ), (, ), (, ), (, )
}

.

Let � be the partial order on X defined by

(x, y), (z, w) ∈ X, (x, y) � (z, w) ⇐⇒ x ≤ z, y ≤ w.

We endow X with the metric d defined by

d
(
(x, y), (z, w)

)
=

√
(x – z) + (y – w), (x, y), (z, w) ∈ X.

Let T , B : X → X be the mappings defined by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T(, ) = (, ),
T(, ) = (, ),
T(, ) = (, ),
T(, ) = (, ),
T(, ) = (, )

and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

B(, ) = (, ),
B(, ) = (, ),
B(, ) = (, ),
B(, ) = (, ),
B(, ) = (, ).

Observe that

u ∈ X, u � Bu ⇐⇒ u ∈ {
(, ), (, ), (, )

}
.

However,

v ∈ X, Bv � v ⇐⇒ v ∈ {
(, ), (, )

}
.

Let u ∈ X be such that u � Bu.
For u = (, ), we have

BTu = B(, ) = (, ) = Tu.

For u = (, ), we have

BTu = B(, ) = (, ) � (, ) = Tu.
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For u = (, ), we have

BTu = B(, ) = (, ) = Tu.

Then we have

u ∈ X, u � Bu �⇒ BTu � Tu.

Let v ∈ X be such that Bv � v.
For v = (, ), we have

Tv = T(, ) = (, ) = BTv.

For v = (, ), we have

Tv = T(, ) = (, ) = (, ) = BTv.

Then we have

v ∈ X, Bv � v �⇒ Tv � BTv.

Now, let (u, v) ∈ X × X be such that

u � Bu and Bv � v.

We have

(u, v) ∈ {(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,

(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)}
.

For (u, v) = ((, ), (, )), we have

d(Tu, Tv) = d
(
(, ), (, )

)
= .

For (u, v) = ((, ), (, )), we have

d(Tu, Tv) = d
(
(, ), (, )

)
=  =

d(u, v)


.

For (u, v) = ((, ), (, )), we have

d(Tu, Tv) = d
(
(, ), (, )

)
=  =

d(u, v)


.

For (u, v) = ((, ), (, )), we have

d(Tu, Tv) = d
(
(, ), (, )

)
=  =

d(u, v)


.
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For (u, v) = ((, ), (, )), we have

d(Tu, Tv) = d
(
(, ), (, )

)
= .

For (u, v) = ((, ), (, )), we have

d(Tu, Tv) = d
(
(, ), (, )

)
=  <




=
d(u, v)


.

Then we have

u � Bu, Bv � v �⇒ d(Tu, Tv) ≤ d(u, v) – ϕ
(
d(u, v)

)
,

where ϕ(t) = t
 , t ≥ . So, all the required conditions of Corollary . are satisfied. Observe

that x∗ = (, ) is a common fixed point of T and B. Observe also that

d
(
T(, ), T(, )

)
= d

(
(, ), (, )

)
=  >

√
 = d

(
(, ), (, )

)
,

which shows that T is not a contraction on X.

Taking B = T in Corollary ., we obtain the following fixed point result.

Corollary . Let (X, d) be a complete metric space endowed with a certain partial or-
der �. Let T : X → X be a given operator. Suppose that the following conditions are satis-
fied:

(i) � is d-regular.
(ii) T is continuous.

(iii) There exists x ∈ X such that

x � Tx.

(iv) For all x ∈ X , we have

x � Tx �⇒ Tx � Tx.

(v) For all x ∈ X , we have

Tx � x �⇒ Tx � Tx.

(vi) There exists ϕ ∈ � such that

x � Tx, Ty � y �⇒ d(Tx, Ty) ≤ d(x, y) – ϕ
(
d(x, y)

)
.

Then the sequence {Tnx} converges to a fixed point of T .

4 Conclusion
In this paper, we obtained sufficient conditions for the existence of a fixed point of a certain
operator under two constraint inequalities with respect to two partial orders. The used
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technique can also be adapted for any finite number of constraint inequalities and other
contractive conditions. An interesting question is the existence of a best proximity point
of a certain operator under constraint inequalities. Such a question will be studied in a
future work.
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