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Abstract
In this paper, we introduce first the concept of a Pompeiu-Hausdorff b-metric-like
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partial b-metric spaces. Moreover, we provide some examples and many nice
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1 Introduction and preliminaries
Markins [] and Nadler [] initiated the study of fixed point theorems for set valued opera-
tors. Since then, several other papers have been concerned with the study of multi-valued
operators in variant (generalized) metric space. We cite for example, Ali et al. [, ], Aydi
et al. [, ], Berinde and Berinde [], Berinde and Pãcurar [], Boriceanu et al. [], Bota
[], Ćirić [], Ćirić and Ume [, ], Czerwik [], Daffer and Kaneko [], Jleli et al.
[], Mizoguchi and Takahashi [], etc. In this paper, we are interested first to initiate the
concept of a Pompeiu-Hausdorff b-metric-like and to prove some best proximity points
and stability results.

On the other hand, metric-like spaces were considered by Hitzler and Seda [] under
the name of dislocated metric spaces. In , Alghamdi et al. [] generalized the notion
of a b-metric [] by introducing the concept of a b-metric-like and proved some related
fixed point results. After that, Hussain et al. [] established some fixed point theorems
in the setting of b-metric-like spaces.

Definition . Let X be a nonempty set and s ≥  be a given real. A function σ : X × X →
R

+ is said to be a b-metric-like (or a dislocated b-metric) on X if for any x, y, z ∈ X, the
following conditions hold:

(bm) σ (x, y) =  ⇒ x = y;
(bm) σ (x, y) = σ (y, x);
(bm) σ (x, z) ≤ s(σ (x, y) + σ (y, z)).

The pair (X,σ ) is then called a b-metric-like space.
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Let (X,σ ) be a b-metric-like space. An open σ -ball {Bσ (x, ε) : x ∈ X, ε > } is defined as
Bσ (x, ε) = {y ∈ X : |σ (x, y) – σ (x, x)| < ε}, for all x ∈ X and ε > .

A sequence {xn} in X converges to x ∈ X if and only if

lim
n→∞σ (xn, x) = σ (x, x). (.)

Mention that the limit for a convergent sequence is not unique in general. {xn} is Cauchy
if and only if limn,m→∞ σ (xn, xm) exists and is finite. We say that (X,σ ) is complete if and
only if each Cauchy sequence in X is convergent.

Lemma . Let (X,σ ) be a b-metric-like space and {xn} be a sequence that converges to u
with σ (u, u) = . Then, for each y, z ∈ X, one has


s
σ (u, z) ≤ lim inf

n→∞ σ (xn, z) ≤ lim sup
n→∞

σ (xn, z) ≤ sσ (u, z) and σ (z, z) ≤ sσ (z, y).

In , Aydi et al. [] introduced the following concept.

Definition . Let (X, d) be a rectangular b-metric space. We say that (X, d) satisfies the
property (SC) if for every sequence {xn} in X and all x, y ∈ X, we have

lim
n→∞ d(xn, x) =  ⇒ lim

n→∞ d(xn, y) = d(x, y).

We extend Definition . to the class of b-metric-like spaces.

Definition . Let (X,σ ) be a b-metric-like space. We say that (X,σ ) satisfies the property
(GC) if for all sequences {xn}, {yn} in X and all x, y ∈ X, we have

lim
n→∞σ (xn, x) = lim

n→∞σ (yn, y) =  ⇒ lim
n→∞σ (xn, yn) = σ (x, y).

Remark .
. If (X, d) is a rectangular b-metric space satisfying the property (GC), then it also

satisfies the property (SC). Indeed, let {xn} be a sequence in X and x, y ∈ X such that
limn→∞ d(xn, x) = . Take {yn} in X such that yn = y for all n ≥ . Then
d(yn, y) = d(y, y) = , and so limn→∞ d(yn, y) = . Since (X, d) satisfies the property
(GC), it follows that limn→∞ d(xn, yn) = d(x, y), that is, limn→∞ d(xn, y) = d(x, y), and
so (X, d) satisfies the property (SC).

. Let (X,σ ) be a b-metric-like space satisfying the property (GC). Take {xn} a sequence
in X and x, y ∈ X such that σ (y, y) =  and limn→∞ σ (xn, x) = . Then
limn→∞ σ (xn, y) = σ (x, y).

The following examples make effective use of the property (GC).

Example . Let X = [, ]. Consider the mapping σ : X ×X → [,∞) defined by σ (x, y) =
(x + y – xy) for all x, y ∈ X. Then (X,σ ) is a b-metric-like space with s = . Let {xn} and {yn}
in X such that

lim
n→∞σ (xn, x) = lim

n→∞σ (yn, y) = .
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It follows that σ (x, x) = σ (y, y) = , and so x = y = . Then we get

lim
n→∞ x

n = lim
n→∞ y

n = .

This leads to

lim
n→∞ xn = lim

n→∞ yn = .

Hence,

lim
n→∞σ (xn, yn) = lim

n→∞ (xn + yn – xnyn) =  = σ (, ).

Consequently, (X,σ ) satisfies the property (GC).

Example . Let X = {, , }. Consider the mapping σ : X × X → [,∞) defined by

σ (, ) = , σ (, ) = σ (, ) = , σ (, ) = σ (, ) = ,

σ (, ) = σ (, ) = , σ (, ) = σ (, ) = .

Then (X,σ ) is a b-metric-like space with s = . Let {xn} and {yn} in X such that

lim
n→∞σ (xn, x) = lim

n→∞σ (yn, y) = .

It follows that σ (x, x) = σ (y, y) = , and so x = y = . Moreover, there exists N ∈ N, such
that, for all n ≥ N ,

σ (xn, ) ≤ 


and σ (yn, ) ≤ 


.

Therefore

σ (xn, ) =  and σ (yn, ) = , ∀n ≥ N .

Thus, for all n ≥ N , we have xn = yn = . This yields σ (xn, yn) = σ (, ) for all n ≥ N , and
so limn→∞ σ (xn, yn) = σ (x, y). Hence, (X,σ ) satisfies the property (GC).

Lemma . Let (X,σ ) be a b-metric-like space. Let {xn} and {yn} be two sequences in X
and x, y ∈ X such that limn→∞ σ (xn, x) = limn→∞ σ (yn, y) = . Then one has

s–σ (x, y) ≤ lim inf
n→∞ σ (xn, yn) ≤ lim sup

n→∞
σ (xn, yn) ≤ sσ (x, y).

We also have the following useful lemma.

Lemma . Any metric-like space satisfies the property (GC).

Proof It suffices to take s =  in Lemma .. �
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Recently, Aydi et al. [, ] introduced the concept of a Pompeiu-Hausdorff metric-
like. The aim of the first part of paper is to extend this concept to the class of b-metric-like
spaces and then to prove some results on best proximity points and stability for controlled
proximal contractions, so generalizing the very recent paper of Kiran et al. []. In the
second part of paper, the analogous of above results in the class of partial b-metric spaces
is studied.

From now on, let (X,σ ) be a b-metric-like space. As in [, , ], let Cb(X) be the family
of all nonempty, closed and bounded subsets of the b-metric-like space (X,σ ), induced by
the b-metric-like σ . For A, B ∈ Cb(X) and x ∈ X, define

σ (x, A) = inf
{
σ (x, a) : a ∈ A

}
,

δσ (A, B) = sup
{
σ (a, B) : a ∈ A

}
,

δσ (B, A) = sup
{
σ (b, A) : b ∈ B

}
.

Also

Hb
σ (A, B) = max

{
δσ (A, B), δσ (B, A)

}
. (.)

The above Hb
σ is called a Pompeiu-Hausdorff b-metric-like. For A and B two nonempty

subsets of a b-metric-like space (X,σ ), define

σ (A, B) = inf
{
σ (a, b) : a ∈ A, b ∈ B

}
,

A =
{

a ∈ A : σ (a, b) = σ (A, B), for some b ∈ B
}

,

B =
{

b ∈ B : σ (a, b) = σ (A, B), for some a ∈ A
}

.

As in [], the concept of a weak P-property is stated as follows.

Definition . Let A and B be nonempty subsets of a b-metric-like space (X,σ ) with
A 	= ∅. The pair (A, B) is said to have the weak P-property if and only if

{
σ (x, y) = σ (A, B),
σ (x, y) = σ (A, B)

⇒ σ (x, x) ≤ σ (y, y),

where x, x ∈ A and y, y ∈ B.

Example . Let X = {(, ), (, ), (, ), (, )} be endowed with the b-metric-like σ ((x,
x), (y, y)) = (x + x + y + y) for all (x, x), (y, y) ∈ X. Let A = {(, ), (, )} and B =
{(, ), (, )}. Clearly,

σ
(
(, ), (, )

)
=  = σ (A, B) and σ

(
(, ), (, )

)
= σ (A, B).

Also

σ
(
(, ), (, )

)
=  <  = σ

(
(, ), (, )

)
.

Moreover, A 	= ∅. Hence, the pair (A, B) satisfies the weak P-property.
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Example . Let A and B be nonempty subsets of a b-metric-like space (X,σ ) with A 	= ∅
and σ (A, B) = . Then the pair (A, B) satisfies the weak P-property.

On the other hand, the definition of a best proximity point is as follows.

Definition . Let (X,σ ) be a b-metric-like space. Consider A and B two nonempty sub-
sets of X. An element a ∈ X is said to be a best proximity point of T : A → B if

σ (a, Ta) = σ (A, B).

It is clear that a fixed point coincides with a best proximity point if σ (A, B) = . For more
results on best proximity points, see for example [–].

In this paper, we give first some properties of Hb
σ . Second, we establish some existence

results on best proximity points and some stability results for controlled proximal set val-
ued contractive mappings in the setting of two (generalized) metric spaces. We will sup-
port the obtained theorems by some concrete examples. We also provide many interesting
consequences and corollaries.

2 Properties and preliminaries
First, we present some useful properties of the Pompeiu-Hausdorff b-metric-like Hb

σ .

Lemma . [, ] Let (X,σ ) be a b-metric-like space and A any nonempty set in (X,σ ),
then

if σ (a, A) = , then a ∈ Ā. (.)

Lemma . Let (X,σ ) be a b-metric-like space. For x ∈ X and A, B, C ∈ Cb(X), we have
(i) Hb

σ (A, A) = δσ (A, A) = sup{σ (a, A) : a ∈ A};
(ii) Hb

σ (A, B) = Hb
σ (B, A);

(iii) Hb
σ (A, B) =  implies that A = B;

(iv) Hb
σ (A, B) ≤ s(Hb

σ (A, C) + Hb
σ (C, B));

(v) σ (x, A) ≤ s(σ (x, y) + σ (y, A)).

Proof (i)-(iii) are clear.
(iv) Let a ∈ A, b ∈ B, and c ∈ C. By a triangular inequality

σ (a, b) ≤ s
(
σ (a, c) + σ (c, b)

)
.

The points b and c are arbitrary, so

σ (a, B) ≤ s
(
σ (a, c) + σ (c, B)

) ≤ s
(
σ (a, c) + δσ (C, B)

) ≤ s
(
σ (a, C) + δσ (C, B)

)
.

Again, a is arbitrary, so

δσ (A, B) ≤ s
(
δσ (A, C) + δσ (C, B)

) ≤ sHb
σ (A, C) + sHb

σ (C, B).
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Similarly, by symmetry of Hb
σ , we have

δσ (B, A) ≤ s
(
Hb

σ (A, C) + Hb
σ (C, B)

)
.

Combining the two above inequalities, we get (iv).
(v) For a ∈ A and x, y ∈ X, we have σ (x, A) ≤ σ (x, a) ≤ s(σ (x, y) + σ (y, a)). Again, a is

arbitrary, then

σ (x, A) ≤ s
(
σ (x, y) + σ (y, A)

)
. �

The following two lemmas are very essential for best proximity points and stability re-
sults stated in the next section. The proofs are very classical.

Lemma . Let (X,σ ) be a b-metric-like space. Let A, B ∈ Cb(X) and h > . For any x ∈ A,
there exists y = y(a) ∈ B such that

σ (x, y) ≤ hHb
σ (A, B). (.)

Lemma . Let (X,σ ) be a b-metric-like space. Let A, B ∈ Cb(X) and a ∈ A. Then, for all
ε > , there exists a point y ∈ B such that σ (a, y) ≤ Hb

σ (A, B) + ε.

3 Best proximity points and stability results on the class of b-metric-like spaces
3.1 Best proximity points
First, we need the following definition.

Definition . Let A and B be nonempty subsets of a b-metric-like space (X,σ ) such that
A 	= ∅. Let x ∈ A and r > . A mapping T : A → Cb(B) is called a proximal contraction
on Bσ (x, r), if there exists α ∈ (, 

s ) such that

Hb
σ (Tx, Ty) ≤ ασ (x, y), (.)

for all x, y ∈ Bσ (x, r) ∩ A.

Our first main result is the following theorem.

Theorem . Let A and B be nonempty closed subsets of a complete b-metric-like space
(X,σ ) and r > . Let T : A → Cb(B) be a multi-valued mapping. Suppose that

(i) A 	= ∅;
(ii) for each x ∈ A, we have Tx ⊆ B;

(iii) the pair (A, B) satisfies the weak P-property;
(iv) there exists x ∈ A such that T is a proximal contraction on Bσ (x, r) and

δσ (Tx, {x}) + σ (A, B) ≤ 
s–s ( –

√
αs)r;

(v) (X,σ ) satisfies the property (GC).
Then T has a best proximity point in Bσ (x, r) ∩ A. We also have σ (x�, x�) = .

Proof By assumption (iv), there exists x ∈ A such that T is a proximal contraction on
Bσ (x, r) and

δσ

(
Tx, {x}

)
+ σ (A, B) ≤ 

s – s ( –
√

αs)r.
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Let y ∈ Tx. By condition (ii), we have Tx ⊆ B. Then there exists x ∈ A such that

σ (x, y) = σ (A, B). (.)

We have

σ (x, x) ≤ s
[
σ (x, y) + σ (y, x)

]

≤ s
[
δσ

(
Tx, {x}

)
+ σ (A, B)

]

≤ 
s – s

( –
√

αs)r. (.)

On the other hand, we have

σ (x, x) – σ (x, x) ≤ (s – )σ (x, x).

Also

σ (x, x) – σ (x, x) ≤ σ (x, x) ≤ (s – )σ (x, x).

Then

∣∣σ (x, x) – σ (x, x)
∣∣ ≤ (s – )σ (x, x)

≤ (s – )
s – s

( –
√

αs)r

= s–( –
√

αs)r < r.

Thus, x ∈ Bσ (x, r) ∩ A. By Lemma ., there exists y ∈ Tx such that

σ (y, y) ≤ √
αs

Hb
σ (Tx, Tx). (.)

So, by (.), we get

σ (y, y) ≤
√

α

s
σ (x, x). (.)

Since y ∈ Tx ⊆ B, there exists x ∈ A such that

σ (x, y) = σ (A, B). (.)

From condition (iii), (.), and (.)

σ (x, x) ≤ σ (y, y). (.)

Therefore,

σ (x, x) ≤
√

α

s
σ (x, x). (.)
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We have

∣∣σ (x, x) – σ (x, x)
∣∣ ≤ (s – )σ (x, x)

≤ s(s – )
[
σ (x, x) + σ (x, x)

]

≤ s(s – )
[
σ (x, x) + sσ (x, x)

]

≤ s(s – )
[

 + s
√

α

s

]
σ (x, x)

≤ s(s – )[ +
√

αs]


s – s
( –

√
αs)r

= ( – αs)r < r.

Then x ∈ Bσ (x, r) ∩ A. Again, by Lemma ., there exists y ∈ Tx such that

σ (y, y) ≤ √
αs

Hb
σ (Tx, Tx). (.)

So, by (.), we get

σ (y, y) ≤
√

α

s
σ (x, x). (.)

Since y ∈ Tx ⊆ B, then there exists x ∈ A such that

σ (x, y) = σ (A, B). (.)

By condition (iii), (.), and (.)

σ (x, x) ≤ σ (y, y) ≤
√

α

s
σ (x, x) ≤

(√
α

s

)

σ (x, x). (.)

We have

∣∣σ (x, x) – σ (x, x)
∣∣ ≤ (s – )σ (x, x)

≤ (s – )
[
sσ (x, x) + sσ (x, x) + sσ (x, x)

]

≤ (s – )
[
sσ (x, x) + sσ (x, x) + sσ (x, x)

]

≤ s(s – )
[

 + s
√

α

s
+ s

(√
α

s

)]
σ (x, x)

≤ s(s – )
[
 +

√
αs + (

√
αs)] 

s – s
( –

√
αs)r

=
(
 – (

√
αs))r < r.

Then x ∈ Bσ (x, r) ∩ A.
Continuing this process, we complete two sequences {xn} ⊆ Bσ (x, r)∩A and {yn} ⊆ B

such that
⎧
⎪⎨

⎪⎩

σ (xn, yn–) = σ (A, B),
σ (xn, xn+) ≤ σ (yn–, yn) ≤ (

√
α
s )nσ (x, x),

yn ∈ Txn, for all n = , , . . . .
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For m > n, we have

σ (xn, xm) ≤
m–∑

k=n

skσ (xk , xk+) ≤
m–∑

k=n

(
√

sα)kσ (x, x)

≤
∞∑

k=n

(
√

sα)kσ (x, x) →  as n → ∞.

We supposed that  < αs < , so limn,m→∞ σ (xn, xm) = . Hence, {xn} is a Cauchy sequence
in Bσ (x, r) ∩ A. A similar reasoning shows that limn,m→∞ σ (yn, ym) =  and so {yn} is
a Cauchy sequence in B. Since Bσ (x, r) ∩ A and B are closed subsets of the complete
b-metric-like space (X,σ ), there exist x� ∈ Bσ (x, r) ∩ A and y� ∈ B such that

lim
n→∞σ

(
xn, x�

)
= σ

(
x�, x�

)
= lim

n,m→∞σ (xn, xm) =  and

lim
n→∞σ

(
yn, y�

)
= σ

(
y�, y�

)
= lim

n,m→∞σ (yn, ym) = .

Since, for all n ≥ , we have σ (xn, yn–) = σ (A, B) and by condition (v), (X,σ ) satisfies the
property (GC), by letting n → ∞, we conclude that

σ
(
x�, y�

)
= σ (A, B).

On the other hand, since yn ∈ Txn, we have, for all n ≥ ,

σ
(
y�, Tx�

) ≤ sσ
(
y�, yn

)
+ sσ

(
yn, Tx�

) ≤ sσ
(
y�, yn

)
+ sHb

σ

(
Txn, Tx�

)

≤ sσ
(
y�, yn

)
+ sασ

(
xn, x�

)
.

Letting n → ∞, we obtain

σ
(
y�, Tx�

) ≤ ,

and so σ (y�, Tx�) = . By Lemma ., we have y� ∈ Tx� = Tx�. Also, we have

σ (A, B) ≤ σ
(
x�, Tx�

) ≤ σ
(
x�, y�

)
= σ (A, B).

Thus, x� is a best proximity point of T . Moreover, we have σ (x�, x�) = . �

The following example illustrates Theorem ..

Example . Let X = [,∞) × [,∞). Consider the mapping σ : X × X → [,∞) as fol-
lows:

σ
(
(x, x), (y, y)

)
=

{
(|x – y| + |x – y|) if (x, x), (y, y) ∈ [, ],
(x + x + y + y) if not.

It is easy to see that (X,σ ) a complete b-metric-like space with s = .
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Take A = {} × [, ] and B = {} × [, ]. Define the mapping T : A → Cb(B) by

T(, x) =

{
{(, ), (, x

 )} if  ≤ x ≤ ,
{} × [, ] if  < x ≤ .

Note that for all (, x) ∈ A, we have T(, x) is closed and is bounded in (X,σ ). Remark that
σ (A, B) = , A = A and B = B. So, for each (, x) ∈ A, we have T(, x) ⊆ B. Moreover, A
and B are closed subsets of X. Consider the ball Bσ (x, r) with x = (, ) and r = . Now,
let (, x), (, x) ∈ A and (, y), (, y) ∈ B such that

{
σ ((, x), (, y)) = σ (A, B) = ,
σ ((, x), (, y)) = σ (A, B) = .

Necessarily, (x = y ∈ [, ]) and (x = y ∈ [, ]). In this case,

σ
(
(, x), (, x)

)
= σ

(
(, y), (, y)

)
,

that is, the pair (A, B) has the weak P-property.
Now, we shall show that T is a proximal contraction on Bσ (x, r) with α = 

 .
It is easy to see that Bσ (x, r) ∩ A = {} × [,

√
 – ].

Let (, x) and (, y) ∈ Bσ (x, r) ∩ A. Then x, y ∈ [,
√

 – ] ⊆ [, ]. In this case, we have

T(, x) =
{

(, ),
(

,
x


)}
, T(, y) =

{
(, ),

(
,

y


)}
.

Then

δσ

(
T(, x), T(, y)

)

= max

{
σ

(
(, ),

{
(, ),

(
,

y


)})
,σ

((
,

x


)
,
{

(, ),
(

,
y


)})}

= min

{
x


,

(x – y)



}
≤ (x – y)


.

Similarly, we have

δσ

(
T(, y), T(, x)

) ≤ (x – y)


.

This yields

Hb
σ

(
T(, x), T(, y)

)
= max

{
δσ

(
T(, x), T(, y)

)
, δσ

(
T(, y), T(, x)

)}

≤ (x – y)


= ασ

(
(, x), (, y)

)
.

We also have δσ (Tx, {x}) + σ (A, B) =  ≤ 
s–s ( –

√
αs)r. Furthermore, (X,σ ) satisfies

the (GC) property. In fact, let {(xn, yn)}, {(zn, tn)} in X and (x, y), (z, t) ∈ X such that

lim
n→∞σ

(
(xn, yn), (x, y)

)
= lim

n→∞σ
(
(zn, tn), (z, t)

)
= .
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Then σ ((x, y), (x, y)) = σ ((z, t), (z, t)) = . It follows that (x, y), (z, t) ∈ [, ]. There also ex-
ists N ∈N such that (xn, yn), (zn, tn) ⊂ [, ] for all n ≥ N . This yields, for all n ≥ N ,

σ
(
(xn, yn), (x, y)

)
=

(|xn – x| + |yn – y|) and

σ
(
(zn, tn), (z, t)

)
=

(|zn – z| + |tn – t|).

So

lim
n→∞|xn – x| = lim

n→∞|yn – y| = lim
n→∞|zn – z| = lim

n→∞|tn – t| = .

Thus

lim
n→∞σ

(
(xn, yn), (zn, tn)

)
= lim

n→∞
(|xn – zn| + |yn – tn|

)

=
(|x – z| + |y – t|) = σ

(
(x, y), (z, t)

)
.

Therefore, all conditions of Theorem . are verified. So, T has a best proximity point,
which is x∗ = (, ). It also verifies σ (x∗, x∗) = .

As consequences of our first result, we give the following immediate corollaries.

Corollary . Let A and B be nonempty closed subsets of a complete metric-like space
(X,σ ) and r > . Let T : A → Cb(B) be a multi-valued mapping. Suppose that

(i) A 	= ∅;
(ii) for each x ∈ A, we have Tx ⊆ B;

(iii) the pair (A, B) satisfies the weak P-property;
(iv) there exists x ∈ A such that T is a proximal contraction on Bσ (x, r) and

δσ (Tx, {x}) + σ (A, B) ≤ ( –
√

α)r.
Then T has a best proximity point in Bσ (x, r) ∩ A. We also have σ (x�, x�) = .

Proof It suffices to take s =  in Theorem .. By Lemma ., (X,σ ) satisfies the property
(GC). �

Corollary . Let A and B be nonempty closed subsets of a complete metric-like space
(X,σ ) and r > . Let T : A → B be a given mapping. Suppose that

(i) A 	= ∅;
(ii) for each x ∈ A, we have Tx ∈ B;

(iii) the pair (A, B) satisfies the weak P-property;
(iv) there exists x ∈ A such that T is a proximal contraction on Bσ (x, r) and

σ (x, Tx) + σ (A, B) ≤ 
s–s ( –

√
αs)r;

(v) (X,σ ) satisfies the property (GC).
Then T has a best proximity point in Bσ (x, r) ∩ A. We also have σ (x�, x�) = .

Proof It suffices to take s =  and T as a single-valued mapping in Theorem .. �

Corollary . Let A and B be nonempty closed subsets of a complete metric space (X, d)
and r > . Let T : A → Cb(B) be a multi-valued mapping. Suppose that
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(i) A 	= ∅;
(ii) for each x ∈ A, we have Tx ⊆ B;

(iii) the pair (A, B) satisfies the weak P-property;
(iv) there exists x ∈ A such that T is a proximal contraction on Bd(x, r) and

δd(Tx, {x}) + d(A, B) ≤ ( –
√

α)r.
Then T has a best proximity point in Bd(x, r) ∩ A.

If we choose A = B = X, then we have the following fixed point theorem.

Corollary . Let (X,σ ) be a complete b-metric-like space, r > , and T : X → Cb(X) be a
multi-valued mapping. Suppose there exist x ∈ X and α ∈ (, 

s ) such that

Hb
σ (Tx, Ty) ≤ ασ (x, y),

for all x, y ∈ Bσ (x, r) and δσ (Tx, {x}) ≤ 
s–s ( –

√
αs)r. Then T has a fixed point.

Proof Following the proof of Theorem ., we construct two sequences {xn} ⊆ Bσ (x, r)
and {yn} ⊆ X such that

⎧
⎪⎨

⎪⎩

σ (xn, yn–) = σ (X, X),
σ (xn, xn+) ≤ σ (yn–, yn) ≤ (

√
α
s )nσ (x, x),

yn ∈ Txn, for all n = , , . . . .

Moreover, there exist x� ∈ Bσ (x, r) and y� ∈ X such that

lim
n→∞σ

(
xn, x�

)
= σ

(
x�, x�

)
= lim

n,m→∞σ (xn, xm) =  and

lim
n→∞σ

(
yn, y�

)
= σ

(
y�, y�

)
= lim

n,m→∞σ (yn, ym) = .

We have, for all n ≥ ,

σ
(
x�, y�

) ≤ sσ
(
x�, xn

)
+ sσ

(
xn, y�

) ≤ sσ
(
x�, xn

)
+ sσ (xn, yn–) + sσ

(
yn–, y�

)

= sσ
(
x�, xn

)
+ sσ (A, B) + sσ

(
yn–, y�

)
.

Letting n → ∞, we obtain

σ
(
x�, y�

) ≤ sσ
(
x�, x�

)
+ sσ (X, X) + sσ

(
y�, y�

)
= sσ (X, X). (.)

Also, for all n ≥ ,

σ (X, X) = σ (xn, yn–) ≤ sσ
(
xn, x�

)
+ sσ

(
x�, y�

)
+ sσ

(
y�, yn–

)
.

We pass to the limit n → ∞,

σ (X, X) ≤ sσ
(
x�, y�

)
. (.)
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Combining (.) and (.), we get

s–σ (X, X) ≤ σ
(
x�, y�

) ≤ sσ (X, X). (.)

On the other hand, since yn ∈ Txn, we have, for all n ≥ ,

σ
(
y�, Tx�

) ≤ sσ
(
y�, yn

)
+ sσ

(
yn, Tx�

) ≤ sσ
(
y�, yn

)
+ sHb

σ

(
Txn, Tx�

)

≤ sσ
(
y�, yn

)
+ sασ

(
xn, x�

)
.

Letting n → ∞, we obtain

σ
(
y�, Tx�

) ≤ ,

and so σ (y�, Tx�) = . By Lemma ., we have y� ∈ Tx� = Tx�. Again

σ (X, X) ≤ σ
(
x�, Tx�

) ≤ σ
(
x�, y�

) ≤ sσ (X, X).

We also have σ (x�, x�) = . Thus, σ (X, X) ≤ σ (x�, x�) = , and so σ (X, X) = . It follows that
σ (x�, Tx�) = . By Lemma ., we get x� ∈ Tx� = Tx�. Here, we do not need the conditions
(i), (ii), (iii) and (v) of Theorem .. �

3.2 Stability results
In this paragraph, we extend and generalize the stability results due to Kiran et al. [] to
b-metric-like spaces.

Let A and B be nonempty subsets of a b-metric-like space (X,σ ) and T : A → Cb(B) be a
multi-valued mapping. Take the set B(T) = {a ∈ A : σ (A, B) = σ (a, Ta)}. It corresponds to
the set of best proximity points of T .

Theorem . Let A and B be nonempty closed subsets of a complete b-metric-like space
(X,σ ) and r, r > . Let Ti : A → Cb(B), i = , , be two multi-valued mappings. Suppose
that

(i) A 	= ∅;
(ii) for each x ∈ A, we have Tix ⊆ B, i = , ;

(iii) the pair (A, B) satisfies the weak P-property;
(iv) (X,σ ) satisfies the property (GC);
(v) for each i = , , there exists ai ∈ A such that Ti is a proximal contraction on

Bσ (ai, r) ∩ A with the same Lipschitz constant α ∈ (, 
s ), that is,

Hb
σ (Tix, Tiy) ≤ ασ (x, y), (.)

for all x, y ∈ Bσ (ai, r) ∩ A and δσ (Tiai, {ai}) + σ (A, B) ≤ 
s–s ( –

√
αs)ri.

Then

Hb
σ

(
B(T), B(T)

) ≤ s

 –
√

αs

[
sup
x∈A

Hb
σ (Tx, Tx) +

(
 + s–)σ (A, B)

]
. (.)
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Proof Let ε >  and x ∈ B(T), then there exists z ∈ Tx such that

σ (x, z) ≤ σ (x, Tx) + ε = σ (A, B) + ε. (.)

By Lemma ., there exists y ∈ Tx such that

σ (z, y) ≤ Hb
σ (Tx, Tx) + ε. (.)

Then, from (.) and (.), we get

σ (x, y) ≤ s
[
σ (x, z) + σ (z, y)

]

≤ s
[
Hb

σ (Tx, Tx) + σ (A, B) + ε
]
. (.)

Since y ∈ Tx ⊆ B, there exists x ∈ A such that

σ (x, y) = σ (A, B). (.)

By Lemma ., there exists y ∈ Tx such that

σ (y, y) ≤ √
αs

Hb
σ (Tx, Tx). (.)

Without loss generality, we take a = x and r = r such that

δσ

(
Tx, {x}

)
+ σ (A, B) ≤ 

s – s ( –
√

αs)r.

As (.), we have

∣∣σ (x, x) – σ (x, x)
∣∣ ≤ (s – )σ (x, x)

≤ (s – )
s – s

( –
√

αs)r = s–( –
√

αs)r < r.

Thus, x ∈ Bσ (x, r) ∩ A. By Lemma ., there exists y ∈ Tx such that

σ (y, y) ≤ √
αs

Hb
σ (Tx, Tx). (.)

So, we get

σ (y, y) ≤
√

α

s
σ (x, x). (.)

Again, y ∈ Tx ⊆ B, hence there exists x ∈ A such that

σ (x, y) = σ (A, B). (.)

By condition (iii), it follows that

σ (x, x) ≤ σ (y, y). (.)
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Applying (.),

σ (x, x) ≤
√

α

s
σ (x, x). (.)

Repeating the same process and similar to the proof of Theorem ., we construct two
sequences {xn} ⊆ Bσ (x, r) ∩ A and {yn} ⊆ B such that

⎧
⎪⎨

⎪⎩

σ (xn, yn–) = σ (A, B),
σ (xn, xn+) ≤ σ (yn–, yn) ≤ (

√
α
s )nσ (x, x),

yn ∈ Txn, for all n = , , . . . .

It follows that limn,m→∞ σ (xn, xm) = . Thus, {xn} is a Cauchy sequence in Bσ (x, r) ∩ A.
A similar reasoning shows that limn,m→∞ σ (yn, ym) =  and so {yn} is a Cauchy sequence
in B. Since Bσ (x, r) ∩ A and B are closed subsets of a complete b-metric-like space (X,σ ),
there exist u ∈ Bσ (x, r) ∩ A and v ∈ B such that

lim
n→∞σ (xn, u) = σ (u, u) = lim

n,m→∞σ (xn, xm) =  and

lim
n→∞σ (yn, v) = σ (v, v) = lim

n,m→∞σ (yn, ym) = .

Similarly, we have u ∈ Tu and σ (A, B) = σ (u, Tu). Thus, u ∈ B(T).
On the other hand, for all n ≥ 

σ (x, u) ≤ sσ (x, xn) + sσ (xn, u) ≤ sσ (x, x) + sσ (x, xn) + sσ (xn, u)
...

≤ sσ (x, x) + sσ (x, x) + · · · + sn+σ (xn–, xn) + sσ (xn, u)

= s
n–∑

k=

skσ (xk , xk+) + sσ (xn, u)

≤ s
∞∑

k=

(
√

sα)kσ (x, x) + sσ (xn, u).

Letting n → ∞, we obtain

σ (x, u) ≤ s
∞∑

k=

(
√

sα)kσ (x, x) =
s

 –
√

sα
σ (x, x).

Thus, from (.),

σ (x, u) ≤ s

 –
√

sα
[
σ (x, y) + σ (y, x)

]

≤ s

 –
√

sα
(
s
[
Hb

σ (Tx, Tx) + σ (A, B) + ε
]

+ σ (A, B)
)

=
s

 –
√

sα
[
Hb

σ (Tx, Tx) +
(
 + s–)σ (A, B) + ε

]
.
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Similarly, if y ∈ B(T), then there exists u′ ∈ B(T) such that

σ
(
y, u′) ≤ s

 –
√

sα
[
Hb

σ (Ty, Ty) +
(
 + s–)σ (A, B) + ε

]
.

Consequently, we obtain

Hb
σ

(
B(T), B(T)

) ≤ s

 –
√

sα

[
sup
x∈A

Hb
σ (Tx, Tx) +

(
 + s–)σ (A, B) + ε

]
.

The real ε >  is arbitrary, so the proof is completed, that is, (.) is satisfied. �

We provide the following example.

Example . Let X = [,∞) × [,∞) be endowed with the b-metric-like σ : X × X →
[,∞) defined by

σ
(
(x, x), (y, y)

)
=

{
(|x – y| + |x – y|) if (x, x), (y, y) ∈ [, ],
(x + x + y + y) if not.

Take A = {} × [, ] and B = {} × [, ]. Define the mapping T, T : A → Cb(B) by

T(, x) =

{
{(, ), (, x

 )} if  ≤ x ≤ ,
{} × [, ] if  < x ≤ 

and

T(, x) =

{
{(, ), (, x+

 )} if  ≤ x ≤ ,
{} × [, ] if  < x ≤ .

Note that A = A and B = B. So, for each x ∈ A, we have Tx ⊆ B. Moreover, A and B are
closed subsets of X. Consider the balls Bσ (a, r), Bσ (a, r) with a = (, ), a = (, .) and
r = , r = . We know that the pair (A, B) has the weak P-property. Moreover, it is easy
to prove that Ti is a proximal contraction on Bσ (ai, ri) for i = ,  with the same constant
α = 

 . We also have δσ (Tai, {ai}) + σ (A, B) ≤ 
s–s ( –

√
αs)ri, i = , . Furthermore, (X,σ )

satisfies the (GC) property.
Therefore, all conditions of Theorem . are verified. So, we have

Hb
σ

(
B(T), B(T)

) ≤ 
√

√
 – 

[
sup
x∈A

Hb
σ (Tx, Tx) +




]
.

We derive the following interesting consequences from Theorem ..

Corollary . Let A and B be nonempty closed subsets of a complete metric-like space
(X,σ ) and r, r > . Let Ti : A → Cb(B), i = , , be two multi-valued mappings. Suppose
that

(i) A 	= ∅;
(ii) for each x ∈ A, we have Tix ⊆ B, i = , ;

(iii) the pair (A, B) satisfies the weak P-property;
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(iv) for each i = , , there exists ai ∈ A such that Ti is a proximal contraction on
Bσ (ai, r) ∩ A with the same Lipschitz constant α ∈ (, ), that is,

Hσ (Tix, Tiy) ≤ ασ (x, y), (.)

for all x, y ∈ Bσ (ai, r) ∩ A and δσ (Tiai, {ai}) + σ (A, B) ≤ ( –
√

α)ri.
Then

Hσ

(
B(T), B(T)

) ≤ 
 –

√
α

[
sup
x∈A

Hσ (Tx, Tx) + σ (A, B)
]
. (.)

Proof It suffices to consider s =  in Theorem .. �

Corollary . Let (X,σ ) be a complete b-metric-like space, r, r > , and let Ti : X →
Cb(X), i = , , be two multi-valued mappings. Suppose there exist α ∈ (, s–) and ai ∈ X
such that, for each i = , , we have

Hb
σ (Tix, Tiy) ≤ ασ (x, y), (.)

for all x, y ∈ Bσ (ai, r) and δσ (Tiai, {ai}) ≤ 
s–s ( –

√
αs)ri. Then

Hb
σ

(
F(T), F(T)

) ≤ s

 –
√

sα
sup
x∈A

Hσ (Tx, Tx), (.)

where F(Ti) is the set of fixed points of Ti, i = , .

Proof It suffices to consider A = B = X in Theorem .. Here, we do not need the condi-
tions (i), (ii), and (iii) of Theorem .. �

Corollary . Let A and B be nonempty closed subsets of a complete metric space (X, d)
and r, r > . Let Ti : A → Cb(B), i = , , be two multi-valued mappings. Suppose that

(i) A 	= ∅;
(ii) for each x ∈ A, we have Tix ⊆ B, i = , ;

(iii) the pair (A, B) satisfies the weak P-property;
(iv) for each i = , , there exists ai ∈ A such that Ti is a proximal contraction on

Bd(ai, r) ∩ A with the same Lipschitz constant α ∈ (, ), that is,

H(Tix, Tiy) ≤ αd(x, y), (.)

for all x, y ∈ Bd(ai, r) ∩ A and δd(Tiai, {ai}) + d(A, B) ≤ ( –
√

α)ri.
Then

H
(
B(T), B(T)

) ≤ 
 –

√
α

[
sup
x∈A

H(Tx, Tx) + d(A, B)
]
. (.)

Proof It suffices to consider σ as a metric in Corollary .. �
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4 Best proximity points and stability results on the class of partial b-metric
spaces

In , Shukla [] introduced a generalized metric space called a partial b-metric space
and established the Banach contraction principle as well as the Kannan type fixed point
theorem in partial b-metric spaces.

Definition . [] Let X be a nonempty set and s ≥  be a given real number. A function
b : X ×X →R

+ is called a partial b-metric on X if for all x, y, z ∈ X, the following conditions
are satisfied:

(Pb) b(x, x) = b(x, y) = b(y, y), then x = y;
(Pb) b(x, x) ≤ b(x, y);
(Pb) b(x, y) = b(y, x);
(Pb) b(x, z) + b(y, y) ≤ s[b(x, y) + b(y, z)].

The pair (X, b) is then called a partial b-metric space.

Remark . Each partial b-metric space is a b-metric-like space, but the converse is not
true.

Example . Let X = [,∞). Consider the mapping σ : X × X → [,∞) defined by
σ (x, y) = (x + y) for all x, y ∈ X. Then (X,σ ) is a b-metric-like space with s = , but it is
not a partial b-metric space since σ (x, x) > σ (x, y) for all x > y.

Lemma . Let (X, b) be a partial b-metric space. We have
() if b(x, y) = , then x = y,
() if x 	= y, then b(x, y) > .

Remark . If b is a partial b-metric, then Bb(x, ε) = {y ∈ X : b(x, y) – b(x, x) < ε}.

Very recently, Felhi [] introduced the concept of a partial Pompeiu-Hausdorff b-metric
and he obtained some fixed point results.

Remark . If b is a partial b-metric, for simplicity we denote Hb = Hb
b (defined as in

(.)).

Following [], we have the following lemmas.

Lemma . [] Let (X, b) be a partial b-metric space with coefficient s ≥ . For A ∈ Cb(X)
(Cb(X) is the set of bounded and closed subsets in the partial b-metric space) and x ∈ X, we
have

b(x, A) = b(x, x) if and only if x ∈ Ā = A, (.)

where Ā is the closure of A.

Lemma . [] Let (X, b) be a partial b-metric space with coefficient s ≥ . For A, B, C ∈
Cb(X), we have

(i) Hb(A, A) ≤ Hb(A, B);
(ii) Hb(A, B) = Hb(B, A);

(iii) Hb(A, B) ≤ s[Hb(A, C) + Hb(C, B)] – infc∈C b(c, c).
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4.1 Best proximity results
The main result of this paragraph is the analogous of Theorem . on the class of partial
b-metric spaces. It is stated as follows.

Theorem . Let A and B be nonempty closed subsets of a complete partial b-metric space
(X, b) and r > . Let T : A → Cb(B) be a multi-valued mapping. Suppose that

(i) A 	= ∅;
(ii) for each x ∈ A, we have Tx ⊆ B;

(iii) the pair (A, B) satisfies the weak P-property;
(iv) there exists x ∈ A such that T is a proximal contraction on Bb(x, r) and

δb(Tx, {x}) + b(A, B) ≤ s–( –
√

αs)r;
(v) (X, b) satisfies the property (GC).

Then T has a best proximity point in Bb(x, r) ∩ A. We also have b(x�, x�) = .

Proof By assumption (iv), there exists x ∈ A such that T is a proximal contraction on
Bb(x, r) and δb(Tx, {x}) + b(A, B) ≤ s–( –

√
αs)r.

Let y ∈ Tx. By condition (ii), we have Tx ⊆ B. Then there exists x ∈ A such that

b(x, y) = b(A, B). (.)

We have

b(x, x) – b(x, x) ≤ b(x, x) ≤ s
[
b(x, y) + b(y, x)

]
– b(y, y)

≤ s
[
δb

(
Tx, {x}

)
+ b(A, B)

]

≤ s
[
s–( –

√
αs)r

]
= s–( –

√
αs)r < r. (.)

Then x ∈ Bb(x, r) ∩ A. By Lemma ., there exists y ∈ Tx such that

b(y, y) ≤ √
αs

Hb(Tx, Tx). (.)

So, by (.), we get

b(y, y) ≤
√

α

s
b(x, x). (.)

Since y ∈ Tx ⊆ B, there exists x ∈ A such that

b(x, y) = b(A, B). (.)

By condition (iii), (.), and (.)

b(x, x) ≤ b(y, y). (.)

The above inequality together with (.) implies that

b(x, x) ≤
√

α

s
b(x, x). (.)



Felhi and Aydi Fixed Point Theory and Applications  (2016) 2016:22 Page 20 of 23

Using (.), we have

b(x, x) – b(x, x) ≤ b(x, x) ≤ sb(x, x) + sb(x, x) – b(x, x)

≤ sb(x, x) + sb(x, x) ≤ s
[

 + s
√

α

s

]
b(x, x)

≤ s[ +
√

αs]s–( –
√

αs)r = ( – αs)r < r.

Then x ∈ Bb(x, r) ∩ A. Again, by Lemma ., there exists y ∈ Tx such that

b(y, y) ≤ √
αs

Hb(Tx, Tx). (.)

So, by (.), we get

b(y, y) ≤
√

α

s
b(x, x). (.)

Again, y ∈ Tx ⊆ B, so there exists x ∈ A such that

b(x, y) = b(A, B). (.)

From condition (iii), (.), and (.)

b(x, x) ≤ b(y, y) ≤
√

α

s
b(x, x) ≤

(√
α

s

)

b(x, x). (.)

We have

b(x, x) – b(x, x) ≤ b(x, x) ≤ sb(x, x) + sb(x, x) + sb(x, x)

≤ sb(x, x) + sb(x, x) + sb(x, x)

≤ s
[

 + s
√

α

s
+ s

(√
α

s

)]
b(x, x)

≤ s
[
 +

√
αs + (

√
αs)]s–( –

√
αs)r =

(
 – (

√
αs))r < r.

Then x ∈ Bb(x, r) ∩ A.
Continuing this process, we construct two sequences {xn} ⊆ Bb(x, r)∩A and {yn} ⊆ B

such that
⎧
⎪⎨

⎪⎩

b(xn, yn–) = b(A, B),
b(xn, xn+) ≤ b(yn–, yn) ≤ (

√
α
s )nb(x, x),

yn ∈ Txn, for all n = , , . . . .

As in the proof of Theorem ., there exist x� ∈ Bb(x, r) ∩ A and y� ∈ B such that

lim
n→∞ b

(
xn, x�

)
= b

(
x�, x�

)
= lim

n,m→∞ b(xn, xm) =  and

lim
n→∞ b

(
yn, y�

)
= b

(
y�, y�

)
= lim

n,m→∞ b(yn, ym) = .

By the same strategy, we see that x� is a best proximity point of T and b(x�, x�) = . �
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As consequences, we may provide the following corollaries.

Corollary . Let A and B be nonempty closed subsets of a complete partial b-metric
space (X, b) and r > . Let T : A → B be a given single-valued mapping. Suppose that

(i) A 	= ∅;
(ii) for each x ∈ A, we have Tx ∈ B;

(iii) the pair (A, B) satisfies the weak P-property;
(iv) there exists x ∈ A such that T is a proximal contraction on Bb(x, r) and

b(x, Tx) + b(A, B) ≤ s–( –
√

αs)r;
(v) (X, b) satisfies the property (GC).

Then T has a best proximity point in Bb(x, r) ∩ A. We also have b(x�, x�) = .

In the setting of b-metric spaces, we have the following.

Corollary . Let A and B be nonempty closed subsets of a complete b-metric space (X, d),
r > , and T : A → Cb(B) be a multi-valued mapping. Suppose that

(i) A 	= ∅;
(ii) for each x ∈ A, we have Tx ⊆ B;

(iii) the pair (A, B) satisfies the weak P-property;
(iv) there exists x ∈ A such that T is a proximal contraction on Bd(x, r) and

δd(Tx, {x}) + d(A, B) ≤ s–( –
√

αs)r;
(v) (X, d) satisfies the property (GC).

Then T has a best proximity point in Bd(x, r) ∩ A.

Corollary . Let (X, d) be a complete b-metric space and T : X → Cb(X) be a multi-
valued contractive non-self-mapping, that is,

H(Tx, Ty) ≤ αd(x, y),

for some α ∈ (, 
s ) and for all x, y ∈ Bd(x, r) and δd(Tx, {x}) ≤ s–( –

√
αs)r. Then T has

a fixed point.

Corollary . ([], Theorem ) Let (X, d) be a complete metric space and T : X → Cb(X)
be such that

H(Tx, Ty) ≤ αd(x, y),

for some α ∈ (, ) and for all x, y ∈ X. Then T has a fixed point.

Corollary . ([], Theorem .) Let (A, B) be a pair of nonempty closed subsets of a
complete metric space (X, d) such that A 	= ∅ and (A, B) satisfies the P-property. Let T :
A → B be a multi-valued contraction non-self-mapping, that is,

H(Tx, Ty) ≤ αd(x, y),

for some α ∈ (, ) and for all x, y ∈ A. If T(x) is bounded and is closed in B for all x ∈ A,
and T(x) ⊆ B for each x ∈ A, then T has a best proximity point in A.
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4.2 Stability results
As Theorem ., we state the following stability result.

Theorem . Let A and B be nonempty closed subsets of a complete partial b-metric
space (X, b) and r, r > . Let Ti : A → Cb(B) with i = , , be two multi-valued mappings.
Suppose that

(i) A 	= ∅;
(ii) for each x ∈ A, we have Tix ⊆ B, i = , ;

(iii) the pair (A, B) satisfies the weak P-property;
(iv) (X, b) satisfies the property (GC);
(v) for each i = , , there exists ai ∈ A such that Ti is a proximal contraction on

Bb(ai, r) ∩ A with the same Lipschitz constant α ∈ (, 
s ), that is,

Hb(Tix, Tiy) ≤ αb(x, y), (.)

for all x, y ∈ Bb(ai, r) ∩ A and δb(Tiai, {ai}) + b(A, B) ≤ s–( –
√

αs)ri.
Then

Hb
(
B(T), B(T)

) ≤ s

 –
√

αs

[
sup
x∈A

Hb(Tx, Tx) +
(
 + s–)b(A, B)

]
. (.)

Proof The proof is similar to that of Theorem .. �

Corollary . Let (X, d) be a complete b-metric space. Take r, r > . Let Ti : X → Cb(X),
i = , , be two multi-valued mappings. Suppose there exist α ∈ (, s–) and ai ∈ X such that,
for each i = , ,

Hb(Tix, Tiy) ≤ αd(x, y), (.)

for all x, y ∈ Bd(ai, r) and δd(Tiai, {ai}) ≤ s–( –
√

αs)ri. Then

Hb
(
F(T), F(T)

) ≤ s

 –
√

sα
sup
x∈A

Hb(Tx, Tx). (.)
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