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Abstract
In this paper, we obtain a fixed point theorem for mappings satisfying cyclic
ϕ-contractive conditions in complete metric spaces, which gives a positive answer to
the question raised by Radenović (Fixed Point Theory Appl. 2015:189, 2015). We also
find that this result and the fixed point result satisfying cyclic weak φ-contractions
given by Karapınar (Appl. Math. Lett. 24:822-825, 2011) are independent of each other.
Furthermore, when the number of cyclic sets is odd, we obtain fixed point theorems
satisfying cyclic weak φ-contractions and cyclic ϕ-contractions in the setting of
generalized metric spaces.
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1 Introduction and preliminaries
The main purpose of this paper is to answer an open question raised by Radenović in
[]. In order to go further, we attempt to extend our result and the result established by
Karapınar [, ] to the setting of generalized metric spaces. We show these results are valid
in generalized metric spaces when the number of cyclic sets is odd.

Let us recall the definition of a comparison function.

Definition . [] A function ϕ : [,∞) → [,∞) is called a comparison function if it
satisfies:

(i)ϕ ϕ is increasing;
(ii)ϕ (ϕn(t))n∈N converges to  as n → ∞, for all t ∈ (,∞).

If the condition (ii)ϕ is replaced by

(iii)ϕ
∑∞

k= ϕk(t) < ∞, for all t ∈ (,∞),

then ϕ is called a strong comparison function.

It is clear that a strong comparison function is a comparison function, but the converse
is not true.
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Example . Let ϕ : [,∞) → [,∞) be defined by ϕ(t) = t
+t . Then ϕ is a comparison

function, but it is not a strong comparison function. In fact,

ϕn(t) =
t

 + nt
,

for all t > . Consequently, for every t > , (ϕn(t)) converges to  as n → ∞, but
∑∞

k= ϕk(t) = ∞.

Many authors considered fixed point results about cyclic ϕ-contractions in setting of
different type of spaces; see, for example, [–]. Particularly, in [], Radenović obtained
a fixed point theorem for non-cyclic ϕ-contraction, where ϕ is comparison function, and
raised the following question.

Question . Prove or disprove the following.
Let {Ai}p

i be nonempty closed subsets of a complete metric space, and suppose f :
⋃p

i= Ai → ⋃p
i= Ai satisfies the following conditions (where Ap+ = A):

(i) f (Ai) ⊂ Ai+ for  ≤ i ≤ p;
(ii) there exists a comparison function ϕ : [,∞) → [,∞) such that

d(fx, fy) ≤ ϕ
(
d(x, y)

)
,

for any x ∈ Ai, y ∈ Ai+,  ≤ i ≤ p.
Then f has a unique fixed point x∗ ∈ ⋂p

i= Ai and a Picard iteration {xn}n≥ given by xn =
fxn– converging to x∗ for any starting point x ∈ ⋃p

i= Ai.

In Section , we give an answer to Question .. In Section , we obtain a fixed point
theorem for a mapping satisfying cyclic weak φ-contractions and cyclic ϕ-contractions in
complete generalized metric spaces, where the number of cyclic sets is odd.

2 Answer of Question 1.3
We start this section by presenting the notion of cyclic ϕ-contraction.

Definition . Let (X, d) be a metric space, p ∈N, A, . . . , Ap nonempty subsets of X, and
Y :=

⋃p
i= Ai. An operator f : Y → Y is called a cyclic ϕ-contraction if:

(i)
⋃p

i= Ai is a cyclic representation of Y with respect to f ;
(ii) there exists a comparison function ϕ : [,∞) → [,∞) such that

d(fx, fy) ≤ ϕ
(
d(x, y)

)
, (.)

for any x ∈ Ai, y ∈ Ai+, where Ap+ = A.

Theorem . Let (X, d) be a complete metric space, p ∈ N, A, . . . , Ap nonempty closed
subsets of X, and Y :=

⋃p
i= Ai. Assume that f : Y → Y is a cyclic ϕ-contraction. Then f

has a unique fixed point x∗ ∈ ⋂p
i= Ai and a Picard iteration {xn}n≥ given by xn = fxn–

converging to x∗ for any starting point x ∈ ⋃p
i= Ai.
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Proof Let x be an arbitrary point in Y . Define the sequence {xn} in Y by xn = fxn–, n =
, , . . . . If there exists n such that xn+ = xn then fxn = xn+ = xn and the existence of
the fixed point is proved. Consequently, we always assume that xn 	= xn+ for all n ∈N.

Step . We will prove that

lim
n→∞ d(xn, xn+) = , lim

n→∞ d(xn, xn+) = , . . . , lim
n→∞ d(xn, xn+p) = . (.)

Using (.), we have

d(xn, xn+) = d(fxn–, fxn) ≤ ϕ
(
d(xn–, xn)

)
, (.)

for all n ∈N. From this, we deduce that

d(xn, xn+) ≤ ϕ
(
d(xn–, xn)

) ≤ ϕ(d(xn–, xn–)
) ≤ · · · ≤ ϕn(d(x, x)

)
.

Using the definition of ϕ, we get

lim
n→∞ d(xn, xn+) = , (.)

using the triangle inequality, we have

d(xn, xn+k) ≤ d(xn, xn+) + d(xn+, xn+) + · · · + d(xn+k–, xn+k),

for k = , , . . . , p. Combining this and (.), we conclude that (.) holds.
Step . We will prove the following claim.

Claim For every ε > , there exists N ∈N such that if n > m > N with n – m ≡  mod p then
d(xn, xm) < ε.

In fact, if the claim is not true, then there exists ε >  such that for any N ∈ N we can
find n > m > N with n – m ≡  mod p satisfying d(xn, xm) ≥ ε. By (.), corresponding to
this ε, there exists n such that if n > n then

d(xn, xn+) < ε, d(xn, xn+) < ε, . . . , d(xn, xn+p) < ε. (.)

Taking N = n, we can find that n′
 > m > n with n′

 – m ≡  mod p such that
d(xn′


, xm ) ≥ ε. Due to (.), we can choose a n ∈ {m + p + , m + p + , . . . , n′

} in
such a way that it is smallest integer satisfying d(xn , xm ) ≥ ε. Then we obtain

d(xn , xm ) ≥ ε, d(xn–p, xm ) < ε and n – m ≡  mod p.

Taking N = n, we can find that n′
 > m > n with n′

 – m ≡  mod p such that
d(xn′


, xm ) ≥ ε. Similar to the choice of n, we can get a n ∈ {m +p+, m +p+, . . . , n′

}
such that

d(xn , xm ) ≥ ε, d(xn–p, xm ) < ε and n – m ≡  mod p.
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Continuing the above process, by induction, we obtain two subsequences {xmk } and {xnk }
of {xn} such that

d(xnk , xmk ) ≥ ε, d(xnk –p, xmk ) < ε and nk – mk ≡  mod p. (.)

Now, using (.) and the triangle inequality, we have

ε ≤ d(xnk , xmk ) ≤ d(xnk , xnk –p) + d(xnk –p, xmk )

≤ d(xnk , xnk –p) + ε.

Letting k → ∞ in the above inequality, using (.), we obtain

d(xnk , xmk ) → ε as k → ∞. (.)

Using the triangle inequality, we get

d(xnk –p+, xmk +) ≤ d(xnk –p+, xnk ) + d(xnk , xmk ) + d(xmk , xmk +)

and

d(xnk –p+, xmk +) ≥ d(xnk , xmk ) – d(xnk , xnk –p+) – d(xmk +, xmk ).

Letting k → ∞ in the above two inequalities, using (.) and (.), we get

d(xnk –p+, xmk +) → ε as k → ∞. (.)

Now, using (.) and (.), we have

d(xnk –p+, xmk +) = d(fxnk –p, fxmk ) ≤ ϕ
(
d(xnk –p, xmk )

) ≤ ϕ(ε). (.)

Taking the limit in (.) as k → ∞, from (.), we see

ε ≤ ϕ(ε),

which is a contradiction with ϕ(ε) < ε. Therefore our claim is proved.
Step . We will prove {xn} is a Cauchy sequence in X.
Let ε >  be given. Using the claim, we find that N ∈ N such that if n > m > N with

n – m ≡  mod p then

d(xn, xm) <
ε

p
.

On the other hand, using (.), we also find N ∈N such that, for any n > N,

d(xn, xn+) <
ε

p
.
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Let n, m > N = max{N, N} with n > m. Then we can find a s ∈ {, , , . . . , p – } such that
n – (m + s) ≡  mod p. Using the triangle inequality, we obtain

d(xm, xn) ≤ d(xm, xm+) + d(xm+, xm+) + · · · + d(xm+s, xn)

<
ε

p
+

ε

p
+ · · · +

ε

p

= (s + ) · ε

p
≤ ε.

This proves that {xn} is a Cauchy sequence.
Step . We will prove f has a unique fixed point x∗ ∈ ⋂p

i= Ai.
As X is a complete metric space, there exists x ∈ X such that limn→∞ xn = x. Using

the cyclic character of f , there exists a subsequence of {xn} for which belongs to Ai for
i ∈ {, , . . . , p}. Hence, from Ai is closed, we see that x ∈ ⋂p

i= Ai. Now, we consider the
restriction f |⋂p

i= Ai
of f on

⋂p
i= Ai. Since

⋂p
i= Ai is also complete, by Theorem . in [],

we see that f has a unique fixed point x∗ in
⋂p

i= Ai.
Step . We prove that the Picard iteration converges to x∗ for any initial point x ∈

⋃p
i= Ai.
Using (.), we have

d
(
xn, x∗) = d

(
fxn–, fx∗) ≤ ϕ

(
d
(
xn–, x∗)).

From this, we see that

d
(
xn, x∗) ≤ ϕ

(
d
(
xn–, x∗)) ≤ ϕ(d

(
xn–, x∗)) ≤ · · · ≤ ϕn(d

(
x, x∗)).

Using the definition of ϕ, we conclude that xn → x∗ as n → ∞.
This completes the proof. �

Remark . From Theorem ., we see that the open question raised by Radenović (that
is, Question .) has been answered.

Remark . Following the idea of Radenović in [], we see that Theorem . in [] and
Theorem . are equivalent.

3 Cyclic weak φ-contractions and cyclic ϕ-contractions in generalized metric
spaces

In , Branciari [] introduced the notion of generalized metric space and proved the
Banach fixed point theorem in such spaces. For more information, the reader can refer
to [–]. For some notions and facts about generalized metric spaces, one may wish to
see [].

In [], Karapınar gave a fixed point results satisfying cyclic weak φ-contractions. For
convenience, we rewrite his theorem (i.e., [], Theorem ) as the following equivalent
statement.

Theorem . Let (X, d) be a complete metric space, p ∈ N, A, . . . , Ap closed nonempty
subsets of X, Y :=

⋃p
i= Ai and f : Y → Y an operator. Assume that:
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(i)
⋃p

i= Ai is a cyclic representation of Y with respect to f ;
(ii) there exists a function φ : [,∞) → [,∞) with φ(t) < t and t – φ(t) is nondecreasing

for t ∈ (,∞) and φ() =  such that

d(fx, fy) ≤ φ
(
d(x, y)

)
,

for any x ∈ Ai, y ∈ Ai+, where Ap+ = A.
Then f has a unique fixed point x∗ ∈ ⋂p

i= Ai.

Based on the concept of cyclic weak φ-contraction, we can introduce the following no-
tion.

Definition . A function φ : [,∞) → [,∞) is called a (w)-comparison function if it
satisfies:

(i)φ φ() = ;
(ii)φ φ(t) < t, for all t ∈ (,∞);
(iii)φ the function ψ(t) := t – φ(t) is increasing, i.e., t ≤ t implies ψ(t) ≤ ψ(t), for t, t ∈

[,∞).

Lemma . If φ : [,∞) → [,∞) is a (w)-comparison function, then the following hold:
() φ(t) ≤ t, for any t ∈ [,∞);
() for k ≥ , φk(t) < t, for any t ∈ (,∞);
() (φn(t))n∈N converges to  as n → ∞, for all t ∈ (,∞).

Proof From the definition of φ, it is easy to verify that (), (), and () hold. Now, we only
prove that () holds. Let t ∈ (,∞). Then we have

φn(t) = φ
(
φn–(t)

) ≤ φn–(t), for all n ∈N.

This means that (φn(t))n∈N is a decreasing sequence of non-negative real numbers. There-
fore, there exists r ≥  such that limn→∞ φn(t) = r. Suppose that r > . Then φ(r) < r and
r – φ(r) > . Since r = inf{φn(t) : n ∈ N},  < r ≤ φn(t), for all n ∈ N. By the definition of φ,
we get

r – φ(r) ≤ φn(t) – φ
(
φn(t)

)
,

for all n ∈N. Letting n → ∞ in the above inequality, we obtain r – φ(r) ≤ r – r =  and this
contradicts r – φ(r) > . �

The next are two basic examples of the comparison function and the (w)-comparison
function.

Example . Let φ : [,∞) → [,∞) be defined by

φ(t) =

⎧
⎪⎨

⎪⎩


 t,  ≤ t < ,

 t – ,  ≤ t < ,
t – 

 , t ≥ .
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Then φ is a comparison function. But φ is not a (w)-comparison function because t – φ(t)
is not increasing.

Example . Let φ : [,∞) → [,∞) be defined by

φ(t) =

⎧
⎪⎨

⎪⎩


 t,  ≤ t < ,
 – 

 t,  ≤ t < ,

 t, t ≥ .

Then φ is a (w)-comparison function. But φ is not a comparison function because φ(t) is
not increasing.

Remark . From Example . and Example ., we see that the comparison function
and the (w)-comparison function do not imply each other. Consequently, Theorem  in
[] and Theorem . are independent of each other.

Now we carry over the concept of cyclic weak φ-contraction to generalized metric space.

Definition . Let (X, d) be a generalized metric space, p ∈ N, A, . . . , Ap nonempty sub-
sets of X and Y :=

⋃p
i= Ai. An operator f : Y → Y is called a cyclic weak φ-contraction

if:
(i)

⋃p
i= Ai is a cyclic representation of Y with respect to f ;

(ii) there exists a (w)-comparison function φ : [,∞) → [,∞) such that

d(fx, fy) ≤ φ
(
d(x, y)

)
, (.)

for any x ∈ Ai, y ∈ Ai+, where Ap+ = A.

Theorem . Let (X, d) be a complete generalized metric space, p an odd number,
A, . . . , Ap nonempty closed subsets of X and Y :=

⋃p
i= Ai. Assume that f : Y → Y is a cyclic

weak φ-contraction. Then f has a unique fixed point x∗ ∈ ⋂p
i= Ai and a Picard iteration

{xn}n≥ given by xn = fxn– converging to x∗ for any starting point x ∈ ⋃p
i= Ai.

Proof Let x ∈ Y , and xn = fxn–, n = , , . . . . If there exists n such that xn+ = xn then
fxn = xn+ = xn and the existence of the fixed point is proved. Consequently, we will
assume that xn 	= xn+ for all n ∈ N.

Step . We will prove that xn 	= xm for all n 	= m.
Suppose that xn = xm for some n 	= m. Without loss of generality, we may assume that

n > m + . Due to the property of φ, we see that

d(xm, xm+) = d(xm, fxm) = d(xn, fxn)

= d(fxn–, fxn)

≤ φ
(
d(xn–, xn)

)

≤ · · ·
≤ φn–m(

d(xm, xm+)
)
.

By Lemma .(), we get φn–m(d(xm, xm+)) < d(xm, xm+), which is a contradiction.
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Step . We will prove that

lim
n→∞ d(xn, xn+) = , lim

n→∞ d(xn, xn+) = , . . . , lim
n→∞ d(xn, xn+p) = . (.)

Using (.), we get

d(xn, xn+) = d(fxn–, fxn) ≤ φ
(
d(xn–, xn)

)
,

for all n ∈N. Using the definition of φ, we see that

d(xn, xn+) < d(xn–, xn). (.)

This implies the sequence {d(xn, xn+)} is decreasing and bounded below. Consequently,
d(xn, xn+) → r for some r ≥ . Suppose that r > . Then φ(r) < r. Using the definition of φ

and d(xn, xn+) ≥ r, we get

r – φ(r) ≤ d(xn, xn+) – φ
(
d(xn, xn+)

)
,

for all n ∈N. From d(xn+, xn+) ≤ φ(d(xn, xn–)), we see that

r – φ(r) ≤ d(xn, xn+) – d(xn+, xn+),

for all n ∈ N. Letting n → ∞ in the above inequality, we get r – φ(r) ≤ , which is a con-
tradiction with φ(r) < r. Thus, we conclude that

lim
n→∞ d(xn, xn+) = . (.)

Using the rectangular inequality, we get

d(xn, xn+) ≤ d(xn, xn+) + d(xn+, xn+) + d(xn+, xn+).

From (.), we see that d(xn, xn+) →  as n → ∞. By induction, we deduce that

lim
n→∞ d(xn, xn+k) = , for all k ∈ {, , , . . . , p}. (.)

Now, we prove

lim
n→∞ d(xn, xn+p–) = . (.)

Since xn and xn+p– lie in different adjacently labeled sets Ai and Ai+ for certain i ∈
{, , . . . , p}, from (.) we get

d(xn, xn+p–) = d(fxn–, fxn+p–) ≤ φ
(
d(xn–, xn+p–)

)
.

Similar to the proof of the conclusion (.), we can deduce that {d(xn, xn+p–)} is decreasing
and converges to . This means that (.) holds.
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For k = , , . . . , p – , using the rectangular inequality, we have

d(xn, xn+k) ≤ d(xn, xn+p–) + d(xn+p–, xn+p) + d(xn+p, xn+k). (.)

Since p – k is odd, from (.) we get

lim
n→∞ d(xn+p, xn+k) = lim

n→∞ d(xn+p–k , xn) = . (.)

Therefore, from (.), (.), (.), and (.) we conclude that

lim
n→∞ d(xn, xn+k) = , for all k ∈ {, , . . . , p – }. (.)

Combining (.) and (.), we see (.) is proved.
Step . We will prove the following claim.

Claim For every ε > , there exists N ∈N such that if n > m > N with n – m ≡  mod p then
d(xn, xm) < ε.

In fact, if this is not true, then there exists ε >  such that for any N ∈ N we can find
n > m > N with n – m ≡  mod p satisfying d(xn, xm) ≥ ε. By the definition of φ, we get

ε – φ(ε) ≤ d(xn, xm) – φ
(
d(xn, xm)

)
. (.)

Using (.), we get

d(xn+, xm+) ≤ φ
(
d(xn, xm)

)
. (.)

By (.), (.), and the rectangular inequality, we obtain

ε – φ(ε) ≤ d(xn, xm) – d(xn+, xm+)

≤ d(xn, xn+) + d(xn+, xm+) + d(xm+, xm) – d(xn+, xm+)

= d(xn, xn+) + d(xm+, xm).

From (.), it follows that

ε – φ(ε) ≤ d(xm+, xm) and d(xm+, xm) ≥ ε – φ(ε)


> .

Therefore, {d(xm+, xm)} does not converge to  as m → ∞, which contradicts (.).
Step . We will prove {xn} is a Cauchy sequence in X.
Let ε >  be given. Using the claim, we find that N ∈ N such that if n > m > N with

n – m ≡  mod p then

d(xn, xm) <
ε


.

On the other hand, using (.), we also find N ∈N such that, for any n > N,

d(xn, xn+) <
ε


, d(xn, xn+) <

ε


, . . . , d(xn, xn+p) <

ε


.
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Let n, m > N = max{N, N} +  with n > m. Then we can find s ∈ {, , , . . . , p – } such that
n – (m + s) ≡  mod p.

In the case where s = , we have

d(xn, xm) <
ε


< ε.

In the other case where s ≥ , using the rectangular inequality we have

d(xm, xn) ≤ d(xm, xm–) + d(xm–, xm+s) + d(xm+s, xn)

<
ε


+

ε


+

ε


= ε.

This proves that {xn} is a Cauchy sequence.
Step . We will prove f has a unique fixed point x∗ ∈ ⋂p

i= Ai and the Picard iteration {xn}
converges to x∗.

Since X is a complete generalized metric space, there exists x∗ ∈ X such that limn→∞ xn =
x∗. Using the cyclic character of f , there exists a subsequence of {xn} for which belongs to
Ai for i ∈ {, , . . . , p}. Hence, from Ai is closed for i ∈ {, , . . . , p}, we see that x∗ ∈ ⋂p

i= Ai.
Now, we will prove d(xn, fx∗) →  as n → ∞. In fact, using (.), we have

d
(
xn, fx∗) = d

(
fxn–, fx∗) ≤ φ

(
d
(
xn–, x∗)) ≤ d

(
xn–, x∗) →  as n → ∞,

which implies d(xn, fx∗) →  as n → ∞. Using Proposition  of [], we deduce that fx∗ =
x∗, i.e., x∗ is a fixed point of f .

In order to prove that the uniqueness of the fixed point, we take y, z ∈ Y such that y and
z are fixed points of f . The cyclic character of f implies that y, z ∈ ⋂p

i= Ai. Using (.),

d(y, z) = d(fy, fz) ≤ φ
(
d(y, z)

) ≤ d(y, z).

This means φ(d(y, z)) = d(y, z). Since φ(t) >  for t > , we get d(y, z) =  and y = z. This
finishes the proof. �

Theorem . Let (X, d) be a complete generalized metric space, p an odd number,
A, . . . , Ap nonempty closed subsets of X and Y :=

⋃p
i= Ai. Assume that f : Y → Y is a

cyclic ϕ-contraction. Then f has a unique fixed point x∗ ∈ ⋂p
i= Ai and a Picard iteration

{xn}n≥ given by xn = fxn– converging to x∗ for any starting point x ∈ ⋃p
i= Ai.

Proof Let x ∈ Y , and xn = fxn–, n = , , . . . .
Similar to the Step  and Step  in the proof of Theorem ., we can prove

xn 	= xm, for all n 	= m

and

lim
n→∞ d(xn, xn+) = , lim

n→∞ d(xn, xn+) = , . . . , lim
n→∞ d(xn, xn+p) = . (.)

Now, we will prove the following claim.
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Claim For every ε > , there exists N ∈N such that if n > m > N with n – m ≡  mod p then
d(xn, xm) < ε.

In fact, in the opposite case, similar to the Step  in the proof of Theorem ., we can
find that ε >  and two subsequences {xmk } and {xnk } of {xn} such that

d(xnk , xmk ) ≥ ε, d(xnk –p, xmk ) < ε and nk – mk ≡  mod p. (.)

Next, we only prove d(xnk , xmk ) → ε as k → ∞ because the other proof is the same as
in the Step  of Theorem .. In fact, using (.) and the rectangular inequality, we have

ε ≤ d(xnk , xmk ) ≤ d(xnk , xnk –p+) + d(xnk –p+, xnk –p) + d(xnk –p, xmk )

≤ d(xnk , xnk –p+) + d(xnk –p+, xnk –p) + ε.

Letting k → ∞ in the above inequality, using (.), we obtain

d(xnk , xmk ) → ε as k → ∞.

Similar to Step  and Step  in the proof of Theorem ., we can finish the proof. �

Example . Let X = {, , , , }. Define d : X × X → ∞ by

d(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

, x = y,
, |x – y| = ,
, x = , y =  or x = , y = ,
, otherwise.

Then (X, d) is a generalized metric space. But d is not a metric on X because

d(, ) =  >  = d(, ) + d(, ).

Now, consider A = {, , }, A = {}, A = {, , }, and T : X → X to be defined by

T = T = T =  and T = T = .

It is easy to prove that T satisfies all the conditions of Theorem . and Theorem . with
ϕ(t) = φ(t) = 

 t. Using Theorem . or Theorem ., we see that T has a unique fixed point.
In fact,  is the unique fixed point of f . But we do not apply Theorem . or Theorem  in
[] because d is not a metric on X.

Finally, a natural question arises.

Question . If the number of cyclic sets is even, then we may ask whether Theorem .
or Theorem . is valid or not.
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