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Abstract
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1 Introduction
The Banach contraction principle (see []) is a very popular tool for solving problems in
many branches of mathematical analysis. The generalizations of this principle have been
established in various settings (see, for example [–]). The concept of the altering dis-
tance function has been introduced by Khan et al. []. They also presented some fixed
point theorems in a metric space by altering distance functions. The concept of weak
contraction presented by Berinde [], but in [], the author renames it as an ‘almost
contraction’ which is apposite. Berinde [] gave some fixed point theorems for almost
contractions in complete spaces. Shatanawi [] presented some fixed point theorems for
a nonlinear weakly C-contraction type mapping in metric spaces. Ćirić et al. [] intro-
duced the concept of almost generalized contractive condition on mappings and proved
some existential theorems on fixed points of such mappings in an ordered complete metric
space. Shatanawi and Al-Rawashdeh [] introduced the notion of an almost generalized
(ψ ,φ)-contractive mapping in ordered metric spaces and established some fixed point
and common fixed point results for such a mapping, where ψ and φ are altering distance
functions.

The purpose of this paper is to introduce the almost generalized C-contractive mappings
in an ordered metric space via the altering distance functions and the functions having
property (P), and to prove some fixed point and common fixed point theorems for such
mappings in an ordered complete metric space. Specially, under suitable conditions, we
show that if the fixed point set of such mappings is totally ordered, then it is singleton. In
the end, an example is given to support the usability of our results.
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We first review the needed definitions. Throughout this paper, we denote by R,R+, and
N the set of all real numbers, the set of all nonnegative real numbers and the set of all
positive integers, respectively. Let X be a nonempty set and f , g be two self-mappings of X.
We denote by F(f ) the fixed point set of f , i.e., F(f ) = {x ∈ X : fx = x}. Also, we denote by
F(f , g) the common fixed point set of f , g , i.e., F(f , g) = F(f ) ∩ F(g).

Definition . (see []) A function ψ : R+ →R
+ is called an altering distance function if

it satisfies the following properties:
() ψ is continuous and non-decreasing, and
() ψ(x) =  if and only if x = .

We denote by � the class of all altering distance functions.

Definition . (see []) Let X be a nonempty set. Then (X,�, d) is called an ordered
metric space if and only if:

(i) (X, d) is a metric space, and
(ii) (X,�) is a partially ordered set.

(X,�, d) is called an ordered complete metric space if (X,�, d) is an ordered metric space,
and (X, d) is a complete metric space.

Definition . (see [, ]) Let (X,�) be a partially ordered set. Two mappings f , g : X →
X are said to be weakly increasing if fx � gfx and gx � fgx for all x ∈ X.

Definition . Let φ : R+ ×R
+ →R

+ be a function. We say that the function φ has prop-
erty (P) if the following is satisfied:

() φ is lower semicontinuous and non-decreasing with respect to both of its
components, and

() φ(s, t) =  if and only if s = t = .
We denote by � the class of all functions satisfying property (P).

2 Main results
In this section, we introduce the concept of the almost generalized C-contraction for map-
pings in an ordered metric space. Then we present some fixed point and common fixed
point theorems for such mappings in an ordered complete metric space.

Definition . Let (X,�, d) be an ordered metric space. We say that a mapping f : X → X
is an almost generalized C-contractive mapping if there exist ξ ≥  and (ψ ,φ) ∈ � × �

such that

ψ
(
d(fx, fy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M′(x, y), M′′(x, y)

)
+ ξψ

(
N(x, y)

)
()

for all x, y ∈ X with x � y, where

M(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)


}
,

M′(x, y) = max
{

d(x, y), d(x, fx), d(x, fy)
}

,

M′′(x, y) = max
{

d(x, y), d(y, fy), d(y, fx)
}

, and

N(x, y) = min
{

d(x, fx), d(y, fx)
}

.
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Definition . Let (X,�, d) be an ordered metric space, and let f , g be two self-mappings
of X. The mapping f is said to be almost generalized C-contractive with respect to g if
there exist ξ ≥  and (ψ ,φ) ∈ � × � such that

ψ
(
d(fx, gy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M′(x, y), M′′(x, y)

)
+ ξψ

(
N(x, y)

)
()

for all x, y ∈ X with x � y, where

M(x, y) = max

{
d(x, y), d(x, fx), d(y, gy),

d(x, gy) + d(y, fx)


}
,

M′(x, y) = max
{

d(x, y), d(x, fx), d(x, gy)
}

,

M′′(x, y) = max
{

d(x, y), d(y, gy), d(fx, y)
}

, and

N(x, y) = min
{

d(x, fx), d(y, fx), d(x, gy)
}

.

The following lemmas play a basic role to prove our main results.

Lemma . Let (X,�, d) be an ordered metric space. Assume that f : X → X is an almost
generalized C-contractive mapping. Fix x ∈ X and define a sequence {xn} by xn+ = fxn for
all n ∈ N. If the sequence {xn} is non-decreasing and limn→∞ d(xn, xn+) = , then {xn} is a
Cauchy sequence.

Proof Since the mapping f is almost generalized C-contractive, Definition . implies that
there exists (ξ ,ψ ,φ) ∈ [,∞) × � × � such that

ψ
(
d(fx, fy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M′(x, y), M′′(x, y)

)
+ ξψ

(
N(x, y)

)
()

for all x, y ∈ X with x � y, where

M(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)


}
,

M′(x, y) = max
{

d(x, y), d(x, fx), d(x, fy)
}

,

M′′(x, y) = max
{

d(x, y), d(y, fy), d(y, fx)
}

, and

N(x, y) = min
{

d(x, fx), d(y, fx)
}

.

We next show that the sequence {xn} is Cauchy. Suppose, for contradiction, that is, {xn}
is not Cauchy. Then there exist ε >  and two subsequences {xnk } and {xmk } of the sequence
{xn} such that

nk > mk > k, d(xmk , xnk –) < ε, and d(xmk , xnk ) ≥ ε. ()

These imply that

ε ≤ d(xmk , xnk )

≤ d(xmk , xmk –) + d(xmk –, xnk )
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≤ d(xmk , xmk –) + d(xmk –, xnk –) + d(xnk –, xnk )

≤ d(xmk , xmk –) + d(xmk , xnk –) + d(xnk –, xnk )

< d(xmk , xmk –) + ε + d(xnk –, xnk ).

In view of limn→∞ d(xn, xn+) =  and letting k → ∞ in the above inequalities, we obtain

lim
k→∞

d(xmk , xnk ) = lim
k→∞

d(xmk –, xnk )

= lim
k→∞

d(xmk –, xnk –)

= lim
k→∞

d(xmk , xnk –)

= ε. ()

Since xmk � xnk – for any k ∈N, () implies

ψ
(
d(xmk , xnk )

)
= ψ

(
d(fxmk –, fxnk –)

)

≤ ψ
(
M(xmk –, xnk –)

)

– φ
(
M′(xmk–, xnk –), M′′(xmk –, xnk –)

)

+ ξψ
(
N(xmk–, xnk –)

)
, ()

where

M(xmk –, xnk –) = max

{
d(xmk –, xnk –), d(xmk –, fxmk –), d(xnk –, fxnk –),

d(xmk –, fxnk –) + d(xnk –, fxmk –)


}

= max

{
d(xmk –, xnk –), d(xmk –, xmk ), d(xnk–, xnk ),

d(xmk –, xnk ) + d(xnk –, xmk )


}
,

M′(xmk –, xnk –) = max
{

d(xmk–, xnk –), d(xmk –, fxmk –), d(xmk –, fxnk –)
}

= max
{

d(xmk–, xnk –), d(xmk –, xmk ), d(xmk –, xnk )
}

,

M′′(xmk–, xnk –) = max
{

d(xmk–, xnk –), d(xnk –, fxnk –), d(xnk–, fxmk –)
}

= max
{

d(xmk–, xnk –), d(xnk –, xnk ), d(xnk –, xmk )
}

, and

N(xmk–, xnk –) = min
{

d(xmk –, fxmk –), d(xnk –, fxmk –)
}

= min
{

d(xmk –, xmk ), d(xnk –, xmk )
}

.

Letting k → ∞ in the above equalities and applying (), we obtain

lim
k→∞

M(xmk –, xnk –) = ε, ()

lim
k→∞

M′(xmk –, xnk –) = ε, ()
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lim
k→∞

M′′(xmk –, xnk –) = ε, ()

and

lim
k→∞

N(xmk–, xnk –) = . ()

Taking the limit as k → ∞ in inequality () and using ()-(), the continuity of ψ , and
the lower semicontinuity of φ, we conclude that

ψ(ε) ≤ ψ(ε) – φ(ε, ε),

which yields φ(ε, ε) = . Hence ε = , which contradicts the positivity of ε. Therefore, we
get the desired result. �

Lemma . Let (X,�, d) be an ordered metric space, and let f , g be two self-mappings of
X which f is an almost generalized C-contractive mapping with respect to g . Fix x ∈ X and
define a sequence {xn} by xn = fxn– and xn+ = gxn for all n ∈N. If limn→∞ d(xn, xn+) =
, and the sequence {xn} is non-decreasing, then {xn} is a Cauchy sequence.

Proof Since f is almost generalized C-contractive with respect to g , by Definition ., there
exists (ξ ,ψ ,φ) ∈ [,∞) × � × � such that

ψ
(
d(fx, gy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M′(x, y), M′′(x, y)

)
+ ξψ

(
N(x, y)

)
()

for all x, y ∈ X with x � y, where

M(x, y) = max

{
d(x, y), d(x, fx), d(y, gy),

d(x, gy) + d(y, fx)


}
,

M′(x, y) = max
{

d(x, y), d(x, fx), d(x, gy)
}

,

M′′(x, y) = max
{

d(x, y), d(y, gy), d(fx, y)
}

, and

N(x, y) = min
{

d(x, fx), d(y, fx), d(x, gy)
}

.

We now show that the sequence {xn} is Cauchy. Suppose, for contradiction, that is, {xn} is
not Cauchy. Then there exist ε >  and two subsequences {xnk } and {xmk } of the sequence
{xn} such that

nk > mk > k, d(xmk , xnk –) < ε, and d(xmk , xnk ) ≥ ε. ()

These and the triangle inequality imply that

ε ≤ d(xmk , xnk )

≤ d(xmk , xnk –) + d(xnk –, xnk –) + d(xnk –, xnk )

< ε + d(xnk –, xnk –) + d(xnk –, xnk ).
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In view of limn→∞ d(xn, xn+) =  and letting k → ∞ in the above inequalities, we obtain

lim
k→∞

d(xmk , xnk ) = ε. ()

By the triangle inequality, we have

d(xmk , xnk ) ≤ d(xmk , xmk +) + d(xmk +, xnk )

≤ d(xmk , xmk +) + d(xmk +, xnk +) + d(xnk +, xnk )

≤ d(xmk , xmk +) + d(xmk +, xmk +) + d(xmk +, xnk )

+ d(xnk , xnk +)

≤ d(xmk , xmk +) + d(xmk +, xmk +) + d(xmk , xnk )

+ d(xnk , xnk +).

Taking the limit as k → ∞ in the above inequalities and using (), we get

lim
k→∞

d(xmk +, xnk ) = lim
k→∞

d(xmk +, xnk ) = lim
k→∞

d(xmk +, xnk +) = ε. ()

Since xmk + � xnk for any k ∈ N, so by substituting x with xmk + and y with xnk in in-
equality (), it follows that

ψ
(
d(xmk +, xnk +)

)
= ψ

(
d(fxmk +, gxnk )

)

≤ ψ
(
M(xmk +, xnk )

)

– φ
(
M′(xmk +, xnk ), M′′(xmk +, xnk )

)

+ ξψ
(
N(xmk +, xnk )

)
, ()

where

M(xmk +, xnk ) = max

{
d(xmk +, xnk ), d(xmk +, fxmk +), d(xnk , gxnk ),

d(xmk +, gxnk ) + d(xnk , fxmk +)


}

= max

{
d(xmk +, xnk ), d(xmk +, xmk +), d(xnk , xnk +),

d(xmk +, xnk +) + d(xnk , xmk +)


}
,

M′(xmk +, xnk ) = max
{

d(xmk +, xnk ), d(xmk +, fxmk +), d(xmk +, gxnk )
}

= max
{

d(xmk +, xnk ), d(xmk +, xmk +), d(xmk +, xnk +)
}

,

M′′(xmk +, xnk ) = max
{

d(xmk +, xnk ), d(xnk , gxnk ), d(xnk , fxmk +)
}

= max
{

d(xmk +, xnk ), d(xnk , xnk +), d(xnk , xmk +)
}

, and

N(xmk +, xnk ) = min
{

d(xmk +, fxmk +), d(xnk , fxmk +), d(xmk +, gxnk )
}

= min
{

d(xmk +, xmk +), d(xnk , xmk +), d(xmk +, xnk +)
}

.
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Letting k → ∞ in the above equalities and applying (), (), we obtain

lim
k→∞

M(xmk +, xnk ) = ε, ()

lim
k→∞

M′(xmk +, xnk ) = ε, ()

lim
k→∞

M′′(xmk +, xnk ) = ε, and ()

lim
k→∞

N(xmk+, xnk ) = . ()

Taking the limit as k → ∞ in inequality () and using ()-(), the continuity of ψ , and
the lower semicontinuity of φ, we get

ψ(ε) ≤ ψ(ε) – φ(ε, ε),

which yields φ(ε, ε) = . Hence ε = , which contradicts the positivity of ε. Therefore, we
get the desired result. �

Theorem . Let (X,�, d) be an ordered complete metric space. Let f : X → X be non-
decreasing (with respect to �), continuous and almost generalized C-contractive. If there
exists x ∈ X such that x � fx, then f has a fixed point. In particular, if F(f ) is a totally
ordered subset of X, then f has a unique fixed point.

Proof Define a sequence {xn} in X by x and xn+ = fxn for all n ∈N. Since x � fx = x and
f is non-decreasing, we have x = fx � fx = x. By induction, One can show that

x � x � · · · � xn � xn+ � · · · .

If there exists some n ∈ N such that xn = xn+ = fxn , then xn is a fixed point of f . Hence
the proof is complete. Now suppose that xn 
= xn+ for all n ∈N, we have

M(xn–, xn) = max

{
d(xn–, xn), d(xn–, fxn–), d(xn, fxn),

d(xn–, fxn), d(xn, fxn–)


}

= max

{
d(xn–, xn), d(xn, xn+),

d(xn–, xn+)


}

≤ max

{
d(xn–, xn), d(xn, xn+),

d(xn–, xn) + d(xn, xn+)


}

= max
{

d(xn–, xn), d(xn, xn+)
}

, ()

M′(xn–, xn) = max
{

d(xn–, xn), d(xn–, fxn–), d(xn–, fxn)
}

= max
{

d(xn–, xn), d(xn–, xn+)
}

≥ d(xn–, xn), ()

M′′(xn–, xn) = max
{

d(xn–, xn), d(xn, fxn), d(xn, fxn–)
}

= max
{

d(xn–, xn), d(xn, xn+)
}

, and ()
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N(xn–, xn) = min
{

d(xn–, fxn–), d(xn, fxn–)
}

= min
{

d(xn–, xn), 
}

= . ()

On the other hand, our hypothesis implies that there exists (ξ ,ψ ,φ) ∈ [,∞) × � × �

such that

ψ
(
d(fx, fy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M′(x, y), M′′(x, y)

)
+ ξψ

(
N(x, y)

)

for all x, y ∈ X with x � y, which yields

ψ
(
d(xn, xn+)

)
= ψ

(
d(fxn–, fxn)

)

≤ ψ
(
M(xn–, xn)

)
– φ

(
M′(xn–, xn), M′′(xn–, xn)

)
+ ξψ

(
N(xn–, xn)

)

for all n ∈N. This and equations ()-() yield

ψ
(
d(xn, xn+)

) ≤ ψ

(
max

{
d(xn–, xn), d(xn, xn+),

d(xn–, xn+)


})

– φ
(
max

{
d(xn–, xn), d(xn–, xn+)

}
,

max
{

d(xn–, xn), d(xn, xn+)
})

()

holds for any n ∈N. Since φ and ψ are non-decreasing. Thus, from (), () and (), we
deduce that

ψ
(
d(xn, xn+)

) ≤ ψ
(
max

{
d(xn–, xn), d(xn, xn+)

})

– φ
(
d(xn–, xn), max

{
d(xn–, xn), d(xn, xn+)

})
()

holds for any n ∈N, which implies

ψ
(
d(xn, xn+)

)
< ψ

(
max

{
d(xn–, xn), d(xn, xn+)

})
()

holds for all n ∈N, because d(xn, xn+) > , hence

φ
(
d(xn–, xn), max

{
d(xn–, xn), d(xn, xn+)

})
> .

As ψ is non-decreasing, from () it follows that

d(xn, xn+) < max
{

d(xn–, xn), d(xn, xn+)
}

holds for any n ∈ N. This means that d(xn, xn+) < d(xn–, xn) holds for all n ∈ N. Thus, the
sequence {d(xn, xn+)} is decreasing. Then it converges to some nonnegative number a.
Also from (), for any n ∈N, we have

ψ
(
d(xn, xn+)

) ≤ ψ
(
d(xn–, xn)

)
– φ

(
d(xn–, xn), d(xn–, xn)

)
.
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The above inequality yields

lim sup
n→∞

ψ
(
d(xn, xn+)

) ≤ lim sup
n→∞

ψ
(
d(xn–, xn)

)
– lim inf

n→∞ φ
(
d(xn–, xn), d(xn–, xn)

)
.

Consequently, we have

ψ(a) ≤ ψ(a) – φ(a, a),

which implies φ(a, a) = . So a = . Then limn→∞ d(xn, xn+) = . Now by Lemma ., the
sequence {xn} is Cauchy. Since X is complete, there is some z ∈ X such that xn → z as n →
∞. The continuity of f implies fxn → fz as n → ∞. From the uniqueness of the limit, we
conclude that fz = z. Hence z ∈ F(f ). Now, we suppose that F(f ) is totally ordered. We will
show that z is unique. Assume u is another fixed point of f . As u, z ∈ F(f ), our assumption
implies that z and u are comparable. Without loss of generality, we may assume that u � z.
Therefore,

ψ
(
d(u, z)

)
= ψ

(
d(fu, fz)

) ≤ ψ
(
M(u, z)

)
– φ

(
M′(u, z), M′′(u, z)

)
+ ξψ

(
N(u, z)

)

= ψ
(
d(u, z)

)
– φ

(
d(u, z), d(u, z)

)
.

This yields φ(d(u, z), d(u, z)) = . So d(u, z) = , that is, u = z. Thus, we get the desired
result. �

The following corollary is an immediate consequence of the above theorem.

Corollary . Let (X,�) and (X, d) be a totally ordered set and a complete metric space,
respectively. Let f : X → X be non-decreasing (with respect to �), continuous and almost
generalized C-contractive. If there exists x ∈ X such that x � fx, then f has a unique fixed
point.

Theorem . Let (X,�, d) be an ordered complete metric space. Let f , g : X → X be two
weakly increasing mappings which f is almost generalized C-contractive with respect to g . If
either f or g is continuous, then the fixed point set of f is nonempty and F(f , g) = F(f ) = F(g).
Particularly, if F(f ) is a totally ordered subset of X, then f and g have a unique common
fixed point.

Proof Our assumption implies that there exists some (ψ ,φ, ξ ) ∈ � ×�× [,∞) such that

ψ
(
d(fx, gy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M′(x, y), M′′(x, y)

)
+ ξψ

(
N(x, y)

)
()

for all x, y ∈ X with x � y, where

M(x, y) = max

{
d(x, y), d(x, fx), d(y, gy),

d(x, gy) + d(y, fx)


}
,

M′(x, y) = max
{

d(x, y), d(x, fx), d(x, gy)
}

,

M′′(x, y) = max
{

d(x, y), d(y, gy), d(y, fx)
}

, and

N(x, y) = min
{

d(x, fx), d(y, fx), d(x, gy)
}

.
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We now show that F(f ) = F(g). Let z ∈ F(f ). So fz = z. Since z � z, inequality () implies
that

ψ
(
d(z, gz)

)
= ψ

(
d(fz, gz)

) ≤ ψ
(
M(z, z)

)
– φ

(
M′(z, z), M′′(z, z)

)
+ ξψ

(
N(z, z)

)
.

Therefore,

ψ
(
d(z, gz)

) ≤ ψ
(
d(z, gz)

)
– φ

(
d(z, gz), d(z, gz)

)
,

which yields φ(d(z, gz), d(z, gz)) = . As φ ∈ �, we get d(z, gz) = . Hence gz = z, that is,
z ∈ F(g). So F(f ) ⊆ F(g). Similarly, one can show that F(g) ⊆ F(f ). Therefore, we have
F(f , g) = F(f ) = F(g). Let x be an arbitrary element of X. Define a sequence {xn} by x and

xn = fxn–, xn+ = gxn for all n ∈N.

If there exists m ∈ N such that either xm = xm– or xm+ = xm holds, then F(f ) is
nonempty. Because if xm = xm–, then fxm– = xm = xm–. So xm– ∈ F(f ). If xm+ =
xm, then gxm = xm+ = xm. Hence, xm ∈ F(g) = F(f ). Therefore, we may suppose that
xn 
= xn+ for any n ∈ N. Without loss of generality we can assume that x � x. We now
show that the sequence {xn} is non-decreasing. As f and g are weakly increasing mappings,
we obtain

x = fx � gfx = gx = x � fgx = gx = x � x � · · · .

Hence the sequence {xn} is non-decreasing. Suppose n ∈ N is arbitrary. Since xn– � xn,
inequality () implies

ψ
(
d(xn, xn+)

)
= ψ

(
d(fxn–, gxn)

)

≤ ψ
(
M(xn–, xn)

)
– φ

(
M′(xn–, xn), M′′(xn–, xn)

)

+ ξψ
(
N(xn–, xn)

)
, ()

where

M(xn–, xn) = max

{
d(xn–, xn), d(xn–, fxn–), d(xn, gxn),

d(xn–, gxn) + d(fxn–, xn)


}

= max

{
d(xn–, xn), d(xn, xn+),

d(xn–, xn+)


}

≤ max
{

d(xn–, xn), d(xn, xn+)
}

, ()

M′(xn–, xn) = max
{

d(xn–, xn), d(xn–, fxn–), d(xn–, gxn)
}

= max
{

d(xn–, xn), d(xn–, xn+)
}

≥ d(xn–, xn), ()
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M′′(xn–, xn) = max
{

d(xn–, xn), d(xn, gxn), d(xn, fxn–)
}

= max
{

d(xn–, xn), d(xn, xn+)
} ≥ d(xn–, xn), and ()

N(xn–, xn) = min
{

d(xn–, fxn–), d(xn, fxn–), d(xn–, gxn)
}

= min
{

d(xn–, xn), , d(xn–, xn+)
}

= . ()

Thus, inequality () becomes

ψ
(
d(xn, xn+)

) ≤ ψ

(
max

{
d(xn–, xn), d(xn, xn+),

d(xn–, xn+)


})

– φ
(
max

{
d(xn–, xn), d(xn–, xn+)

}
, max

{
d(xn–, xn),

d(xn, xn+)
})

. ()

Since ψ and φ are non-decreasing, the above inequality and inequalities (), (), and
() yield the following inequality:

ψ
(
d(xn, xn+)

) ≤ ψ
(
max

{
d(xn–, xn), d(xn, xn+)

})

– φ
(
d(xn–, xn), d(xn–, xn)

)
. ()

As φ(d(xn–, xn), d(xn–, xn)) > , inequality () implies

ψ
(
d(xn, xn+)

)
< ψ

(
max

{
d(xn–, xn), d(xn, xn+)

})
.

Since ψ is non-decreasing, it follows from the above inequality that

d(xn, xn+) < max
{

d(xn–, xn), d(xn, xn+)
}

.

So

d(xn, xn+) < max
{

d(xn–, xn)), d(xn, xn+)
}

= d(xn–, xn). ()

Hence inequality () becomes

ψ
(
d(xn, xn+)

) ≤ ψ
(
d(xn–, xn)

)

– φ
(
d(xn–, xn), d(xn–, xn)

)
. ()

Similarly, one can show that

d(xn+, xn+) < d(xn+, xn). ()

Set yn = d(xn, xn+) and zn = d(xn+, xn+). Then from () and (), we get

· · · zn < yn < zn– < yn– < · · · < z < y, ()
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which shows that the two sequences {yn} and {zn} are strictly decreasing and bounded.
Hence {yn} and {zn} are convergent. Assume that limn→∞ yn = a and limn→∞ zn = b. By
(), we have a = b. Taking the limit superior as n → ∞ in (), we conclude that

lim sup
n→∞

ψ
(
d(xn+, xn)

) ≤ lim sup
n→∞

ψ
(
d(xn, xn–)

)

– lim inf
n→∞ φ

(
d(xn, xn+), d(xn, xn–)}). ()

Because limn→∞ yn = limn→∞ zn = a, (), the continuity of ψ , and the lower semicontinu-
ity of φ imply that

ψ(a) ≤ ψ(a) – φ(a, a).

Thus, φ(a, a) = . Consequently, a = . So limn→∞ yn = limn→∞ zn = . This implies that
limn→∞ d(xn, xn+) = . As the sequence {xn} is non-decreasing and limn→∞ d(xn, xn+) = ,
Lemma . implies that {xn} is a Cauchy sequence. Since X is complete, there is some u ∈ X
such that xn → u as n → ∞. Without loss of generality we assume that f is continuous.
As xn– → u as n → ∞, the continuity of f implies that xn = fxn– → fu as n → ∞.
By the uniqueness of the limit, we obtain fu = u. Therefore, u ∈ F(f ) = F(g). Now sup-
pose that F(f ) is a totally ordered subset of X. We will show that u is unique. Suppose
that z ∈ F(f , g) = F(f ) = F(g). By our hypothesis u, z are comparable, hence without loss of
generality suppose u � z. Thus, inequality () implies that

ψ
(
d(u, z)

)
= ψ

(
d(fu, gz)

) ≤ ψ
(
M(u, z)

)
– φ

(
M′(u, z), M′′(u, z)

)
+ ξψ

(
N(u, z)

)

= ψ
(
d(u, z)

)
– φ

(
d(u, z), d(u, z)

)

holds, which implies φ(d(u, z), d(u, z)) = . So d(u, z) = . Consequently, u = z. This com-
pletes the proof of the theorem. �

Applying Theorem ., we can obtain the following result.

Corollary . Let (X,�) and (X, d) be a totally ordered set and a complete metric space,
respectively. Let f , g : X → X be two weakly increasing mappings which f is almost gener-
alized C-contractive with respect to g . If either f or g is continuous, then f and g have a
unique common fixed point.

The following examples support Theorem ..

Example . Let X = [,∞) and define the metric d on X as follows:

d(x, y) =

{
 if x = y,
x + y if x 
= y

for all x, y ∈ X (this metric has been introduced by Shatanawi and Al-Rawashdeh []). For
any x ∈ X, define the functions f , g : X → X by

f (x) =

{
 if  ≤ x ≤ ,
x –  if  < x
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and

g(x) =

{
 if  ≤ x ≤ ,
x –  if  < x.

Also, define ψ : R+ → R
+ and φ : R+ × R

+ → R
+ by setting ψ(t) = t,φ(s, t) = s+t

 for all
s, t ∈ R

+, respectively. Consider a relation � on X by x � y if only if y ≤ x for all x, y ∈ X.
Then the following statements hold:

(a) (X,�, d) is an ordered complete metric space.
(b) f and g are weakly increasing mappings with respect to �.
(c) f is continuous.
(d) (ψ ,φ) ∈ � × �.
(e) f is an almost generalized C -contractive mapping with respect to g , that is,

ψ
(
d(fx, gy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M′(x, y), M′′(x, y)

)
+ ξψ

(
N(x, y)

)

for all x, y ∈ X , where ξ > 
 and

M(x, y) = max

{
d(x, y), d(x, fx), d(y, gy),

d(x, gy) + d(y, fx)


}
,

M′(x, y) = max
{

d(x, y), d(x, fx), d(x, gy)
}

,

M′′(x, y) = max
{

d(x, y), d(y, gy), d(fx, y)
}

, and

N(x, y) = min
{

d(x, fx), d(y, fx), d(x, gy)
}

.

Proof (a) Assume a sequence {xn} in X converges to some a ∈ X. By the definition of d,
one can find some N ∈ N such that xn = a holds for all n ≥ N . Hence (X, d) is a complete
metric space. It is obvious that (X,�) is a partially ordered set (indeed, (X,�) is a totally
ordered set). So (X,�, d) is an ordered complete metric space.

(b) To see this, let x ∈ X, we will show that fx � gfx and gx � fgx. We first show that
fx � gfx. To prove this, consider the following cases:

If  ≤ x ≤ , then fx = gfx =  and hence fx � gfx. If  < x ≤ , then  = gfx < fx = x – , it
follows that fx � gfx. If x > , then x –  = gfx < fx = x –  and hence fx � gfx. Therefore,
fx � gfx holds. We now show gx � fgx holds. To see this, consider the following cases:

If  ≤ x ≤ , then  = gx ≤ fgx = . So gx � fgx. If  < x ≤ , then  = fgx < gx = x –  and
hence gx � fgx. If x > , then x –  = fgx < gx = x – . Consequently, gx � fgx. Therefore, in
any case, we get gx � fgx.

(c) Let a ∈ X be arbitrary, and {xn} be a sequence in X such that xn → a as n → ∞. By
the definition of d, there exists N ∈ N such that for any n ≥ N , xn = a. Hence fxn = fa holds
for all n ≥ N , which implies limn→∞ fxn = fa. So f is continuous at a. Since a is arbitrary,
hence f is continuous.

(d) It is trivial.
(e) Let (x, y) ∈ X × X be arbitrary. We will show that

ψ
(
d(fx, gy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M′(x, y), M′′(x, y)

)
+ ξψ

(
N(x, y)

)
. ()

To see this, we consider four cases:
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Case I. (x, y) ∈ [, ] × [, ].
In this case, we have ψ(d(fx, gy)) = . If x = y = , then M(, ) = M′(, ) = M′′(, ) =

N(, ) = . Hence () holds.
If x = , y 
= , then M(, y) = M′(, y) = M′′(, y) = y +  and N(, y) = . Thus, inequality

() becomes  ≤ (y + ) – (y + ) = y(y + ), which holds.
Let x 
= , y = . Then we have M(x, ) = M′(x, ) = M′′(x, ) = x + , N(x, ) = , and hence

() becomes  ≤ (x + ) – (x + ) = x(x + ), which holds. So () holds.
Let x = y 
= . Then we have M(x, x) = M′(x, x) = M′′(x, x) = N(x, x) = x + , and hence ()

becomes  ≤ (x + ) – (x + ) + ξ (x + ) = (x + )((ξ + )(x + ) – ), which holds. So () is
valid.

If x, y >  with x 
= y, then we get M(x, y) = M′(x, y) = M′′(x, y) = x + y and N(x, y) = min{x +
, y + } = N > , and so () becomes

 ≤ (x + y) – (x + y) + ξN.

As ξ > 
 and N > , we get

 ≤ (x + y) – (x + y) + ξ ≤ (x + y) – (x + y) + ξN.

Thus, () is true. Therefore, in any case () is valid.
Case II. (x, y) ∈ [, ] × (,∞).
In this case, we have ψ(d(fx, gy)) = (y – ). If x = , then

M(, y) = M′′(, y) = y – , M′(, y) = y + , and N(, y) = .

Putting these into (), it reduces to (y – ) ≤ (y – ) – (y+)+(y–)
 . Since y > ,  ≤

y – y + , which is equivalent to (y – ) ≤ (y – ) – (y – ). On the other hand,
y +  ≤ (y+)+(y–)

 ≤ y – , so we have

(y – ) ≤ (y – ) – (y – ) ≤ (y – ) –
(y + ) + (y – )


.

This implies ().
If  < x ≤ ,  < y, then we have

M(x, y) = max{x + y, x + , y – } = max{x + y, y – },
M′(x, y) = max{x + y, x + , x + y – } = x + y,

M′′(x, y) = max{x + y, y – , y + } = max{x + y, y – }, and

N(x, y) = min{x + , y + , x + y – } = x + .

If M(x, y) = x + y, then () reduces to

(y – ) ≤ (x + y) – (x + y) + ξ (x + ).

To prove this, we first show that

(x + y – ) ≤ (x + y) – (x + y) + ξ (x + ) (h)
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holds. Inequality (h) is equivalent to

(
(x + y) – (x + y) +  ≤ (x + y) – (x + y) + ξ (x + )) ≡ (

–(x + y) +  ≤ ξ (x + )).

As x >  and y > , so –(x + y) +  < – +  < ξ (x + ) holds. In view of this and the above
equivalence, we conclude that inequality (h) is true. Since (y – ) ≤ (x + y – ), hence
inequality (h) implies inequality ().

If M(x, y) = y – , then () reduces to

(y – ) ≤ (y – ) –
(x + y) + (y – )


+ ξ (x + ).

To see it, we first show

(y –  – ) = (y – ) ≤ (y – ) – (y – ) + ξ (x + ) (i)

holds. Inequality (i) is equivalent to

(
(y – ) – (y – ) +  ≤ (y – ) – (y – ) + ξ (x + ))

≡ (
–(y – ) +  ≤ ξ (x + )).

Because y > , hence –(y – ) +  < – +  < ξ (x + ) holds. This and the above equiv-
alence yield inequality (i). On the other hand, x + y ≤ (x+y)+(y–)

 ≤ y – . Hence we have

(y –  – ) = (y – )x ≤ (y – ) – (y – ) + ξ (x + ) (
by (i)

)

≤ (y – ) –
(x + y) + (y – )


+ ξ (x + ).

This establishes inequality ().
Case III. Let (x, y) ∈ (,∞) × [, ].
In this case, we have ψ(d(fx, gy)) = (x – ).
If x = y, then we have

M(x, x) = max{x – , x + } = x – ,

M′(x, x) = max{x – , x + } = x – ,

M′′(x, x) = max{x + , x – } = x – , and

N(x, x) = min{x – , x + } = x + .

Hence inequality () reduces to

(x – ) ≤ (x – ) – (x – ) + ξ (x + ),

which is equivalent to  ≤ (x – ) – (x – ) + ξ (x + ). Since x >  and ξ > 
 , we have

 ≤ (x – ) – (x – ) + ξ ≤ (x – ) – (x – ) + ξ (x + ).

Thus, inequality () is true.
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If x 
= y, we have

M(x, y) = max{x + y, x – , y + } = max{x + y, x – },
M′(x, y) = max{x + y, x – , x + } = max{x + y, x – },
M′′(x, y) = max{x + y, y + , x + y – } = x + y, and

N(x, y) = min{x – , x + y – , x + } = x + .

If M(x, y) = x + y, then inequality () reduces to

(x – ) ≤ (x + y) – (x + y) + ξ (x + ).

To prove it, we first show that

(x + y – ) ≤ (x + y) – (x + y) + ξ (x + ) (j)

holds, which is equivalent to

(
(x + y) – (x + y) +  ≤ (x + y) – (x + y) + ξ (x + ))

≡ (
–(x + y) +  ≤ ξ (x + )).

Since x >  and y ≥ , we have –(x + y) +  < – +  < ξ (x + ). So inequality (j) is valid. On
the other hand, we have (x – ) ≤ (x + y – ). This along with (j) implies inequality ().

If M(x, y) = x – , then () becomes

(x – ) ≤ (x – ) –
(x – ) + (x + y)


+ ξ (x + ).

To see this, we first prove the following inequality:

(x –  – ) = (x – ) ≤ (x – ) – (x – ) + ξ (x + ). (k)

This is equivalent to

(
(x – ) – (x – ) +  ≤ (x – ) – (x – ) + ξ (x + ))

≡ (
–(x – ) +  ≤ ξN).

As x > , hence –(x – ) +  < – +  < ξ (x + ). This along with the above equivalence
establishes (k). Since M(x, y) = x –  ≥ x + y, from (k), we get

(x – ) ≤ (x + y – )

≤ (x – )

≤ (x – ) – (x – ) + ξ (x + )

≤ (x – ) –
(x – ) + (x + y)


+ ξ (x + ).

Therefore, inequality () is valid.
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Case IV. (x, y) ∈ (,∞) × (,∞). In this case, we have ψ(d(fx, gy)) = (x + y – ).
If x = y, we have

M(x, x) = max{x – , x – } = x – ,

M′(x, x) = max{x – , x – } = x – ,

M′′(x, x) = max{x – , x – } = x – , and

N(x, x) = min{x – , x – } = x – .

So inequality () reduces to

(x –  – ) = (x – ) ≤ (x – ) – (x – ) + ξ (x – ),

which is equivalent to

(
(x – ) – (x – ) +  ≤ (x – ) – (x – ) + ξ (x – ))

≡ (
–(x – ) +  ≤ ξ (x – )).

Because x > , hence –(x – ) +  < – +  < ξ (x – ) holds. This along with the above
equivalence implies ().

If x 
= y, then we have

M(x, y) = max{x + y, x – , y – },
M′(x, y) = max{x + y, x – },
M′′(x, y) = max{x + y, y – }, and

N(x, y) = min{x – , x + y – } = N .

Then the following three cases occur for M(x, y).
Case . If M(x, y) = x + y, then () reduces to

(x + y – ) ≤ (x + y) – (x + y) + ξN,

which is equivalent to

(
(x + y) – (x + y) +  ≤ (x + y) – (x + y) + ξN)

≡ (
–(x + y) +  ≤ ξN).

Since x >  and y > , so –(x + y) +  < – +  < ξN holds. This and the above equiv-
alence imply ().

Case . If M(x, y) = x –  and M′′(x, y) = x + y, then () becomes

(x + y – ) ≤ (x – ) –
(x – ) + (x + y)


+ ξN.
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To prove it, we first establish that

(x –  – ) = (x – ) ≤ (x – ) – (x – ) + ξN, (l)

holds. This is equivalent to

(
(x – ) – (x – ) +  ≤ (x – ) – (x – ) + ξN)

≡ (
–(x – ) +  ≤ ξN).

Since x > , we have –(x – ) +  < – +  < ξN. So (l) is valid. As x + y ≤ x – , we
have

(x + y – ) ≤ (x – )

≤ (x – ) – (x – ) + ξN (
by (l)

)

≤ (x – ) –
(x – ) + (x + y)


+ ξN.

Therefore, inequality () holds.
If M(x, y) = x –  and M′′(x, y) = y – , then () reduces to

(x + y – ) ≤ (x – ) –
(x – ) + (y – )


+ ξN.

Because y –  ≤ x – , by inequality (l), we have

(x + y – ) ≤ (x – )

≤ (x – ) – (x – ) + ξN

≤ (x – ) –
(x – ) + (y – )


+ ξN.

This implies ().
Case . If M(x, y) = y –  and M′(x, y) = x + y, then () reduces to

(x + y – ) ≤ (y – ) –
(x + y) + (y – )


+ ξN.

To see this, we first show

(y –  – ) = (y – ) ≤ (y – ) – (y – ) + ξN, (m)

which is equivalent to

(
(y – ) – (y – ) +  ≤ (y – ) – (y – ) + ξN)

≡ (
–(y – ) +  ≤ ξN).
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As y > , we obtain –(y – ) +  < – +  < ξN. So (m) holds. Since x + y ≤ y – ,
from (m), we get

(x + y – ) ≤ (y – )

≤ (y – ) – (y – ) + ξN

≤ (y – ) –
(x + y) + (y – )


+ ξN.

Thus, () holds.
If M(x, y) = y –  and M′(x, y) = x – , then () reduces to

(x + y – ) ≤ (y – ) –
(x – ) + (y – )


+ ξN.

As x + y ≤ y –  and x –  ≤ y – , we have

(x + y – ) ≤ (y – )

≤ (y – ) – (y – ) + ξN (
by (m)

)

≤ (y – ) –
(x – ) + (y – )


+ ξN.

This establishes (). Therefore, in any case inequality () holds. So the proof of (e) is
completed. Thus, f , g,ψ , and φ satisfy the hypotheses of Theorem ., hence F(f , g) is
nonempty (in fact,  ∈ F(f , g) = F(f ) = F(g)). On the other hand, since X is a totally ordered
set, hence F(f , g) is a totally ordered subset of X. So Theorem . implies that the set F(f , g)
is singleton (indeed, we observe that F(f , g) = {}). �

Example . Set X = {, , , }. Let d,ψ , and φ be as in Example .. Consider the
relation � and the mappings f , g on X by �= {(, ), (, ), (, ), (, ), (, )} and f =
{(, ), (, ), (, ), (, )}, g = {(, ), (, ), (, ), (, )}, respectively. It is clear that (X,�)
is an ordered set. Similar to the arguments given Example . ((a), (c)) one can show that
(X, d) and f are complete and continuous, respectively. It is easy to see that the mappings
f and g are weakly increasing with respect to �. We next show that

ψ
(
d(fx, gy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M′(x, y), M′′(x, y)

)
+ ξψ

(
N(x, y)

)
()

for all x, y ∈ X with x � y, where ξ ≥ ., and

M(x, y) = max

{
d(x, y), d(x, fx), d(y, gy),

d(x, gy) + d(y, fx)


}
,

M′(x, y) = max
{

d(x, y), d(x, fx), d(x, gy)
}

,

M′′(x, y) = max
{

d(x, y), d(y, gy), d(fx, y)
}

, and

N(x, y) = min
{

d(x, fx), d(y, fx), d(x, gy)
}

.
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To see this, we have

 = ψ
(
d
(
f (), g()

)) ≤ ψ
(
M(, )

)
– φ

(
M′(, ), M′′(, )

)
+ ξψ

(
N(, )

)

= ψ() – φ(, ) + ξψ()

=  + ξ ,

 = ψ
(
d
(
f (), g()

)) ≤ ψ
(
M(, )

)
– φ

(
M′(, ), M′′(, )

)
+ ξψ

(
N(, )

)

= ψ() – φ(, ) + ξψ()

= ,

 = ψ
(
d
(
f (), g()

)) ≤ ψ
(
M(, )

)
– φ

(
M′(, ), M′′(, )

)
+ ξψ

(
N(, )

)

= ψ() – φ(, ) + ξψ()

=  + ξ ,

 = ψ
(
d
(
f (), g()

)) ≤ ψ
(
M(, )

)
– φ

(
M′(, ), M′′(, )

)
+ ξψ

(
N(, )

)

= ψ() – φ(, ) + ξψ()

= , and

 = ψ
(
d
(
f (), g()

)) ≤ ψ
(
M(, )

)
– φ

(
M′(, ), M′′(, )

)
+ ξψ

(
N(, )

)

= ψ() – φ(, ) + ξψ()

= . + ξ .

These mean that the mapping f is almost generalized C-contractive with respect to the
mapping g . Now, it follows from Theorem . that the fixed point set of f is nonempty
and F(f , g) = F(f ) = F(g). We observe that F(f , g) = F(f ) = F(g) = {, }.
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