Open Acc<u>ess</u>

Common fixed points of *G*-nonexpansive mappings on Banach spaces with a graph

Orawan Tripak*

*Correspondence: orawan.t@psu.ac.th Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand

Abstract

In this paper, we prove the weak and strong convergence of a sequence $\{x_n\}$ generated by the Ishikawa iteration to some common fixed points of two *G*-nonexpansive mappings defined on a Banach space endowed with a graph.

MSC: 47H09; 47E10; 47H10

Keywords: common fixed point; *G*-nonexpansive mappings; Ishikawa iteration; Banach space; directed graph

1 Introduction

In 1922, Banach proved a remarkable and powerful result called the *Banach contraction principle*. Because of its fruitful applications, the principle has been generalized in many directions. The recent version of the theorem was given in Banach spaces endowed with a graph. In 2008, Jachymski [1] gave a generalization of the Banach contraction principle to mappings on a metric space endowed with a graph. In 2012, Aleomraninejad *et al.* [2] presented some iterative scheme results for *G*-contractive and *G*-nonexpansive mappings on graphs. In 2015, Alfuraidan and Khamsi [3] defined the concept of *G*-monotone non-expansive multivalued mappings defined on a metric space with a graph. In the same year, Alfuraidan [4] gave a new definition of the *G*-contraction and obtained sufficient conditions for the existence of fixed points for multivalued mappings on a metric space with a graph, and also in [5], he proved the existence of a fixed point of monotone nonexpansive mapping defined in a Banach space endowed with a graph. Recently, Tiammee *et al.* [6] proved Browder's convergence theorem for *G*-nonexpansive mapping in a Banach space with a directed graph. They also proved the strong convergence of the Halpern iteration for a *G*-nonexpansive mapping.

Inspired by all aforementioned references, the author proves strong and weak convergence theorems for *G*-nonexpansive mappings using the Ishikawa iteration generated from arbitrary x_0 in a closed convex subset *C* of a uniformly convex Banach space *X* endowed with a graph.

2 Preliminaries

In this section, we recall some standard graph notations and terminology and also some needed results.

© 2016 Tripak. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Let (X, d) be a metric space, and $\triangle = \{(x, x) | x \in X\}$. Consider a directed graph *G* for which the set V(G) of its vertices coincides with *X* and the set E(G) of its edges contains all loops. Assume that *G* has no parallel edges. Then G = (V(G), E(G)), and by assigning to each edge the distance between its vertices, *G* may be treated as a *weighted* graph.

Definition 2.1 The *conversion* of a graph *G* is the graph obtained from *G* by reversing the direction of edges denoted by G^{-1} , and

$$E(G^{-1}) = \{(x, y) \in X \times X | (y, x) \in E(G)\}.$$

Definition 2.2 Let *x* and *y* be vertices of a graph *G*. A *path* in *G* from *x* to *y* of length *N* $(N \in \mathbb{N} \cup \{0\})$ is a sequence $\{x_i\}_{i=0}^N$ of N + 1 vertices for which

 $x_0 = x$, $x_N = y$, and $(x_i, x_{i+1}) \in E(G)$ for i = 0, 1, ..., N - 1.

Definition 2.3 A graph *G* is said to be *connected* if there is a path between any two vertices of the graph *G*.

Definition 2.4 A directed graph G = (V(G), E(G)) is said to be *transitive* if, for any $x, y, z \in V(G)$ such that (x, y) and (y, z) are in E(G), we have $(x, z) \in E(G)$.

The definition of a *G*-nonexpansive mapping is given as follows.

Definition 2.5 Let *C* be a nonempty convex subset of a Banach space *X*, and *G* = (V(G), E(G)) a directed graph such that V(G) = C. Then a mapping $T : C \to C$ is *G*-non-expansive (see [3], Definition 2.3(iii)) if it satisfies the following conditions.

- (i) *T* is edge-preserving.
- (ii) $||Tx Ty|| \le ||x y||$ whenever $(x, y) \in E(G)$ for any $x, y \in C$.

Definition 2.6 ([7]) Let *C* be a nonempty closed convex subset of a real uniformly convex Banach space *X*. The mappings T_i (i = 1, 2) on *C* are said to satisfy *Condition* B if there exists a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(r) > 0 for all r > 0such that, for all $x \in C$,

$$\max\{\|x-T_1x\|, \|x-T_2x\|\} \ge f(d(x,F)),$$

where $F = F(T_1) \cap F(T_2)$ and $F(T_i)$ (*i* = 1, 2) are the sets of fixed points of T_i .

Definition 2.7 ([7]) Let *C* be a subset of a metric space (*X*, *d*). A mapping *T* is *semicompact* if for a sequence $\{x_n\}$ in *C* with $\lim_{n\to\infty} d(x_n, Tx_n) = 0$, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \to p \in C$.

Definition 2.8 A Banach space *X* is said to satisfy *Opial's property* if the following inequality holds for any distinct elements *x* and *y* in *X* and for each sequence $\{x_n\}$ weakly convergent to *x*:

$$\liminf_{n\to\infty} \|x_n-x\| < \liminf_{n\to\infty} \|x_n-y\|.$$

Definition 2.9 Let *X* be a Banach space. A mapping *T* with domain *D* and range *R* in *X* is *demiclosed at* 0 if, for any sequence $\{x_n\}$ in *D* such that $\{x_n\}$ converges weakly to $x \in D$ and $\{Tx_n\}$ converges strongly to 0, we have Tx = 0.

Lemma 2.10 ([8]) Let X be a uniformly convex Banach space, and $\{\alpha_n\}$ a sequence in $[\delta, 1 - \delta]$ for some $\delta \in (0, 1)$. Suppose that sequences $\{x_n\}$ and $\{y_n\}$ in X are such that $\limsup_{n\to\infty} \|x_n\| \le c$, $\limsup_{n\to\infty} \|y_n\| \le c$ and $\limsup_{n\to\infty} \|\alpha x_n + (1 - \alpha_n)y_n\| = c$ for some $c \ge 0$. Then $\lim_{n\to\infty} \|x_n - y_n\| = 0$.

Lemma 2.11 ([9]) Let X be a Banach space, and R > 1 be a fixed number. Then X is uniformly convex if and only if there exists a continuous, strictly increasing, and convex function $g: [0, \infty) \rightarrow [0, \infty)$ with g(0) = 0 such that

$$\|\lambda x + (1-\lambda)y\|^2 \le \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)g(\|x-y\|)$$

for all $x, y \in B_R(0) = \{x \in X | ||x|| \le R\}$ and $\lambda \in [0, 1]$.

Lemma 2.12 ([10]) Let X be a Banach space that satisfies Opial's property, and let $\{x_n\}$ be a sequence in X. Let x, y in X be such that $\lim_{n\to\infty} ||x_n - x||$ and $\lim_{n\to\infty} ||x_n - y||$ exist. If $\{x_{n_j}\}$ and $\{x_{n_k}\}$ are subsequences of $\{x_n\}$ that converge weakly to x and y, respectively, then x = y.

3 Main results

Throughout the section, we let *C* be a nonempty closed convex subset of a Banach space *X* endowed with a directed graph *G* such that V(G) = C and E(G) is convex. We also suppose that the graph *G* is transitive. The mappings T_i (i = 1, 2) are *G*-nonexpansive from *C* to *C* with $F = F(T_1) \cap F(T_2)$ nonempty. Let { x_n } be a sequence generated from arbitrary $x_0 \in C$,

 $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_1 y_n,$ $y_n = (1 - \beta_n)x_n + \beta_n T_2 x_n,$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in [0,1].

We first begin by proving the following useful results.

Proposition 3.1 Let $z_0 \in F$ be such that (x_0, z_0) , (y_0, z_0) , (z_0, x_0) , and (z_0, y_0) are in E(G). Then (x_n, z_0) , (y_n, z_0) , (z_0, x_n) , (z_0, y_n) , and (x_n, y_n) are in E(G).

Proof We divide the proof into three parts. In the first part, with the assumption (x_0, z_0) , $(y_0, z_0) \in E(G)$, we will show by induction that $(x_n, z_0), (y_n, z_0) \in E(G)$. Then, with the assumption $(z_0, x_0), (z_0, y_0) \in E(G)$, we will again prove by induction that $(z_0, x_n), (z_0, y_n) \in E(G)$. In the third part, we combine these two results using transitivity of *G* to get the statement in the proposition. Let (x_0, z_0) and $(y_0, z_0) \in E(G)$. Then $(T_1y_0, z_0), (T_2x_0, z_0) \in E(G)$ since T_i (i = 1, 2) are edge-preserving. By the convexity of E(G) and $(T_1y_0, z_0), (x_0, z_0) \in E(G)$, we have $(x_1, z_0) \in E(G)$. Then, by edge-preserving of T_2 , $(T_2x_1, z_0) \in E(G)$. Again, by the convexity of E(G) and $(T_2x_1, z_0), (x_1, z_0) \in E(G)$. Then $(T_2x_k, z_0), (T_1y_k, z_0) \in E(G)$.

E(G) since T_i (i = 1, 2) are edge-preserving. Since E(G) is convex, (x_{k+1}, z_0) $\in E(G)$. Indeed,

$$\alpha(T_1y_k, z_0) + (1 - \alpha)(x_k, z_0) = (\alpha T_1y_k + (1 - \alpha)x_k, z_0) = (x_{k+1}, z_0) \in E(G).$$

Since T_2 is edge-preserving, $(T_2x_{k+1}, z_0) \in E(G)$. Using the convexity of E(G), we get $(y_{k+1}, z_0) \in E(G)$. To be explicit,

$$\beta(T_2x_{k+1},z_0) + (1-\beta)(x_{k+1},z_0) = (\beta T_2x_{k+1} + (1-\beta)x_{k+1},z_0) = (y_{k+1},z_0) \in E(G).$$

Hence, by induction, $(x_n, z_0), (y_n, z_0) \in E(G)$ for all $n \ge 1$. Using a similar argument, we can show that $(z_0, x_n), (z_0, y_n) \in E(G)$ under the assumption that $(z_0, x_0), (z_0, y_0) \in E(G)$. Therefore, $(x_n, y_n) \in E(G)$ by the transitivity of G.

Lemma 3.2 Let $z_0 \in F$. Suppose that $(x_0, z_0), (y_0, z_0), (z_0, x_0), (z_0, y_0) \in E(G)$ for arbitrary x_0 in *C*. Then $\lim_{n\to\infty} ||x_n - z_0||$ exists.

Proof Notice that

$$\begin{aligned} \|x_{n+1} - z_0\| &= \left\| (1 - \alpha_n) x_n + \alpha_n T_1 y_n - z_0 \right\| \\ &\leq (1 - \alpha_n) \|x_n - z_0\| + \alpha_n \|T_1 y_n - z_0\| \\ &\leq (1 - \alpha_n) \|x_n - z_0\| + \alpha_n \|y_n - z_0\| \\ &= (1 - \alpha_n) \|x_n - z_0\| + \alpha_n \left\| (1 - \beta_n) x_n - (1 - \beta_n) z_0 + \beta_n (T_2 x_n - z_0) \right\| \\ &\leq (1 - \alpha_n) \|x_n - z_0\| + \alpha_n (1 - \beta_n) \|x_n - z_0\| + \alpha_n \beta_n \|x_n - z_0\| \\ &= (1 - \alpha_n) \|x_n - z_0\| + \alpha_n \|x_n - z_0\| \\ &= \|x_n - z_0\|. \end{aligned}$$

Thus, $\lim_{n\to\infty} ||x_n - z_0||$ exists. In particular, the sequence $\{x_n\}$ is bounded.

Lemma 3.3 If X is uniformly convex, $\{\alpha_n\}, \{\beta_n\} \subset [\delta, 1-\delta]$ for some $\delta \in (0, \frac{1}{2})$, and (x_0, z_0) , $(y_0, z_0), (z_0, x_0), (z_0, y_0) \in E(G)$ for arbitrary x_0 in C and $z_0 \in F$, then

$$\lim_{n \to \infty} \|x_n - T_1 x_n\| = 0 = \lim_{n \to \infty} \|x_n - T_2 x_n\|$$

Proof Let $z_0 \in F$. Then, by the boundedness of $\{x_n\}$ and $\{T_2x_n\}$ there exists r > 0 such that $x_n - z_0, y_n - z_0 \in B_r(0)$ for all $n \ge 1$. Put $c = \lim_{n \to \infty} ||x_n - z_0||$. If c = 0, then by the *G*-nonexpansiveness of T_i (i = 1, 2) we have

$$||x_n - T_i x_n|| \le ||x_n - z_0|| + ||z_0 - T_i x_n|| \le ||x_n - z_0|| + ||z_0 - x_n||.$$

Therefore, the result follows. Suppose that c > 0. Hence, by Lemma 2.11 together with the *G*-nonexpansiveness of T_2 , we have

$$\|y_n - z_0\|^2 = \|(1 - \beta_n)x_n + \beta_n T_2 x_n - z_0\|^2$$
$$= \|\beta_n (T_2 x_n - z_0) + (1 - \beta_n)(x_n - z_0)\|^2$$

$$\leq \beta_n \|T_2 x_n - z_0\|^2 + (1 - \beta_n) \|x_n - z_0\|^2 - \beta_n (1 - \beta_n) g(\|T_2 x_n - x_n\|)$$

$$\leq \beta_n \|x_n - z_0\|^2 + (1 - \beta_n) \|x_n - z_0\|^2$$

$$= \|x_n - z_0\|^2.$$

Thus,

$$\limsup_{n\to\infty} \|y_n-z_0\| \leq \limsup_{n\to\infty} \|x_n-z_0\| \leq c.$$

Notice also that

$$\begin{aligned} \|x_{n+1} - z_0\|^2 &= \left\| (1 - \alpha_n) x_n + \alpha_n T_1 y_n - z_0 \right\|^2 \\ &\leq \alpha_n \|y_n - z_0\|^2 + (1 - \alpha_n) \|x_n - z_0\|^2 - \alpha_n (1 - \alpha_n) g(\|T_1 y_n - x_n\|) \\ &\leq \|x_n - z_0\|^2 - \alpha_n (1 - \alpha_n) g(\|T_1 y_n - x_n\|) \\ &\leq \|x_n - z_0\|^2 - \delta^2 g(\|T_1 y_n - x_n\|). \end{aligned}$$

Thus,

$$\delta^2 g(\|T_1 y_n - x_n\|) \le \|x_n - z_0\|^2 - \|x_{n+1} - z_0\|^2.$$

This implies that $\lim_{n\to\infty} g(||T_1y_n - x_n||) = 0$, and since g is strictly increasing and continuous at 0,

$$\lim_{n \to \infty} \|T_1 y_n - x_n\| = 0. \tag{1}$$

Since T_1 is *G*-nonexpansive, we have

$$||x_n - z_0|| \le ||x_n - T_1 y_n|| + ||T_1 y_n - T_1 z_0|| \le ||x_n - T_1 y_n|| + ||y_n - z_0||.$$

Taking lim inf yields

$$c\leq \liminf_{n\to\infty}\|y_n-z_0\|.$$

Hence, we have

$$\lim_{n\to\infty}\|y_n-z_0\|=c.$$

Since

$$\lim_{n \to \infty} \left\| \beta_n (T_2 x_n - z_0) + (1 - \beta_n) (x_n - z_0) \right\| = \lim_{n \to \infty} \|y_n - z_0\| = c$$

and

 $\limsup_{n\to\infty}\|T_2x_n-z_0\|\leq c,$

by Lemma 2.10 we have

$$\lim_{n \to \infty} \|T_2 x_n - x_n\| = 0. \tag{2}$$

By the *G*-nonexpansiveness of T_1 together with $||x_n - y_n|| \le ||T_2x_n - x_n||$ we have

$$\|T_1x_n - x_n\| \le \|T_1x_n - T_1y_n\| + \|T_1y_n - x_n\|$$

$$\le \|x_n - y_n\| + \|T_1y_n - x_n\|$$

$$\le \|T_2x_n - x_n\| + \|T_1y_n - x_n\|.$$

Using (1) and (2), $\lim_{n\to\infty} ||T_1x_n - x_n|| = 0$. Hence, the lemma is proved.

Lemma 3.4 Suppose that X satisfies the Opial's property and that (x_0, z_0) , (y_0, z_0) are in E(G) for $z_0 \in F$ and arbitrary $x_0 \in C$. Then $I - T_i$ (i = 1, 2) are demiclosed.

Proof Suppose that $\{x_n\}$ is a sequence in *C* that converges weakly to *q*. From Lemma 3.3 we have $\lim_{n\to\infty} ||x_n - T_i x_n|| = 0$. Suppose for contradiction that $q \neq T_i q$. Then, by Opial's property we have

$$\limsup_{n \to \infty} \|x_n - q\| < \limsup_{n \to \infty} \|x_n - T_i q\|$$

$$\leq \limsup_{n \to \infty} (\|x_n - T_i x_n\| + \|T_i x_n - T_i q\|)$$

$$\leq \limsup_{n \to \infty} \|x_n - q\|,$$

a contradiction. Hence, $T_i q = q$, so the conclusion holds.

Theorem 3.5 Suppose X is uniformly convex, $\{\alpha_n\}, \{\beta_n\} \subset [\delta, 1 - \delta]$ for some $\delta \in (0, \frac{1}{2}), T_i$ (*i* = 1, 2) satisfy Condition B, F is dominated by x_0 , F dominates x_0 , and $(x_0, z), (y_0, z), (z, x_0), (z, y_0) \in E(G)$ for each $z \in F$ and arbitrary $x_0 \in C$. Then $\{x_n\}$ converges strongly to a common fixed point of T_i .

Proof Let $z \in F$. Recall the following facts from Lemma 3.2:

- (i) $\{x_n\}$ is bounded;
- (ii) $\lim_{n\to\infty} ||x_n z||$ exists;
- (iii) $||x_{n+1} z|| \le ||x_n z||$ for all $n \ge 1$.

They imply that

$$d(x_{n+1},F) \leq d(x_n,F).$$

Thus $\lim_{n\to\infty} d(x_n, F)$ exists. Since each T_i (i = 1, 2) satisfies Condition B and $\lim_{n\to\infty} ||x_n - T_i x_n|| = 0$, we have

$$\lim_{n\to\infty}f\bigl(d(x_n,F)\bigr)=0$$

and then

$$\lim_{n\to\infty}d(x_n,F)=0.$$

Hence, there are a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ and a sequence $\{z_i\} \subset F$ satisfying

$$||x_{n_j}-z_j|| \le \frac{1}{2^j}.$$

Put $n_{j+1} = n_j + k$ for some $k \ge 1$. Then

$$||x_{n_{j+1}}-z_j|| \le ||x_{n_j+k-1}-z_j|| \le ||x_{n_j}-z_j|| \le \frac{1}{2^j}.$$

Hence,

$$||z_{j+1}-z_j|| \le \frac{3}{2^{j+1}},$$

so that $\{z_j\}$ is a Cauchy sequence. We assume that $z_j \to q \in C$ as $n \to \infty$. Since F is closed, $q \in F$. Hence, we have $x_{n_j} \to q$ as $j \to \infty$, and since $\lim_{n\to\infty} ||x_n - q||$ exists, the conclusion follows.

Theorem 3.6 Suppose that X is uniformly convex, $\{\alpha_n\}, \{\beta_n\} \subset [\delta, 1 - \delta]$ for some $\delta \in (0, \frac{1}{2})$, one of T_i (i = 1, 2) is semicompact, F is dominated by x_0 , F dominates x_0 , and $(x_0, z_0), (y_0, z_0), (z_0, x_0), (z_0, y_0) \in E(G)$ for $z_0 \in F$ and arbitrary $x_0 \in C$. Then $\{x_n\}$ converges strongly to a common fixed point of T_i .

Proof Suppose that T_2 is semicompact; by Lemma 3.2 and Lemma 3.3 we have a bounded sequence $\{x_n\}$, and $\lim_{n\to\infty} ||x_n - T_i x_n|| = 0$. Hence, by the semicompactness of T_2 there exist $q \in C$ and a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $x_{n_j} \to q$ as $j \to \infty$ and $\lim_{n\to\infty} ||x_{n_j} - T_i x_{n_j}|| = 0$. Notice that

$$\begin{aligned} \|q - T_i q\| &\leq \|q - x_{n_j}\| + \|x_{n_j} - T_i x_{n_j}\| + \|T_i x_{n_j} - T_i q\| \\ &\leq \|q - x_{n_j}\| + \|x_{n_j} - T_i x_{n_j}\| + \|x_{n_j} - q\| \\ &\to 0 \quad \text{as } n \to \infty. \end{aligned}$$

Hence, $q \in F$. Since $\lim_{n\to\infty} d(x_n, F) = 0$, it follows, by repeating the same argument as in the proof of Theorem 3.5, that $\{x_n\}$ converges strongly to a common fixed point of T_i (*i* = 1, 2), and the proof is complete.

Theorem 3.7 Suppose that X is uniformly convex, $\{\alpha_n\}, \{\beta_n\} \subset [\delta, 1-\delta]$ for some $\delta \in (0, \frac{1}{2})$. If X satisfies Opial's property, $I - T_i$ is demiclosed at zero for each i, F is dominated by x_0 , F dominates x_0 , and $(x_0, z_0), (y_0, z_0), (z_0, x_0), (z_0, y_0) \in E(G)$ for $z_0 \in F$ and arbitrary $x_0 \in C$, then $\{x_n\}$ converges weakly to a common fixed point of T_i .

Proof Note that by Lemma 3.2, for each $q \in F$,

$$\lim_{n \to \infty} \|x_n - q\| \quad \text{exists.} \tag{3}$$

Let $\{x_{n_k}\}$ and $\{x_{n_j}\}$ be subsequences of the sequence $\{x_n\}$ with two weak limits q_1 and q_2 , respectively. Notice that, by Lemma 3.3,

$$||x_{n_j} - T_i x_{n_j}|| \to 0 \text{ as } n \to \infty$$
 and
 $||x_{n_k} - T_i x_{n_k}|| \to 0 \text{ as } n \to \infty.$

Hence, $T_iq_1 = q_1$ and $T_iq_2 = q_2$. By Lemma 3.4 we have $q_1, q_2 \in F$. In particular, $q_1 = q_2$ by Lemma 2.12. Therefore, $\{x_n\}$ converges weakly to a common fixed point in *F*.

Competing interests

The author declares that she has no competing interests.

Acknowledgements

The author is grateful to Professor Suthep Suantai for valuable suggestion and comments. The author would also like to thank the anonymous reviewers for their helpful comments.

Received: 12 February 2016 Accepted: 12 August 2016 Published online: 01 September 2016

References

- 1. Jachymski, J: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136, 1359-1373 (2008)
- Aleomraninejad, SMA, Rezapour, S, Shahzad, N: Some fixed point result on a metric space with a graph. Topol. Appl. 159, 659-663 (2012)
- 3. Alfuraidan, MR, Khamsi, MA: Fixed points of monotone nonexpansive mappings on a hyperbolic metric space with a graph. Fixed Point Theory Appl. (2015). doi:10.1186/s13663-015-0294-5
- Alfuraidan, MR: Remarks on monotone multivalued mappings on a metric space with a graph. J. Inequal. Appl. (2015). doi:10.1186/s13660-015-0712-6
- Alfuraidan, MR: Fixed points of monotone nonexpansive mappings with a graph. Fixed Point Theory Appl. (2015). doi:10.1186/s13663-015-0299-0
- Tiammee, J, Kaekhao, A, Suantai, S: On Browder's convergence theorem and Halpern iteration process for G-nonexpansive mappings in Hilbert spaces endowed with graph. Fixed Point Theory Appl. (2015). doi:10.1186/s13663-015-0436-9
- 7. Shahzad, N, Al-Dubiban, R: Approximating common fixed points of nonexpansive mappings in Banach spaces. Georgian Math. J. **13**(3), 529-537 (2006)
- Schu, J: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 43(1), 153-159 (1991)
- 9. Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16(12), 1127-1138 (1991)
- 10. Suantai, S: Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings. J. Math. Anal. Appl. **331**, 506-517 (2005)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com