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Abstract
In this paper, we prove the weak and strong convergence of a sequence {xn}
generated by the Ishikawa iteration to some common fixed points of two
G-nonexpansive mappings defined on a Banach space endowed with a graph.
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1 Introduction
In , Banach proved a remarkable and powerful result called the Banach contraction
principle. Because of its fruitful applications, the principle has been generalized in many
directions. The recent version of the theorem was given in Banach spaces endowed with
a graph. In , Jachymski [] gave a generalization of the Banach contraction principle
to mappings on a metric space endowed with a graph. In , Aleomraninejad et al. []
presented some iterative scheme results for G-contractive and G-nonexpansive mappings
on graphs. In , Alfuraidan and Khamsi [] defined the concept of G-monotone non-
expansive multivalued mappings defined on a metric space with a graph. In the same year,
Alfuraidan [] gave a new definition of the G-contraction and obtained sufficient condi-
tions for the existence of fixed points for multivalued mappings on a metric space with a
graph, and also in [], he proved the existence of a fixed point of monotone nonexpansive
mapping defined in a Banach space endowed with a graph. Recently, Tiammee et al. []
proved Browder’s convergence theorem for G-nonexpansive mapping in a Banach space
with a directed graph. They also proved the strong convergence of the Halpern iteration
for a G-nonexpansive mapping.

Inspired by all aforementioned references, the author proves strong and weak conver-
gence theorems for G-nonexpansive mappings using the Ishikawa iteration generated
from arbitrary x in a closed convex subset C of a uniformly convex Banach space X en-
dowed with a graph.

2 Preliminaries
In this section, we recall some standard graph notations and terminology and also some
needed results.
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Let (X, d) be a metric space, and � = {(x, x)|x ∈ X}. Consider a directed graph G for
which the set V (G) of its vertices coincides with X and the set E(G) of its edges contains
all loops. Assume that G has no parallel edges. Then G = (V (G), E(G)), and by assigning
to each edge the distance between its vertices, G may be treated as a weighted graph.

Definition . The conversion of a graph G is the graph obtained from G by reversing the
direction of edges denoted by G–, and

E
(
G–) =

{
(x, y) ∈ X × X|(y, x) ∈ E(G)

}
.

Definition . Let x and y be vertices of a graph G. A path in G from x to y of length N
(N ∈N∪ {}) is a sequence {xi}N

i= of N +  vertices for which

x = x, xN = y, and (xi, xi+) ∈ E(G) for i = , , . . . , N – .

Definition . A graph G is said to be connected if there is a path between any two vertices
of the graph G.

Definition . A directed graph G = (V (G), E(G)) is said to be transitive if, for any x, y, z ∈
V (G) such that (x, y) and (y, z) are in E(G), we have (x, z) ∈ E(G).

The definition of a G-nonexpansive mapping is given as follows.

Definition . Let C be a nonempty convex subset of a Banach space X, and G =
(V (G), E(G)) a directed graph such that V (G) = C. Then a mapping T : C → C is G-non-
expansive (see [], Definition .(iii)) if it satisfies the following conditions.

(i) T is edge-preserving.
(ii) ‖Tx – Ty‖ ≤ ‖x – y‖ whenever (x, y) ∈ E(G) for any x, y ∈ C.

Definition . ([]) Let C be a nonempty closed convex subset of a real uniformly convex
Banach space X. The mappings Ti (i = , ) on C are said to satisfy Condition B if there
exists a nondecreasing function f : [,∞) → [,∞) with f () =  and f (r) >  for all r > 
such that, for all x ∈ C,

max
{‖x – Tx‖,‖x – Tx‖} ≥ f

(
d(x, F)

)
,

where F = F(T) ∩ F(T) and F(Ti) (i = , ) are the sets of fixed points of Ti.

Definition . ([]) Let C be a subset of a metric space (X, d). A mapping T is semicom-
pact if for a sequence {xn} in C with limn→∞ d(xn, Txn) = , there exists a subsequence {xni}
of {xn} such that xni → p ∈ C.

Definition . A Banach space X is said to satisfy Opial’s property if the following in-
equality holds for any distinct elements x and y in X and for each sequence {xn} weakly
convergent to x:

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖.
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Definition . Let X be a Banach space. A mapping T with domain D and range R in X
is demiclosed at  if, for any sequence {xn} in D such that {xn} converges weakly to x ∈ D
and {Txn} converges strongly to , we have Tx = .

Lemma . ([]) Let X be a uniformly convex Banach space, and {αn} a sequence in
[δ,  – δ] for some δ ∈ (, ). Suppose that sequences {xn} and {yn} in X are such that
lim supn→∞ ‖xn‖ ≤ c, lim supn→∞ ‖yn‖ ≤ c and lim supn→∞ ‖αxn + ( – αn)yn‖ = c for some
c ≥ . Then limn→∞ ‖xn – yn‖ = .

Lemma . ([]) Let X be a Banach space, and R >  be a fixed number. Then X is uni-
formly convex if and only if there exists a continuous, strictly increasing, and convex func-
tion g : [,∞) → [,∞) with g() =  such that

∥∥λx + ( – λ)y
∥∥ ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)g

(‖x – y‖)

for all x, y ∈ BR() = {x ∈ X|‖x‖ ≤ R} and λ ∈ [, ].

Lemma . ([]) Let X be a Banach space that satisfies Opial’s property, and let {xn} be
a sequence in X. Let x, y in X be such that limn→∞ ‖xn – x‖ and limn→∞ ‖xn – y‖ exist. If
{xnj} and {xnk } are subsequences of {xn} that converge weakly to x and y, respectively, then
x = y.

3 Main results
Throughout the section, we let C be a nonempty closed convex subset of a Banach space X
endowed with a directed graph G such that V (G) = C and E(G) is convex. We also suppose
that the graph G is transitive. The mappings Ti (i = , ) are G-nonexpansive from C to C
with F = F(T) ∩ F(T) nonempty. Let {xn} be a sequence generated from arbitrary x ∈ C,

xn+ = ( – αn)xn + αnTyn,

yn = ( – βn)xn + βnTxn,

where {αn} and {βn} are real sequences in [, ].
We first begin by proving the following useful results.

Proposition . Let z ∈ F be such that (x, z), (y, z), (z, x), and (z, y) are in E(G).
Then (xn, z), (yn, z), (z, xn), (z, yn), and (xn, yn) are in E(G).

Proof We divide the proof into three parts. In the first part, with the assumption (x, z),
(y, z) ∈ E(G), we will show by induction that (xn, z), (yn, z) ∈ E(G). Then, with the as-
sumption (z, x), (z, y) ∈ E(G), we will again prove by induction that (z, xn), (z, yn) ∈
E(G). In the third part, we combine these two results using transitivity of G to get the state-
ment in the proposition. Let (x, z) and (y, z) ∈ E(G). Then (Ty, z), (Tx, z) ∈ E(G)
since Ti (i = , ) are edge-preserving. By the convexity of E(G) and (Ty, z), (x, z) ∈
E(G), we have (x, z) ∈ E(G). Then, by edge-preserving of T, (Tx, z) ∈ E(G). Again,
by the convexity of E(G) and (Tx, z), (x, z) ∈ E(G), we get (y, z) ∈ E(G) and then
(Ty, z) ∈ E(G). Next, we assume that (xk , z), (yk , z) ∈ E(G). Then (Txk , z), (Tyk , z) ∈



Tripak Fixed Point Theory and Applications  (2016) 2016:87 Page 4 of 8

E(G) since Ti (i = , ) are edge-preserving. Since E(G) is convex, (xk+, z) ∈ E(G). Indeed,

α(Tyk , z) + ( – α)(xk , z) =
(
αTyk + ( – α)xk , z

)
= (xk+, z) ∈ E(G).

Since T is edge-preserving, (Txk+, z) ∈ E(G). Using the convexity of E(G), we get
(yk+, z) ∈ E(G). To be explicit,

β(Txk+, z) + ( – β)(xk+, z) =
(
βTxk+ + ( – β)xk+, z

)
= (yk+, z) ∈ E(G).

Hence, by induction, (xn, z), (yn, z) ∈ E(G) for all n ≥ . Using a similar argument, we
can show that (z, xn), (z, yn) ∈ E(G) under the assumption that (z, x), (z, y) ∈ E(G).
Therefore, (xn, yn) ∈ E(G) by the transitivity of G. �

Lemma . Let z ∈ F . Suppose that (x, z), (y, z), (z, x), (z, y) ∈ E(G) for arbitrary
x in C. Then limn→∞ ‖xn – z‖ exists.

Proof Notice that

‖xn+ – z‖ =
∥∥( – αn)xn + αnTyn – z

∥∥

≤ ( – αn)‖xn – z‖ + αn‖Tyn – z‖
≤ ( – αn)‖xn – z‖ + αn‖yn – z‖
= ( – αn)‖xn – z‖ + αn

∥∥( – βn)xn – ( – βn)z + βn(Txn – z)
∥∥

≤ ( – αn)‖xn – z‖ + αn( – βn)‖xn – z‖ + αnβn‖xn – z‖
= ( – αn)‖xn – z‖ + αn‖xn – z‖
= ‖xn – z‖.

Thus, limn→∞ ‖xn – z‖ exists. In particular, the sequence {xn} is bounded. �

Lemma . If X is uniformly convex, {αn}, {βn} ⊂ [δ,  – δ] for some δ ∈ (, 
 ), and (x, z),

(y, z), (z, x), (z, y) ∈ E(G) for arbitrary x in C and z ∈ F , then

lim
n→∞‖xn – Txn‖ =  = lim

n→∞‖xn – Txn‖.

Proof Let z ∈ F . Then, by the boundedness of {xn} and {Txn} there exists r >  such
that xn – z, yn – z ∈ Br() for all n ≥ . Put c = limn→∞ ‖xn – z‖. If c = , then by the
G-nonexpansiveness of Ti (i = , ) we have

‖xn – Tixn‖ ≤ ‖xn – z‖ + ‖z – Tixn‖ ≤ ‖xn – z‖ + ‖z – xn‖.

Therefore, the result follows. Suppose that c > . Hence, by Lemma . together with the
G-nonexpansiveness of T, we have

‖yn – z‖ =
∥
∥( – βn)xn + βnTxn – z

∥
∥

=
∥∥βn(Txn – z) + ( – βn)(xn – z)

∥∥
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≤ βn‖Txn – z‖ + ( – βn)‖xn – z‖ – βn( – βn)g
(‖Txn – xn‖

)

≤ βn‖xn – z‖ + ( – βn)‖xn – z‖

= ‖xn – z‖.

Thus,

lim sup
n→∞

‖yn – z‖ ≤ lim sup
n→∞

‖xn – z‖ ≤ c.

Notice also that

‖xn+ – z‖ =
∥∥( – αn)xn + αnTyn – z

∥∥

≤ αn‖yn – z‖ + ( – αn)‖xn – z‖ – αn( – αn)g
(‖Tyn – xn‖

)

≤ ‖xn – z‖ – αn( – αn)g
(‖Tyn – xn‖

)

≤ ‖xn – z‖ – δg
(‖Tyn – xn‖

)
.

Thus,

δg
(‖Tyn – xn‖

) ≤ ‖xn – z‖ – ‖xn+ – z‖.

This implies that limn→∞ g(‖Tyn – xn‖) = , and since g is strictly increasing and contin-
uous at ,

lim
n→∞‖Tyn – xn‖ = . ()

Since T is G-nonexpansive, we have

‖xn – z‖ ≤ ‖xn – Tyn‖ + ‖Tyn – Tz‖ ≤ ‖xn – Tyn‖ + ‖yn – z‖.

Taking lim inf yields

c ≤ lim inf
n→∞ ‖yn – z‖.

Hence, we have

lim
n→∞‖yn – z‖ = c.

Since

lim
n→∞

∥
∥βn(Txn – z) + ( – βn)(xn – z)

∥
∥ = lim

n→∞‖yn – z‖ = c

and

lim sup
n→∞

‖Txn – z‖ ≤ c,
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by Lemma . we have

lim
n→∞‖Txn – xn‖ = . ()

By the G-nonexpansiveness of T together with ‖xn – yn‖ ≤ ‖Txn – xn‖ we have

‖Txn – xn‖ ≤ ‖Txn – Tyn‖ + ‖Tyn – xn‖
≤ ‖xn – yn‖ + ‖Tyn – xn‖
≤ ‖Txn – xn‖ + ‖Tyn – xn‖.

Using () and (), limn→∞ ‖Txn – xn‖ = . Hence, the lemma is proved. �

Lemma . Suppose that X satisfies the Opial’s property and that (x, z), (y, z) are in
E(G) for z ∈ F and arbitrary x ∈ C. Then I – Ti (i = , ) are demiclosed.

Proof Suppose that {xn} is a sequence in C that converges weakly to q. From Lemma .
we have limn→∞ ‖xn – Tixn‖ = . Suppose for contradiction that q �= Tiq. Then, by Opial’s
property we have

lim sup
n→∞

‖xn – q‖ < lim sup
n→∞

‖xn – Tiq‖

≤ lim sup
n→∞

(‖xn – Tixn‖ + ‖Tixn – Tiq‖)

≤ lim sup
n→∞

‖xn – q‖,

a contradiction. Hence, Tiq = q, so the conclusion holds. �

Theorem . Suppose X is uniformly convex, {αn}, {βn} ⊂ [δ,  – δ] for some δ ∈ (, 
 ), Ti

(i = , ) satisfy Condition B, F is dominated by x, F dominates x, and (x, z), (y, z), (z, x),
(z, y) ∈ E(G) for each z ∈ F and arbitrary x ∈ C. Then {xn} converges strongly to a common
fixed point of Ti.

Proof Let z ∈ F . Recall the following facts from Lemma .:
(i) {xn} is bounded;

(ii) limn→∞ ‖xn – z‖ exists;
(iii) ‖xn+ – z‖ ≤ ‖xn – z‖ for all n ≥ .

They imply that

d(xn+, F) ≤ d(xn, F).

Thus limn→∞ d(xn, F) exists. Since each Ti (i = , ) satisfies Condition B and limn→∞ ‖xn –
Tixn‖ = , we have

lim
n→∞ f

(
d(xn, F)

)
= 
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and then

lim
n→∞ d(xn, F) = .

Hence, there are a subsequence {xnj} of {xn} and a sequence {zj} ⊂ F satisfying

‖xnj – zj‖ ≤ 
j .

Put nj+ = nj + k for some k ≥ . Then

‖xnj+ – zj‖ ≤ ‖xnj+k– – zj‖ ≤ ‖xnj – zj‖ ≤ 
j .

Hence,

‖zj+ – zj‖ ≤ 
j+ ,

so that {zj} is a Cauchy sequence. We assume that zj → q ∈ C as n → ∞. Since F is closed,
q ∈ F . Hence, we have xnj → q as j → ∞, and since limn→∞ ‖xn – q‖ exists, the conclusion
follows. �

Theorem . Suppose that X is uniformly convex, {αn}, {βn} ⊂ [δ,  – δ] for some δ ∈
(, 

 ), one of Ti (i = , ) is semicompact, F is dominated by x, F dominates x, and
(x, z), (y, z), (z, x), (z, y) ∈ E(G) for z ∈ F and arbitrary x ∈ C. Then {xn} converges
strongly to a common fixed point of Ti.

Proof Suppose that T is semicompact; by Lemma . and Lemma . we have a bounded
sequence {xn}, and limn→∞ ‖xn – Tixn‖ = . Hence, by the semicompactness of T there
exist q ∈ C and a subsequence {xnj} of {xn} such that xnj → q as j → ∞ and limn→∞ ‖xnj –
Tixnj‖ = . Notice that

‖q – Tiq‖ ≤ ‖q – xnj‖ + ‖xnj – Tixnj‖ + ‖Tixnj – Tiq‖
≤ ‖q – xnj‖ + ‖xnj – Tixnj‖ + ‖xnj – q‖
→  as n → ∞.

Hence, q ∈ F . Since limn→∞ d(xn, F) = , it follows, by repeating the same argument as
in the proof of Theorem ., that {xn} converges strongly to a common fixed point of Ti

(i = , ), and the proof is complete. �

Theorem . Suppose that X is uniformly convex, {αn}, {βn} ⊂ [δ,  –δ] for some δ ∈ (, 
 ).

If X satisfies Opial’s property, I – Ti is demiclosed at zero for each i, F is dominated by x,
F dominates x, and (x, z), (y, z), (z, x), (z, y) ∈ E(G) for z ∈ F and arbitrary x ∈ C,
then {xn} converges weakly to a common fixed point of Ti.

Proof Note that by Lemma ., for each q ∈ F ,

lim
n→∞‖xn – q‖ exists. ()
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Let {xnk } and {xnj} be subsequences of the sequence {xn} with two weak limits q and q,
respectively. Notice that, by Lemma .,

‖xnj – Tixnj‖ →  as n → ∞ and

‖xnk – Tixnk ‖ →  as n → ∞.

Hence, Tiq = q and Tiq = q. By Lemma . we have q, q ∈ F . In particular, q = q by
Lemma .. Therefore, {xn} converges weakly to a common fixed point in F . �
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