RESEARCH

Open Access

Discussion of several contractions by Jachymski's approach

Tomonari Suzuki* 🝺

*Correspondence: suzuki-t@mns.kyutech.ac.jp Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu, 804-8550, Japan

Abstract

We discuss several contractions of integral type by using Jachymski's approach. We give alternative proofs of recent generalizations of the Banach contraction principle due to Ri (Indag. Math. 27:85-93, 2016) and Wardowski (Fixed Point Theory Appl. 2012:94, 2012).

MSC: Primary 47H09; secondary 54H25

Keywords: the Banach contraction principle; Boyd-Wong contraction; Meir-Keeler contraction; Matkowski contraction; contraction of integral type; fixed point

1 Introduction

The Banach contraction principle [3, 4] is an elegant, forceful tool in nonlinear analysis and has many generalizations. See, *e.g.*, [5–10]. For example, Boyd and Wong in [11] proved the following.

Theorem 1 (Boyd and Wong [11]) Let (X, d) be a complete metric space and let T be a mapping on X. Assume that T is a Boyd-Wong contraction, that is, there exists a function φ from $[0, \infty)$ into itself satisfying the following:

- (i) φ is upper semicontinuous from the right.
- (ii) $\varphi(t) < t$ holds for any $t \in (0, \infty)$.
- (iii) $d(Tx, Ty) \le \varphi \circ d(x, y)$ for any $x, y \in X$.

Then T has a unique fixed point.

Branciari in [12] introduced contractions of integral type as follows: A mapping *T* on a metric space (*X*, *d*) is a *Branciari contraction* if there exist $r \in [0,1)$ and a locally integrable function *f* from $[0, \infty)$ into itself such that

$$\int_{0}^{s} f(t) \, dt > 0 \quad \text{and} \quad \int_{0}^{d(Tx,Ty)} f(t) \, dt \le r \int_{0}^{d(x,y)} f(t) \, dt$$

for all s > 0 and $x, y \in X$. We have studied contractions of integral type in [13–15].

In this paper, we discuss several contractions of integral type by using Jachymski's approach. As applications, we give alternative proofs of recent generalizations of the Banach contraction principle due to Ri [1] and Wardowski [2].

© 2016 Suzuki. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

2 Preliminaries

Throughout this paper we denote by \mathbb{N} the set of all positive integers and by \mathbb{R} the set of all real numbers.

Let *f* be a function from a subset *Q* of \mathbb{R} into \mathbb{R} . Then *f* is said to satisfy $(UR)_f$ if the following holds:

 $(UR)_f$ For any $t \in Q$, there exist $\delta > 0$ and $\varepsilon > 0$ such that $f(s) \le t - \varepsilon$ holds for any $s \in [t, t + \delta) \cap Q$.

We give some lemmas concerning (UR).

Lemma 2 Let f be a function from a subset Q of \mathbb{R} into \mathbb{R} . Then the following are equivalent:

- (i) f satisfies $(UR)_f$.
- (ii) $\limsup[f(u): u \to t, u \in Q, t \le u] < t$ holds for any $t \in Q$.
- (iii) $\limsup[f(u) : u \to t, u \in Q, t < u] < t$ and f(t) < t hold for any $t \in Q$.

Proof Obvious.

Lemma 3 Let f be a function from a subset Q of \mathbb{R} into \mathbb{R} such that f(t) < t for any $t \in Q$. Assume that f is upper semicontinuous from the right. Then f satisfies $(UR)_f$.

Proof Obvious.

Lemma 4 Let f be a function from a subset Q of \mathbb{R} into \mathbb{R} satisfying $(UR)_f$. Define a function g from Q into \mathbb{R} by

 $g(t) = \limsup[f(u) : u \to t, u \in Q, t \le u]$

for $t \in Q$. Define a mapping *L* from *Q* into the power set of \mathbb{R} , a function ℓ from *Q* into $[-\infty, \infty)$ and a function *h* from *Q* into \mathbb{R} by

$$L(t) = \{s \in Q : s \le t, \limsup[g(u) : u \to s, u \in Q, u \le s] = s\},\$$
$$\ell(t) = \begin{cases} \sup L(t) & \text{if } L(t) \neq \emptyset, \\ -\infty & \text{if } L(t) = \emptyset, \end{cases}$$
and
$$h(t) = \sup\{g(s) : s \in Q, \ell(t) \le s \le t\}$$

for $t \in Q$ *. Define a function* φ *from* Q *into* \mathbb{R} *by*

$$\varphi(t) = \frac{h(t) + t}{2}$$

for $t \in Q$. Then the following hold:

- (i) g is upper semicontinuous from the right.
- (ii) *h* and φ are right continuous.
- (iii) $f(t) \le g(t) \le h(t) < \varphi(t) < t$ holds for any $t \in Q$.

Proof Since *f* satisfies $(UR)_f$, we have $f(t) \le g(t) < t$ for any $t \in Q$. In order to show (i), we fix $t \in Q$ and let $\{t_n\}$ be a strictly decreasing sequence in *Q* converging to *t*. Fix $\varepsilon > 0$. Then for every $n \in \mathbb{N}$, there exists $s_n \in Q$ satisfying $t_n \le s_n \le t_n + 1/n$ and $g(t_n) \le f(s_n) + \varepsilon$. Since $\{s_n\}$ converges to *t*, we have

 $\limsup_{n\to\infty} g(t_n) \leq \limsup_{n\to\infty} f(s_n) + \varepsilon \leq g(t) + \varepsilon.$

Since $\varepsilon > 0$ is arbitrary, we obtain $\limsup_n g(t_n) \le g(t)$. Therefore we have shown (i). We shall show h(t) < t for any $t \in Q$. Arguing by contradiction, we assume $h(t) \ge t$ for some $t \in Q$. Then since g(t) < t, there exists a strictly increasing sequence $\{s_n\}$ such that $\lim_n s_n = t$ and $\lim_n g(s_n) = h(t)$. Since $g(s_n) < s_n$ for $n \in \mathbb{N}$, we have h(t) = t. Therefore $t \in L(t)$, which implies h(t) = g(t) < t. This is a contradiction. So h(t) < t holds. It is obvious that $h(t) < \varphi(t) < t$ for any $t \in Q$. Therefore we have shown (iii). In order to show (ii), we fix $t \in Q$ and $\varepsilon > 0$ with $h(t) + \varepsilon < t$. From (i), there exists $\delta > 0$ such that

$$g(s) \le g(t) + \varepsilon \le h(t) + \varepsilon < t$$

for $s \in (t, t + \delta) \cap Q$. Let $\{t_n\}$ be a strictly decreasing sequence $\{t_n\}$ in Q such that $t_1 < t + \delta$ and $\{t_n\}$ converges to t. Then we note $\ell(t) = \ell(t_n)$ for $n \in \mathbb{N}$. So we have

$$h(t) \le h(t_n)$$

= max { h(t), sup { g(s) : s \in Q, t < s \le t_n } }
$$\le \max \{ h(t), g(t) + \varepsilon \}$$

$$\le h(t) + \varepsilon$$

for $n \in \mathbb{N}$. Hence

$$h(t) \leq \liminf_{n \to \infty} h(t_n) \leq \limsup_{n \to \infty} h(t_n) \leq h(t) + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we obtain $\lim_n h(t_n) = h(t)$. Thus, h is right continuous. It is obvious that φ is also right continuous. We have shown (ii).

Remark See Theorem 2 in [7]. Note that the domain of *h* is *Q*. We cannot extend the domain of *h* to $\bigcup[[t,\infty): t \in Q]$, considering the function *f* from $(-\infty, 0) \cup (0, \infty)$ into \mathbb{R} defined by

$$f(t) = \begin{cases} -2t & \text{if } t < 0, \\ t/2 & \text{if } t > 0. \end{cases}$$

3 Definitions

We list the following notation in order to simplify the statement of the results of this paper:

(A1) Let *D* be a subset of $(0, \infty)^2$.

(A2) Let θ be a function from $(0, \infty)$ into \mathbb{R} . Put $\Theta = \theta((0, \infty))$ and

$$\Theta_{\leq} = \bigcup [[t, \infty) : t \in \Theta].$$

Jachymski in [8] discussed several contractions by using subsets of $[0, \infty)^2$. Since this approach seems to be very reasonable for considering future studies, we use an approach similar to Jachymski's.

Definition 5 Assume (A1).

- (1) *D* is said to be *contractive* (*Cont* for short) [3, 4] if there exists $r \in (0, 1)$ such that $u \le rt$ holds for any $(t, u) \in D$.
- (2) *D* is said to be a *Browder* (*Bro*, for short) [16] if there exists a function φ from (0, ∞) into itself satisfying the following:
 - (2-i) φ is nondecreasing and right continuous.
 - (2-ii) $\varphi(t) < t$ holds for any $t \in (0, \infty)$.
 - (2-iii) $u \le \varphi(t)$ holds for any $(t, u) \in D$.
- (3) *D* is said to be *Boyd-Wong* (*BW* for short) [11] if there exists a function φ from (0,∞) into itself satisfying the following:
 - (3-i) φ is upper semicontinuous from the right.
 - (3-ii) $\varphi(t) < t$ holds for any $t \in (0, \infty)$.
 - (3-iii) $u \le \varphi(t)$ holds for any $(t, u) \in D$.
- (4) *D* is said to be *Meir-Keeler* (*MK* for short) [17] if for any ε > 0, there exists δ > 0 such that u < ε holds for any (t, u) ∈ D with t < ε + δ; see also [18–20].</p>
- (5) *D* is said to be *Matkowski* (*Mat* for short) [21] if there exists a function φ from (0,∞) into itself satisfying the following:
 - (5-i) φ is nondecreasing.
 - (5-ii) $\lim_{n} \varphi^{n}(t) = 0$ for every $t \in (0, \infty)$.
 - (5-iii) $u \le \varphi(t)$ holds for any $(t, u) \in D$.
- (6) *D* is said to be *CJM* [6, 22–24] if the following hold:
 - (6-i) For any $\varepsilon > 0$, there exists $\delta > 0$ satisfying $u \le \varepsilon$ holds for any $(t, u) \in D$ with $t < \varepsilon + \delta$.
 - (6-ii) u < t holds for any $(t, u) \in D$.

Remark We know the following implications; see, e.g., [5, 7, 10].

- Cont \Rightarrow Bro \Rightarrow BW \Rightarrow MK \Rightarrow CJM;
- Cont \Rightarrow Bro \Rightarrow Mat \Rightarrow CJM.

We give one proposition on the concept of Boyd-Wong. Note that we can easily obtain similar results on the other concepts.

Proposition 6 Let T be a mapping on a metric space (X, d) and define a subset D of $(0, \infty)^2$ by

$$D = \left\{ \left(d(x, y), d(Tx, Ty) \right) : x, y \in X \right\} \cap (0, \infty)^2.$$
(1)

Then T is a Boyd-Wong contraction iff D is Boyd-Wong.

Proof We first note

$$D = \left\{ (d(x, y), d(Tx, Ty)) : x, y \in X, x \neq y, Tx \neq Ty \\ = \left\{ (d(x, y), d(Tx, Ty)) : x, y \in X, Tx \neq Ty \right\}$$

because $Tx \neq Ty$ implies $x \neq y$. We assume that D is Boyd-Wong. Then there exists φ satisfying (3-i)-(3-iii) in Definition 5. Define a function η from $[0, \infty)$ into itself by $\eta(0) = 0$ and $\eta(t) = \varphi(t)$ for $t \in (0, \infty)$. Then we have (i) $_{\eta}$ and (ii) $_{\eta}$ in Theorem 1. If either x = y or Tx = Ty holds, then $d(Tx, Ty) \leq \eta \circ d(x, y)$ obviously holds. Considering this fact, we have (iii) $_{\eta}$ in Theorem 1. Therefore T is a Boyd-Wong contraction. Conversely, we next assume that T is a Boyd-Wong contraction. Then there exists η satisfying (i) $_{\eta}$ -(iii) $_{\eta}$ in Theorem 1. Define a function φ from $(0, \infty)$ into itself by

 $\varphi(t) = \max\{\eta(t), t/2\}$

for any $t \in (0, \infty)$. Then φ satisfies (3-i) and (3-ii) in Definition 5. We also have

 $d(Tx, Ty) \le \eta \circ d(x, y) \le \varphi \circ d(x, y)$

for any $x, y \in X$ with $Tx \neq Ty$. So (3-iii) holds. Therefore *D* is Boyd-Wong.

The following are variants of Corollaries 9 and 14 in [14].

č

Proposition 7 ([14]) Assume (A1), (A2) and the following:

- (i) θ is nondecreasing and continuous.
- (ii) There exists an upper semicontinuous function ψ from Θ into ℝ satisfying ψ(τ) < τ for any τ ∈ Θ and θ(u) ≤ ψ ∘ θ(t) for any (t, u) ∈ D.

Then D is Browder.

Proposition 8 ([14]) Assume (A1), (A2), and the following:

- (i) θ is nondecreasing.
- (ii) There exists an upper semicontinuous function ψ from Θ_≤ into ℝ satisfying ψ(τ) < τ for any τ ∈ Θ_≤ and θ(u) ≤ ψ ∘ θ(t) for any (t, u) ∈ D.

Then D is CJM.

Remark From the proof in [14], we can weaken (ii) of Proposition 8 to the following:

(ii)' There exists a function ψ from Θ_{\leq} into \mathbb{R} such that ψ is upper semicontinuous from the right, $\psi(\tau) < \tau$ for any $\tau \in \Theta_{<}$ and $\theta(u) \leq \psi \circ \theta(t)$ for any $(t, u) \in D$.

4 Main results

In this section, we prove our main results. We begin with Boyd-Wong.

Proposition 9 Assume (A1), (A2), and the following:

- (i) θ is nondecreasing and continuous.
- (ii) There exists a function ψ from Θ into \mathbb{R} satisfying $(UR)_{\psi}$ and $\theta(u) \leq \psi \circ \theta(t)$ for any $(t, u) \in D$.

Then D is Boyd-Wong.

Proof Define a function θ_+^{-1} from \mathbb{R} into $[0, \infty]$ by

$$\theta_{+}^{-1}(\tau) = \begin{cases} \sup\{s \in (0,\infty) : \theta(s) \le \tau\} & \text{if } \{s \in (0,\infty) : \theta(s) \le \tau\} \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

We also define a function η from $(0, \infty)$ into $[0, \infty)$ by $\eta = \theta_+^{-1} \circ \psi \circ \theta$. We note

$$\eta(t) = \sup \{ s \in (0,\infty) : \theta(s) \le \psi \circ \theta(t) \} \text{ provided } \eta(t) > 0.$$

Since $\psi(\tau) < \tau$ for any $\tau \in \Theta$, we have $\psi \circ \theta(t) < \theta(t) \le \theta(s)$ for any $t, s \in (0, \infty)$ with $t \le s$. Hence $\eta(t) \le t$ holds for any $t \in (0, \infty)$. Arguing by contradiction, we assume that $(\text{UR})_{\eta}$ does not hold. Then there exist $t \in (0, \infty)$ and a sequence $\{t_n\}$ in $[t, \infty)$ such that $\{t_n\}$ converges to t and

$$\eta(t_n) > (1 - 1/n)t$$

holds for $n \in \mathbb{N}$. Since $\eta(t_n) > 0$,

$$\sup \{s \in (0,\infty) : \theta(s) \le \psi \circ \theta(t_n)\} = \eta(t_n) > (1 - 1/n)t$$

holds. Hence there exists a sequence $\{u_n\}$ in $(0, \infty)$ satisfying

$$\theta(u_n) \leq \psi \circ \theta(t_n) < \theta(t_n) \text{ and } u_n > (1-2/n)t$$

for $n \in \mathbb{N}$. Since θ is nondecreasing, $u_n < t_n$ holds for any $n \in \mathbb{N}$. Thus $\{u_n\}$ also converges to *t*. Hence by the continuity of θ ,

$$\theta(t) \leq \limsup_{n \to \infty} \psi \circ \theta(t_n) \leq \limsup [\psi(\tau) : \tau \to \theta(t), \tau \geq \theta(t), \tau \in \Theta].$$

This contradicts $(UR)_{\psi}$. Therefore $(UR)_{\eta}$ holds. For any $(t, u) \in D$, since $\theta(u) \leq \psi \circ \theta(t)$, we have

$$u \leq \theta_+^{-1} \circ \theta(u) \leq \theta_+^{-1} \circ \psi \circ \theta(t) = \eta(t).$$

By Lemma 4, there exists a right continuous function φ from $(0, \infty)$ into itself satisfying $\eta(t) < \varphi(t) < t$. It is obvious that $u \le \eta(t) < \varphi(t)$ for any $(t, u) \in D$. Therefore *D* is Boyd-Wong.

Remark There appears θ_{+}^{-1} in Proposition 2.1 in [15].

We next discuss Meir-Keeler.

Proposition 10 Assume (A1), (A2), and the following:

- (i) θ is nondecreasing and right continuous.
- (ii) For any $\varepsilon \in \Theta$, there exists $\delta > 0$ such that $\theta(t) < \varepsilon + \delta$ implies $\theta(u) < \varepsilon$ for any $(t, u) \in D$.

Then D is Meir-Keeler.

Proof Fix $\varepsilon > 0$. Then from (ii), there exists $\alpha > 0$ such that

 $\theta(t) < \theta(\varepsilon) + \alpha$ implies $\theta(u) < \theta(\varepsilon)$

for any $(t, u) \in D$. From the right continuity of θ , there exists $\delta > 0$ such that $\theta(\varepsilon + \delta) < \theta(\varepsilon) + \alpha$. Fix $(t, u) \in D$ with $t < \varepsilon + \delta$. Then we have

 $\theta(t) \le \theta(\varepsilon + \delta) < \theta(\varepsilon) + \alpha$

and hence $\theta(u) < \theta(\varepsilon)$. Therefore $u < \varepsilon$ holds. So *D* is Meir-Keeler.

We obtain the following, which is a generalization of Corollary 17 in [14].

Corollary 11 Assume (A1), (A2), (i) of Proposition 10, and (ii) of Proposition 9. Then D is *Meir-Keeler*.

Let us discuss Matkowski.

Proposition 12 Assume (A1), (A2), and the following:

- (i) θ is nondecreasing and left continuous.
- (ii) $\min \Theta$ does not exist.
- (iii) There exist a subset Q of \mathbb{R} and a nondecreasing function ψ from Q into Q satisfying $\Theta \subset Q \subset \Theta_{\leq}$,

 $\lim_{n\to\infty}\psi^n(\tau)=\inf\Theta$

for any $\tau \in Q$ and $\theta(u) \leq \psi \circ \theta(t)$ for any $(t, u) \in D$. Then D is Matkowski.

Proof We first note that $\inf \Theta = \inf Q = \inf \Theta_{\leq}$ holds and neither $\min \Theta$, $\min Q$ nor $\min \Theta_{\leq}$ does exist. So, from (ii) and (iii), $\psi(\tau) < \tau$ holds for any $\tau \in Q$. Define a function θ_{+}^{-1} from Q into $(0, \infty]$ by

 $\theta_+^{-1}(\tau) = \sup \{ s \in (0,\infty) : \theta(s) \le \tau \}.$

Since θ is left continuous, we have $\tau < \theta(t)$ implies $\theta_{+}^{-1}(\tau) < t$. We also have

 $\theta_+^{-1}(\tau) = \max\left\{s \in (0,\infty) : \theta(s) \le \tau\right\}$

provided $\tau < \sup \Theta$. Hence $\theta \circ \theta_+^{-1}(\tau) \le \tau$ provided $\tau < \sup \Theta$. It is obvious that θ_+^{-1} is nondecreasing. Define a function φ from $(0, \infty)$ into itself by $\varphi = \theta_+^{-1} \circ \psi \circ \theta$. Then for any $t \in (0, \infty)$, since $\psi \circ \theta(t) < \theta(t)$, we have $\varphi(t) < t$. Since θ , ψ , and θ_+^{-1} are nondecreasing, φ is also nondecreasing. Noting $\psi \circ \theta(t) < \theta(t) \le \theta(t) \le \sup \Theta$, we have

$$\varphi^{2}(t) = \theta_{+}^{-1} \circ \psi \circ \theta \circ \theta_{+}^{-1} \circ \psi \circ \theta(t) \leq \theta_{+}^{-1} \circ \psi^{2} \circ \theta(t).$$

Continuing this argument, we can prove $\varphi^n(t) \leq \theta_+^{-1} \circ \psi^n \circ \theta(t)$ by induction. Since $\lim_n \psi^n \circ \theta(t) = \inf \Theta$, we have $\lim_n \theta_+^{-1} \circ \psi^n \circ \theta(t) = 0$ from (ii). Therefore we obtain

$$\lim_{n\to\infty}\varphi^n(t)\leq \lim_{n\to\infty}\theta_+^{-1}\circ\psi^n\circ\theta(t)=0$$

for any $t \in (0, \infty)$. Since $u \le \theta_+^{-1} \circ \theta(u) \le \theta_+^{-1} \circ \psi \circ \theta(t)$, we obtain $u \le \varphi(t)$ for any $(t, u) \in D$. Therefore *D* is Matkowski.

5 Counterexamples

In this section, we give counterexamples connected with the results in Section 4.

Example 13 (Example 2.3 in [15], Example 10 in [14]) Define a complete metric space (X, d) by

$$X = [0,1] \cup [2,\infty) \text{ and } d(x,y) = \begin{cases} \min\{x+y,2\} & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

Define a mapping *T* on *X* and functions θ and ψ from $(0, \infty)$ into itself by

$$Tx = \begin{cases} 0 & \text{if } x \le 1, \\ 1 - 1/x & \text{if } x \ge 2, \end{cases} \qquad \theta(t) = \begin{cases} t/2 & \text{if } t < 2, \\ 2 & \text{if } t \ge 2, \end{cases}$$

and $\psi(t) = t/2$. Define *D* by (1). Then all the assumptions of Propositions 9 and 12 except the left continuity of θ are satisfied. However, *D* is neither Boyd-Wong nor Matkowski.

Remark By Corollary 11, *D* is Meir-Keeler. We define *E* by

$$E = \left\{ \left(\theta \circ d(x, y), \theta \circ d(Tx, Ty) \right) : x, y \in X \right\} \cap (0, \infty)^2.$$
(2)

Then $E \subset \{2\} \times (1/4, 1)$ holds. Hence *E* is contractive.

Proof We have

$$D \supset \left\{ \left(d(x, y), d(Tx, Ty) \right) : x, y \ge 2, x \neq y \right\}$$
$$= \left\{ (2, 2 - 1/x - 1/y) : x, y \ge 2, x \neq y \right\}$$
$$= \{2\} \times (1, 2).$$

Hence *D* is neither Boyd-Wong nor Matkowski.

Example 14 (Example 2.6 in [13], Example 11 in [14]) Define a complete metric space (X, d) by $X = [0, \infty)$ and d(x, y) = x + y for $x, y \in X$ with $x \neq y$. Define a mapping *T* on *X* and functions θ and ψ from $(0, \infty)$ into itself by

$$Tx = \begin{cases} 0 & \text{if } x \le 1, \\ 1 & \text{if } x > 1, \end{cases} \qquad \theta(t) = \begin{cases} t & \text{if } t \le 1, \\ 2 & \text{if } t > 1, \end{cases}$$

and $\psi(t) = t/2$. Define *D* by (1). Then all the assumptions of Proposition 10 except the right continuity of θ are satisfied. However, *D* is not Meir-Keeler. Therefore *D* is not Boyd-Wong.

Remark By Proposition 12, *D* is Matkowski. We define *E* by (2). Then $E = \{(2,1)\}$ holds. Hence *E* is contractive.

Proof We have

$$D \supset \{ (d(0, y), d(T0, Ty)) : y > 1 \}$$
$$= \{ (y, 1) : y > 1 \} = (1, \infty) \times \{1\}.$$

Hence *D* is not Meir-Keeler.

Example 15 Define a complete metric space (X, d) by $X = \{0, 1\}$ and d(0, 1) = 1. Define a mapping *T* on *X* and functions θ and ψ from $(0, \infty)$ into itself by

$$Tx = 1 - x$$
 and $\theta(t) = \psi(t) = 1$.

Define D by (1). Then all the assumptions of Proposition 12 except (ii) are satisfied. However, D is not Matkowski.

Proof Obvious.

6 Applications

In this section, as applications, we give alternative proofs of some recent generalizations of the Banach contraction principle. Ri in [1] proved the following fixed point theorem.

Theorem 16 (Ri [1]) Let (X, d) be a complete metric space and let T be a mapping on X. Assume there exists a function ψ from $[0, \infty)$ into itself satisfying the following:

- (R1) $\psi(t) < t$ for any $t \in (0, \infty)$.
- (R2) $\limsup_{s \to t+0} \psi(s) < t$ for any $t \in (0, \infty)$.
- (R3) $d(Tx, Ty) \le \psi(d(x, y))$ for any $x, y \in X$.

Then T has a unique fixed point.

We give an alternative proof of Theorem 16 by showing that a mapping T in Theorem 16 is a Boyd-Wong contraction.

Proof of Theorem 16 By Lemma 2, the restriction ψ to $(0, \infty)$ satisfies $(UR)_{\psi}$. Then by Lemma 4, there exists a right continuous function φ from $(0, \infty)$ into itself satisfying $\psi(t) < \varphi(t) < t$ for $t \in (0, \infty)$. Thus *T* is a Boyd-Wong contraction. So *T* has a unique fixed point.

Wardowski in [2] proved a fixed point theorem on *F*-contraction.

Theorem 17 (Wardowski [2]) Let (X, d) be a complete metric space and let T be a Fcontraction on X, that is, there exist a function F from $(0, \infty)$ into \mathbb{R} and real numbers $\eta \in (0, \infty)$ and $k \in (0, 1)$ satisfying the following:

- (F1) *F* is strictly increasing.
- (F2) For any sequence $\{\alpha_n\}$ of positive numbers, $\lim_n \alpha_n = 0$ iff $\lim_n F(\alpha_n) = -\infty$.
- (F3) $\lim_{t\to+0} t^k F(t) = 0$ holds.
- (F4) If $Tx \neq Ty$, then

$$F(d(Tx, Ty)) \leq F(d(x, y)) - \eta$$

holds. Then T has a unique fixed point.

Remark By (F1), we note that (F2) is equivalent to the following:

(F2)' $\lim_{t\to+0} F(t) = -\infty$ holds.

We give an alternative proof of Theorem 17 by showing that mappings satisfying (F1) and (F4) are CJM contractions.

Proof of Theorem 17 Define a subset *D* of $(0, \infty)^2$ by (1). Define θ and ψ by $\theta = F$ and $\psi(\tau) = \tau - \eta$. Then all the assumptions of Proposition 8 hold. So, by Proposition 8, *D* is CJM. Therefore *T* has a unique fixed point.

Remark We assume (F4) and that F is nondecreasing instead of (F1)-(F4). Then D defined by (1) is CJM. Moreover, the following hold:

- If we assume additionally that *F* is right continuous, then *D* is Meir-Keeler by Corollary 11.
- If we assume additionally that *F* is left continuous, then *D* is Matkowski by Proposition 12.
- If we assume additionally that *F* is continuous, then *D* is Browder by Proposition 7.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author is supported in part by JSPS KAKENHI Grant Number 16K05207 from Japan Society for the Promotion of Science.

Received: 22 April 2016 Accepted: 8 September 2016 Published online: 20 September 2016

References

- 1. Ri, S-I: A new fixed point theorem in the fractal space. Indag. Math. 27, 85-93 (2016)
- 2. Wardowski, D: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, Article ID 94 (2012)
- 3. Banach, S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. **3**, 133-181 (1922)
- Caccioppoli, R: Un teorema generale sull'esistenza di elementi uniti in una transformazione funzionale. Rend. Accad. Naz. Lincei 11, 794-799 (1930)
- Jachymski, J: A generalization of the theorem by Rhoades and Watson for contractive type mappings. Math. Jpn. 38, 1095-1102 (1993)
- 6. Jachymski, J: Equivalent conditions and the Meir-Keeler type theorems. J. Math. Anal. Appl. 194, 293-303 (1995)
- 7. Jachymski, J: Equivalence of some contractivity properties over metrical structures. Proc. Am. Math. Soc. 125, 2327-2335 (1997)
- 8. Jachymski, J: Remarks on contractive conditions of integral type. Nonlinear Anal. 71, 1073-1081 (2009)
- 9. Kirk, WA: Contraction mappings and extensions. In: Kirk, WA, Sims, B (eds.) Handbook of Metric Fixed Point Theory, pp. 1-34. Kluwer Academic, Dordrecht (2001)
- Suzuki, T, Alamri, B: A sufficient and necessary condition for the convergence of the sequence of successive approximations to a unique fixed point II. Fixed Point Theory Appl. 2015, Article ID 59 (2015)
- 11. Boyd, DW, Wong, JSW: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458-464 (1969)

- 12. Branciari, A: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. **29**, 531-536 (2002)
- Suzuki, T: Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Int. J. Math. Math. Sci. 2007, Article ID 39281 (2007)
- 14. Suzuki, T: Comments on some recent generalization of the Banach contraction principle. J. Inequal. Appl. 2016, Article ID 111 (2016)
- 15. Suzuki, T, Vetro, C: Three existence theorems for weak contractions of Matkowski type. Int. J. Math. Stat. 6, 110-120 (2010)
- Browder, FE: On the convergence of successive approximations for nonlinear functional equations. Proc. K. Ned. Akad. Wet., Ser. A, Indag. Math. 30, 27-35 (1968)
- 17. Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329 (1969)
- 18. Lim, TC: On characterizations of Meir-Keeler contractive maps. Nonlinear Anal. 46, 113-120 (2001)
- 19. Proinov, PD: Fixed point theorems in metric spaces. Nonlinear Anal. 64, 546-557 (2006)
- Suzuki, T: Fixed point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces. Nonlinear Anal. 64, 971-978 (2006)
- 21. Matkowski, J: Integrable solutions of functional equations. Diss. Math. 127, 1-68 (1975)
- 22. Ćirić, LB: A new fixed-point theorem for contractive mappings. Publ. Inst. Math. (Belgr.) 30, 25-27 (1981)
- 23. Kuczma, M, Choczewski, B, Ger, R: Iterative Functional Equations. Encyclopedia of Mathematics and Its Applications, vol. 32. Cambridge University Press, Cambridge (1990)
- 24. Matkowski, J: Fixed point theorems for contractive mappings in metric spaces. Čas. Pěst. Mat. 105, 341-344 (1980)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com