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Abstract
We discuss several contractions of integral type by using Jachymski’s approach. We
give alternative proofs of recent generalizations of the Banach contraction principle
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1 Introduction
The Banach contraction principle [, ] is an elegant, forceful tool in nonlinear analysis
and has many generalizations. See, e.g., [–]. For example, Boyd and Wong in [] proved
the following.

Theorem  (Boyd and Wong []) Let (X, d) be a complete metric space and let T be a
mapping on X. Assume that T is a Boyd-Wong contraction, that is, there exists a function
ϕ from [,∞) into itself satisfying the following:

(i) ϕ is upper semicontinuous from the right.
(ii) ϕ(t) < t holds for any t ∈ (,∞).

(iii) d(Tx, Ty) ≤ ϕ ◦ d(x, y) for any x, y ∈ X .
Then T has a unique fixed point.

Branciari in [] introduced contractions of integral type as follows: A mapping T on a
metric space (X, d) is a Branciari contraction if there exist r ∈ [, ) and a locally integrable
function f from [,∞) into itself such that

∫ s


f (t) dt >  and

∫ d(Tx,Ty)


f (t) dt ≤ r

∫ d(x,y)


f (t) dt

for all s >  and x, y ∈ X. We have studied contractions of integral type in [–].
In this paper, we discuss several contractions of integral type by using Jachymski’s ap-

proach. As applications, we give alternative proofs of recent generalizations of the Banach
contraction principle due to Ri [] and Wardowski [].
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2 Preliminaries
Throughout this paper we denote by N the set of all positive integers and by R the set of
all real numbers.

Let f be a function from a subset Q of R into R. Then f is said to satisfy (UR)f if the
following holds:

(UR)f For any t ∈ Q, there exist δ >  and ε >  such that f (s) ≤ t – ε holds for any s ∈
[t, t + δ) ∩ Q.

We give some lemmas concerning (UR).

Lemma  Let f be a function from a subset Q of R into R. Then the following are equiva-
lent:

(i) f satisfies (UR)f .
(ii) lim sup[f (u) : u → t, u ∈ Q, t ≤ u] < t holds for any t ∈ Q.

(iii) lim sup[f (u) : u → t, u ∈ Q, t < u] < t and f (t) < t hold for any t ∈ Q.

Proof Obvious. �

Lemma  Let f be a function from a subset Q of R into R such that f (t) < t for any t ∈ Q.
Assume that f is upper semicontinuous from the right. Then f satisfies (UR)f .

Proof Obvious. �

Lemma  Let f be a function from a subset Q ofR intoR satisfying (UR)f . Define a function
g from Q into R by

g(t) = lim sup
[
f (u) : u → t, u ∈ Q, t ≤ u

]

for t ∈ Q. Define a mapping L from Q into the power set of R, a function � from Q into
[–∞,∞) and a function h from Q into R by

L(t) =
{

s ∈ Q : s ≤ t, lim sup
[
g(u) : u → s, u ∈ Q, u ≤ s

]
= s

}
,

�(t) =

⎧⎨
⎩

sup L(t) if L(t) �= ∅,

–∞ if L(t) = ∅,
and

h(t) = sup
{

g(s) : s ∈ Q,�(t) ≤ s ≤ t
}

for t ∈ Q. Define a function ϕ from Q into R by

ϕ(t) =
h(t) + t



for t ∈ Q. Then the following hold:
(i) g is upper semicontinuous from the right.

(ii) h and ϕ are right continuous.
(iii) f (t) ≤ g(t) ≤ h(t) < ϕ(t) < t holds for any t ∈ Q.
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Proof Since f satisfies (UR)f , we have f (t) ≤ g(t) < t for any t ∈ Q. In order to show (i), we
fix t ∈ Q and let {tn} be a strictly decreasing sequence in Q converging to t. Fix ε > . Then
for every n ∈ N, there exists sn ∈ Q satisfying tn ≤ sn ≤ tn + /n and g(tn) ≤ f (sn) + ε. Since
{sn} converges to t, we have

lim sup
n→∞

g(tn) ≤ lim sup
n→∞

f (sn) + ε ≤ g(t) + ε.

Since ε >  is arbitrary, we obtain lim supn g(tn) ≤ g(t). Therefore we have shown (i). We
shall show h(t) < t for any t ∈ Q. Arguing by contradiction, we assume h(t) ≥ t for some
t ∈ Q. Then since g(t) < t, there exists a strictly increasing sequence {sn} such that limn sn =
t and limn g(sn) = h(t). Since g(sn) < sn for n ∈ N, we have h(t) = t. Therefore t ∈ L(t), which
implies h(t) = g(t) < t. This is a contradiction. So h(t) < t holds. It is obvious that h(t) <
ϕ(t) < t for any t ∈ Q. Therefore we have shown (iii). In order to show (ii), we fix t ∈ Q and
ε >  with h(t) + ε < t. From (i), there exists δ >  such that

g(s) ≤ g(t) + ε ≤ h(t) + ε < t

for s ∈ (t, t + δ) ∩ Q. Let {tn} be a strictly decreasing sequence {tn} in Q such that t < t + δ

and {tn} converges to t. Then we note �(t) = �(tn) for n ∈N. So we have

h(t) ≤ h(tn)

= max
{

h(t), sup
{

g(s) : s ∈ Q, t < s ≤ tn
}}

≤ max
{

h(t), g(t) + ε
}

≤ h(t) + ε

for n ∈N. Hence

h(t) ≤ lim inf
n→∞ h(tn) ≤ lim sup

n→∞
h(tn) ≤ h(t) + ε.

Since ε >  is arbitrary, we obtain limn h(tn) = h(t). Thus, h is right continuous. It is obvious
that ϕ is also right continuous. We have shown (ii). �

Remark See Theorem  in []. Note that the domain of h is Q. We cannot extend the
domain of h to

⋃
[[t,∞) : t ∈ Q], considering the function f from (–∞, ) ∪ (,∞) into R

defined by

f (t) =

⎧⎨
⎩

–t if t < ,

t/ if t > .

3 Definitions
We list the following notation in order to simplify the statement of the results of this pa-
per:

(A) Let D be a subset of (,∞).
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(A) Let θ be a function from (,∞) into R. Put � = θ ((,∞)) and

�≤ =
⋃[

[t,∞) : t ∈ �
]
.

Jachymski in [] discussed several contractions by using subsets of [,∞). Since this
approach seems to be very reasonable for considering future studies, we use an approach
similar to Jachymski’s.

Definition  Assume (A).
() D is said to be contractive (Cont for short) [, ] if there exists r ∈ (, ) such that

u ≤ rt holds for any (t, u) ∈ D.
() D is said to be a Browder (Bro, for short) [] if there exists a function ϕ from (,∞)

into itself satisfying the following:
(-i) ϕ is nondecreasing and right continuous.

(-ii) ϕ(t) < t holds for any t ∈ (,∞).
(-iii) u ≤ ϕ(t) holds for any (t, u) ∈ D.

() D is said to be Boyd-Wong (BW for short) [] if there exists a function ϕ from
(,∞) into itself satisfying the following:

(-i) ϕ is upper semicontinuous from the right.
(-ii) ϕ(t) < t holds for any t ∈ (,∞).

(-iii) u ≤ ϕ(t) holds for any (t, u) ∈ D.
() D is said to be Meir-Keeler (MK for short) [] if for any ε > , there exists δ >  such

that u < ε holds for any (t, u) ∈ D with t < ε + δ; see also [–].
() D is said to be Matkowski (Mat for short) [] if there exists a function ϕ from

(,∞) into itself satisfying the following:
(-i) ϕ is nondecreasing.

(-ii) limn ϕn(t) =  for every t ∈ (,∞).
(-iii) u ≤ ϕ(t) holds for any (t, u) ∈ D.

() D is said to be CJM [, –] if the following hold:
(-i) For any ε > , there exists δ >  satisfying u ≤ ε holds for any (t, u) ∈ D with

t < ε + δ.
(-ii) u < t holds for any (t, u) ∈ D.

Remark We know the following implications; see, e.g., [, , ].
• Cont ⇒ Bro ⇒ BW ⇒ MK ⇒ CJM;
• Cont ⇒ Bro ⇒ Mat ⇒ CJM.

We give one proposition on the concept of Boyd-Wong. Note that we can easily obtain
similar results on the other concepts.

Proposition  Let T be a mapping on a metric space (X, d) and define a subset D of (,∞)

by

D =
{(

d(x, y), d(Tx, Ty)
)

: x, y ∈ X
} ∩ (,∞). ()

Then T is a Boyd-Wong contraction iff D is Boyd-Wong.
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Proof We first note

D =
{(

d(x, y), d(Tx, Ty)
)

: x, y ∈ X, x �= y, Tx �= Ty
}

=
{(

d(x, y), d(Tx, Ty)
)

: x, y ∈ X, Tx �= Ty
}

because Tx �= Ty implies x �= y. We assume that D is Boyd-Wong. Then there exists ϕ sat-
isfying (-i)-(-iii) in Definition . Define a function η from [,∞) into itself by η() = 
and η(t) = ϕ(t) for t ∈ (,∞). Then we have (i)η and (ii)η in Theorem . If either x = y or
Tx = Ty holds, then d(Tx, Ty) ≤ η ◦ d(x, y) obviously holds. Considering this fact, we have
(iii)η in Theorem . Therefore T is a Boyd-Wong contraction. Conversely, we next assume
that T is a Boyd-Wong contraction. Then there exists η satisfying (i)η-(iii)η in Theorem .
Define a function ϕ from (,∞) into itself by

ϕ(t) = max
{
η(t), t/

}

for any t ∈ (,∞). Then ϕ satisfies (-i) and (-ii) in Definition . We also have

d(Tx, Ty) ≤ η ◦ d(x, y) ≤ ϕ ◦ d(x, y)

for any x, y ∈ X with Tx �= Ty. So (-iii) holds. Therefore D is Boyd-Wong. �

The following are variants of Corollaries  and  in [].

Proposition  ([]) Assume (A), (A) and the following:
(i) θ is nondecreasing and continuous.

(ii) There exists an upper semicontinuous function ψ from � into R satisfying ψ(τ ) < τ

for any τ ∈ � and θ (u) ≤ ψ ◦ θ (t) for any (t, u) ∈ D.
Then D is Browder.

Proposition  ([]) Assume (A), (A), and the following:
(i) θ is nondecreasing.

(ii) There exists an upper semicontinuous function ψ from �≤ into R satisfying ψ(τ ) < τ

for any τ ∈ �≤ and θ (u) ≤ ψ ◦ θ (t) for any (t, u) ∈ D.
Then D is CJM.

Remark From the proof in [], we can weaken (ii) of Proposition  to the following:

(ii)′ There exists a function ψ from �≤ into R such that ψ is upper semicontinuous from
the right, ψ(τ ) < τ for any τ ∈ �≤ and θ (u) ≤ ψ ◦ θ (t) for any (t, u) ∈ D.

4 Main results
In this section, we prove our main results. We begin with Boyd-Wong.

Proposition  Assume (A), (A), and the following:
(i) θ is nondecreasing and continuous.

(ii) There exists a function ψ from � into R satisfying (UR)ψ and θ (u) ≤ ψ ◦ θ (t) for any
(t, u) ∈ D.

Then D is Boyd-Wong.
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Proof Define a function θ–
+ from R into [,∞] by

θ–
+ (τ ) =

⎧⎨
⎩

sup{s ∈ (,∞) : θ (s) ≤ τ } if {s ∈ (,∞) : θ (s) ≤ τ } �= ∅,

 otherwise.

We also define a function η from (,∞) into [,∞) by η = θ–
+ ◦ ψ ◦ θ . We note

η(t) = sup
{

s ∈ (,∞) : θ (s) ≤ ψ ◦ θ (t)
}

provided η(t) > .

Since ψ(τ ) < τ for any τ ∈ �, we have ψ ◦ θ (t) < θ (t) ≤ θ (s) for any t, s ∈ (,∞) with t ≤ s.
Hence η(t) ≤ t holds for any t ∈ (,∞). Arguing by contradiction, we assume that (UR)η
does not hold. Then there exist t ∈ (,∞) and a sequence {tn} in [t,∞) such that {tn}
converges to t and

η(tn) > ( – /n)t

holds for n ∈ N. Since η(tn) > ,

sup
{

s ∈ (,∞) : θ (s) ≤ ψ ◦ θ (tn)
}

= η(tn) > ( – /n)t

holds. Hence there exists a sequence {un} in (,∞) satisfying

θ (un) ≤ ψ ◦ θ (tn) < θ (tn) and un > ( – /n)t

for n ∈ N. Since θ is nondecreasing, un < tn holds for any n ∈ N. Thus {un} also converges
to t. Hence by the continuity of θ ,

θ (t) ≤ lim sup
n→∞

ψ ◦ θ (tn) ≤ lim sup
[
ψ(τ ) : τ → θ (t), τ ≥ θ (t), τ ∈ �

]
.

This contradicts (UR)ψ . Therefore (UR)η holds. For any (t, u) ∈ D, since θ (u) ≤ ψ ◦ θ (t),
we have

u ≤ θ–
+ ◦ θ (u) ≤ θ–

+ ◦ ψ ◦ θ (t) = η(t).

By Lemma , there exists a right continuous function ϕ from (,∞) into itself satisfying
η(t) < ϕ(t) < t. It is obvious that u ≤ η(t) < ϕ(t) for any (t, u) ∈ D. Therefore D is Boyd-
Wong. �

Remark There appears θ–
+ in Proposition . in [].

We next discuss Meir-Keeler.

Proposition  Assume (A), (A), and the following:
(i) θ is nondecreasing and right continuous.

(ii) For any ε ∈ �, there exists δ >  such that θ (t) < ε + δ implies θ (u) < ε for any
(t, u) ∈ D.

Then D is Meir-Keeler.
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Proof Fix ε > . Then from (ii), there exists α >  such that

θ (t) < θ (ε) + α implies θ (u) < θ (ε)

for any (t, u) ∈ D. From the right continuity of θ , there exists δ >  such that θ (ε + δ) <
θ (ε) + α. Fix (t, u) ∈ D with t < ε + δ. Then we have

θ (t) ≤ θ (ε + δ) < θ (ε) + α

and hence θ (u) < θ (ε). Therefore u < ε holds. So D is Meir-Keeler. �

We obtain the following, which is a generalization of Corollary  in [].

Corollary  Assume (A), (A), (i) of Proposition , and (ii) of Proposition . Then D is
Meir-Keeler.

Let us discuss Matkowski.

Proposition  Assume (A), (A), and the following:
(i) θ is nondecreasing and left continuous.

(ii) min� does not exist.
(iii) There exist a subset Q of R and a nondecreasing function ψ from Q into Q satisfying

� ⊂ Q ⊂ �≤,

lim
n→∞ψn(τ ) = inf�

for any τ ∈ Q and θ (u) ≤ ψ ◦ θ (t) for any (t, u) ∈ D.
Then D is Matkowski.

Proof We first note that inf� = inf Q = inf�≤ holds and neither min�, min Q nor min�≤
does exist. So, from (ii) and (iii), ψ(τ ) < τ holds for any τ ∈ Q. Define a function θ–

+ from
Q into (,∞] by

θ–
+ (τ ) = sup

{
s ∈ (,∞) : θ (s) ≤ τ

}
.

Since θ is left continuous, we have τ < θ (t) implies θ–
+ (τ ) < t. We also have

θ–
+ (τ ) = max

{
s ∈ (,∞) : θ (s) ≤ τ

}

provided τ < sup�. Hence θ ◦ θ–
+ (τ ) ≤ τ provided τ < sup�. It is obvious that θ–

+ is non-
decreasing. Define a function ϕ from (,∞) into itself by ϕ = θ–

+ ◦ ψ ◦ θ . Then for any
t ∈ (,∞), since ψ ◦ θ (t) < θ (t), we have ϕ(t) < t. Since θ , ψ , and θ–

+ are nondecreasing, ϕ
is also nondecreasing. Noting ψ ◦ θ (t) < θ (t) ≤ sup�, we have

ϕ(t) = θ–
+ ◦ ψ ◦ θ ◦ θ–

+ ◦ ψ ◦ θ (t) ≤ θ–
+ ◦ ψ ◦ θ (t).
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Continuing this argument, we can prove ϕn(t) ≤ θ–
+ ◦ ψn ◦ θ (t) by induction. Since

limn ψn ◦ θ (t) = inf�, we have limn θ–
+ ◦ ψn ◦ θ (t) =  from (ii). Therefore we obtain

lim
n→∞ϕn(t) ≤ lim

n→∞ θ–
+ ◦ ψn ◦ θ (t) = 

for any t ∈ (,∞). Since u ≤ θ–
+ ◦θ (u) ≤ θ–

+ ◦ψ ◦θ (t), we obtain u ≤ ϕ(t) for any (t, u) ∈ D.
Therefore D is Matkowski. �

5 Counterexamples
In this section, we give counterexamples connected with the results in Section .

Example  (Example . in [], Example  in []) Define a complete metric space
(X, d) by

X = [, ] ∪ [,∞) and d(x, y) =

⎧⎨
⎩

min{x + y, } if x �= y,

 if x = y.

Define a mapping T on X and functions θ and ψ from (,∞) into itself by

Tx =

⎧⎨
⎩

 if x ≤ ,

 – /x if x ≥ ,
θ (t) =

⎧⎨
⎩

t/ if t < ,

 if t ≥ ,

and ψ(t) = t/. Define D by (). Then all the assumptions of Propositions  and  except
the left continuity of θ are satisfied. However, D is neither Boyd-Wong nor Matkowski.

Remark By Corollary , D is Meir-Keeler. We define E by

E =
{(

θ ◦ d(x, y), θ ◦ d(Tx, Ty)
)

: x, y ∈ X
} ∩ (,∞). ()

Then E ⊂ {} × (/, ) holds. Hence E is contractive.

Proof We have

D ⊃ {(
d(x, y), d(Tx, Ty)

)
: x, y ≥ , x �= y

}

=
{

(,  – /x – /y) : x, y ≥ , x �= y
}

= {} × (, ).

Hence D is neither Boyd-Wong nor Matkowski. �

Example  (Example . in [], Example  in []) Define a complete metric space
(X, d) by X = [,∞) and d(x, y) = x + y for x, y ∈ X with x �= y. Define a mapping T on X and
functions θ and ψ from (,∞) into itself by

Tx =

⎧⎨
⎩

 if x ≤ ,

 if x > ,
θ (t) =

⎧⎨
⎩

t if t ≤ ,

 if t > ,
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and ψ(t) = t/. Define D by (). Then all the assumptions of Proposition  except the
right continuity of θ are satisfied. However, D is not Meir-Keeler. Therefore D is not Boyd-
Wong.

Remark By Proposition , D is Matkowski. We define E by (). Then E = {(, )} holds.
Hence E is contractive.

Proof We have

D ⊃ {(
d(, y), d(T, Ty)

)
: y > 

}

=
{

(y, ) : y > 
}

= (,∞) × {}.

Hence D is not Meir-Keeler. �

Example  Define a complete metric space (X, d) by X = {, } and d(, ) = . Define a
mapping T on X and functions θ and ψ from (,∞) into itself by

Tx =  – x and θ (t) = ψ(t) = .

Define D by (). Then all the assumptions of Proposition  except (ii) are satisfied. How-
ever, D is not Matkowski.

Proof Obvious. �

6 Applications
In this section, as applications, we give alternative proofs of some recent generalizations
of the Banach contraction principle. Ri in [] proved the following fixed point theorem.

Theorem  (Ri []) Let (X, d) be a complete metric space and let T be a mapping on X.
Assume there exists a function ψ from [,∞) into itself satisfying the following:

(R) ψ(t) < t for any t ∈ (,∞).
(R) lim sups→t+ ψ(s) < t for any t ∈ (,∞).
(R) d(Tx, Ty) ≤ ψ(d(x, y)) for any x, y ∈ X .

Then T has a unique fixed point.

We give an alternative proof of Theorem  by showing that a mapping T in Theorem 
is a Boyd-Wong contraction.

Proof of Theorem  By Lemma , the restriction ψ to (,∞) satisfies (UR)ψ . Then by
Lemma , there exists a right continuous function ϕ from (,∞) into itself satisfying
ψ(t) < ϕ(t) < t for t ∈ (,∞). Thus T is a Boyd-Wong contraction. So T has a unique fixed
point. �

Wardowski in [] proved a fixed point theorem on F-contraction.

Theorem  (Wardowski []) Let (X, d) be a complete metric space and let T be a F-
contraction on X, that is, there exist a function F from (,∞) into R and real numbers
η ∈ (,∞) and k ∈ (, ) satisfying the following:
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(F) F is strictly increasing.
(F) For any sequence {αn} of positive numbers, limn αn =  iff limn F(αn) = –∞.
(F) limt→+ tkF(t) =  holds.
(F) If Tx �= Ty, then

F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
– η

holds.
Then T has a unique fixed point.

Remark By (F), we note that (F) is equivalent to the following:

(F)′ limt→+ F(t) = –∞ holds.

We give an alternative proof of Theorem  by showing that mappings satisfying (F)
and (F) are CJM contractions.

Proof of Theorem  Define a subset D of (,∞) by (). Define θ and ψ by θ = F and
ψ(τ ) = τ – η. Then all the assumptions of Proposition  hold. So, by Proposition , D is
CJM. Therefore T has a unique fixed point. �

Remark We assume (F) and that F is nondecreasing instead of (F)-(F). Then D defined
by () is CJM. Moreover, the following hold:

• If we assume additionally that F is right continuous, then D is Meir-Keeler by
Corollary .

• If we assume additionally that F is left continuous, then D is Matkowski by
Proposition .

• If we assume additionally that F is continuous, then D is Browder by Proposition .
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