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Abstract
In this paper, we study viscosity approximations with (ψ ,ϕ)-weakly contractive
mappings. We show that Moudafi’s viscosity approximations follow from Browder and
Halpern type convergence theorems. Our results generalize a number of
convergence theorems including a strong convergence theorem of Song and Liu
(Fixed Point Theory Appl. 2009:824374, 2009).
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1 Introduction and preliminaries
Let (M, d) be a metric space and f : M → M a self-mapping. A point z ∈ M is said to be a
fixed point of f if f (z) = z. Throughout this paper, F(f ) denotes the set of fixed points of f ,
N the set of natural numbers and M a metric space (M, d).

A mapping f : M → M is a contraction if there exists r ∈ [, ) such that for all x, y ∈ M,

d
(
f (x), f (y)

) ≤ rd(x, y). (.)

The classical Banach contraction principle (BCP) states that ‘Every contraction of a com-
plete metric space has a unique fixed point.’ In , Boyd and Wong [] obtained the
following interesting generalization of the BCP.

Theorem . Let f : M → M a self-mapping of a complete metric space M such that for
all x, y ∈ M,

d
(
f (x), f (y)

) ≤ α
(
d(x, y)

)
, (.)

where α : [,∞) → [,∞) is upper semicontinuous from the right and α(t) < t for all t > .
Then f has a unique fixed point in M.

The mapping f : M → M satisfying (.) is called a nonlinear contraction [].
The mapping f : M → M is called weakly contractive, if

d
(
f (x), f (y)

) ≤ d(x, y) – ϕ
(
d(x, y)

)
(.)
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for all x, y ∈ M, where ϕ : [,∞) → [,∞) is a continuous and nondecreasing function
such that ϕ(t) =  if and only if t = .

We note that (.) follows from Tasković [, ]. For an earlier work in this direction,
we refer to Krasnosel’skĭı et al. [] and Dugundji and Granas []. Also, these mappings
have been studied by Aĺber and Guerre-Delabriere [] and Rhoades [] as mentioned by
Jachymski [] (see also []).

In this paper, we use the following class of mappings satisfying the so-called (ψ ,ϕ)-
condition (see for details [–]).

A mapping f : M → M is called (ψ ,ϕ)-weakly contractive if

ψ
(
d
(
f (x), f (y)

)) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
(.)

for all x, y ∈ M, where ψ ,ϕ : [,∞) → [,∞) are both continuous and monotone nonde-
creasing functions with ψ(t) =  = ϕ(t) if and only if t = .

Remark . We remark that if ϕ(t) = ( – r)t with r ∈ (, ), then (.) reduces to (.).
If ψ(t) = t, then (.) recovers (.). In fact, weakly contractive mappings are also related
closely to nonlinear contractions. If α is continuous and ϕ(t) = t –α(t) then (.) turns into
(.). We have the following irreversible implications (see [], Example .).

(.) ⇒ (.) ⇒ (.) ⇒ (.).

Thus (ψ ,ϕ)-weakly contractive mappings are more general than its predecessors as listed
above.

Theorem . ([], Theorem .) Every (ψ ,ϕ)-weakly contractive mapping of a complete
metric space has a unique fixed point.

It was observed by Ðorić [] that the continuity of ϕ can be relaxed to lower semi-
continuity in Theorem ..

Definition . Let Y be a nonempty subset of a Banach space X. A mapping f : Y → Y is
said to be nonexpansive if for all x, y ∈ Y ,

∥∥f (x) – f (y)
∥∥ ≤ ‖x – y‖.

Let X be a real Banach space with its dual space X∗ and Y be a nonempty closed convex
subset of X. Let 〈x, x∗〉 be the dual pairing between x ∈ X and x∗ ∈ X∗, and J : X → X∗ be
the normalized duality mapping on X defined by

J(x) =
{

x∗ ∈ X∗ :
〈
x, x∗〉 = ‖x‖ =

∥∥x∗∥∥}

for all x ∈ X. Then X is said to be smooth or to have a Gâteaux differentiable norm if
limt→

‖x+ty‖–‖x‖
t exists for each x, y ∈ X with ‖x‖ = ‖y‖ = . A Banach space X is said to be

uniformly smooth whenever given ε >  there exists δ >  such that for all x, y ∈ X with
‖x‖ =  and ‖y‖ ≤ δ, then ‖x + y‖ + ‖x – y‖ <  + ε‖y‖.
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Definition . [] Let Y be a nonempty closed convex subset of a Banach space X and
Z a nonempty subset of Y . A retraction from Y to Z is a continuous mapping P : Y → Z
such that P(x) = x for x ∈ Z. A retraction P from Y to Z is sunny if P satisfies the prop-
erty: P(P(x) + t(x – P(x))) = P(x) for all x ∈ Y and t > , whenever P(x) + t(x – P(x)) ∈ Y .
A retraction P from Y to Z is sunny nonexpansive if P is both sunny and nonexpansive
[–].

A well-known way to find a fixed point of a nonexpansive mapping is to use a contraction
to approximate it (Browder [, ]). More precisely, fix z ∈ Y and define a mapping ft :
Y → Y by ft(x) = tz + ( – t)S(x) for all x ∈ Y and given t ∈ (, ). It is easy to see that ft is a
contraction on Y and the BCP ensures that ft has a unique fixed point ut ∈ Y , that is,

ut = tz + ( – t)S(ut). (.)

In , Halpern [] introduced the following iteration for an arbitrary z ∈ Y and a se-
quence {αn} ⊂ (, ):

u ∈ Y , un+ = αnz + ( – αn)S(un) (.)

for n ∈N, where S : Y → Y is a nonexpansive mapping.
In the case F(S) �= ∅, Browder [] (respectively, Halpern []) showed that {ut} (respec-

tively, {un}) converges strongly to the fixed point of S that is nearest to z in a Hilbert space.
A number of extensions and generalizations of their results have appeared in [, –]
and elsewhere.

Theorem . [] Let Y be a bounded closed convex subset of a uniformly smooth Banach
space X and S : Y → Y a nonexpansive mapping. Define a net {xα} in Y by

xα = αz + ( – α)S(xα)

for α ∈ (, ), where z ∈ Y is fixed. Then {xα} converges strongly to P(z) as α → +, where P
is the unique sunny nonexpansive retraction from Y onto F(S).

Theorem . [, ] Let X, Y , S, P and z be as in Theorem .. Define a sequence {un} in
Y by

u ∈ Y , un+ = αnz + ( – αn)S(un)

for n ∈N, where {αn} is a real sequence in (, ) satisfying

(C) lim
n→∞αn = , (C)

∞∑

n=

αn = ∞, (C) lim
n→∞

αn+

αn
= .

Then {un} converges strongly to P(z).

In , Moudafi [] generalized Browder’s and Halpern’s theorems and proved that
in a real Hilbert space H , for a given u ∈ Y ⊆ H , the sequence {un} generated by the
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algorithm

un+ = αnf (un) + ( – αn)S(un) (.)

for n ∈N∪ {}, where f : Y → Y is a contraction, S : Y → Y a nonexpansive mapping and
{αn} ⊆ (, ), satisfying certain conditions, converges strongly to a fixed point of S in Y ,
which is the unique solution to the following variational inequality:

〈
(I – f )x∗, x∗ – x

〉 ≥ , ∀x ∈ F(S).

Moudafi’s generalizations are called viscosity approximations. These methods can be ap-
plied to convex optimization, linear programming, monotone inclusions, and elliptic dif-
ferential equations []. In , Xu [] extended Moudafi’s results from Hilbert spaces
to more general Banach spaces. Suzuki [] used Meir-Keeler type contractions f in (.)
to find fixed points of S in Banach spaces. Recently, Song and Liu [] considered the fol-
lowing viscosity approximations:

vn = αnf (vn) + ( – αn)Sn(vn);

un+ = αnf (un) + ( – αn)Sn(un)

for n ∈ N, where Sn : Y → Y is a sequence of nonexpansive mappings and f : Y → Y is a
weakly contractive mapping.

In this paper, motivated by Moudafi [], Kopecká and Reich [], Suzuki [] and Song
and Liu [], we study viscosity approximations with a more general class of weakly con-
tractive mappings. We show that Moudafi’s viscosity approximations can be obtained from
Browder and Halpern type convergence results.

2 Convergence results
Throughout this section, ψ ,ϕ : [,∞) → [,∞) are continuous and strictly increasing
functions such that

ψ(t) =  = ϕ(t) if and only if t = .

Our main results are prefaced by the following lemmas and propositions.

Lemma . [, ] Let Y be a nonempty convex subset of a smooth Banach space X and
Z a nonempty subset of Y . Let J be the duality mapping from X into X∗, and P : Y → Z a
retraction. Then P is both sunny and nonexpansive if and only if

〈
x – P(x), J

(
y – P(x)

)〉 ≤ 

for all x ∈ Y and y ∈ Z.

Lemma . [] Let {αn} be a sequence of positive reals and {βn} a sequence of nonnegative
reals such that

lim
n→∞αn = ,

∞∑

n=

αn = ∞ and lim
n→∞

βn

αn
= .
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Further, consider a sequence of nonnegative reals {�n} and the recursive inequality

�n+ ≤ �n – αnξ (�n) + βn

for n ∈N∪ {}, where ξ (�) is continuous strictly increasing for � ≥  and ξ () = . Then
() limn→∞ �n = ;
() there exists a subsequence {�nk } of {�n} such that

�nk ≤ ξ–
(


∑nk

m= αm
+

βnk

αnk

)
,

�nk + ≤ ξ–
(


∑nk

m= αm
+

βnk

αnk

)
+ βnk ,

�n ≤ �nk + –
n–∑

m=nk+

αm

θm
, nk +  < n < nk+, θm =

m∑

i=

αi,

�n+ ≤ � –
n∑

m=

αm

θm
≤ �,  ≤ n < nk – ,

 ≤ nk ≤ smax = max

{

s,
s∑

m=

αm

θm
≤ �

}

.

Definition . [] Let {Sn} be sequence of nonexpansive mappings on a closed convex
subset Y of a Banach space X and F =

⋂∞
n= F(Sn) �= ∅.

(A) Let {αn} be a sequence in (, ] with limn→∞αn = . Then (X, Y , {Sn}, {αn}) is said to
satisfy Browder property if for each z ∈ Y , a sequence {vn} defined by

vn = αnz + ( – αn)Sn(vn), (.)

for n ∈N, converges strongly.
(B) Let {αn} be a sequence in [, ] with limn→∞ αn =  and

∑∞
n= αn = ∞. Then

(X, Y , {Sn}, {αn}) is said to satisfy Halpern’s property if for each z ∈ Y , a sequence
{vn} defined by

v ∈ Y , vn+ = αnz + ( – αn)Sn(vn), (.)

for n ∈N, converges strongly.

It is well known that if X is a Hilbert space, Y is bounded and {Sn} is a constant se-
quence S, then (X, Y , {Sn}, {/n}) has both the Browder and the Halpern properties (cf.
[, , , ]).

Example . Let X = [,∞) equipped with the norm ‖ · ‖ defined by ‖x‖ = |x| and Y =
[, ] a closed convex subset of X. Define a sequence of nonexpansive mappings Sn : Y → Y
by Sn(x) = x

n for all x ∈ Y and n ∈ N. Let {αn} be a sequence in (, ] defined by αn = 
n+ .

Then
(i) It is easy to see that the quadruple (X, Y , {Sn}, {αn}) satisfies the Browder property
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and the sequence {vn} defined by

vn = αnz + ( – αn)Sn(vn),

for each z ∈ Y and n ∈N, converges strongly to .
(ii) However, the quadruple (X, Y , {Sn}, {αn}) does not satisfy the Halpern property, as

the series
∑∞

n= αn is a convergent series.
(iii) If we take αn = 

n , then the quadruple (X, Y , {Sn}, {αn}) satisfies both the Browder
and the Halpern properties. We note that {Sn} is not a constant sequence here.

Proposition . ([], Proposition ) Let the quadruple (X, Y , {Sn}, {αn}) satisfies Brow-
der’s property and {vn} is a sequence in Y , defined by (.). If P(z) = limn→∞ vn for each
z ∈ Y then P is a nonexpansive mapping on Y .

Proposition . ([], Proposition ) Let the quadruple (X, Y , {Sn}, {αn}) satisfies Hal-
pern’s property and {vn} is a sequence in Y , defined by (.). If P(z) = limn→∞ vn for each
z ∈ Y then

• P : Y → Y is a nonexpansive mapping;
• P(z) does not depend on the initial point v.

Proposition . Let Y be a closed convex subset of a smooth Banach space X and Z a
nonempty subset of Y . Let S : Y → Y be a nonexpansive mapping, P : Y → Z a unique
sunny nonexpansive retraction, and T : Y → Y a (ψ ,ϕ)-weakly contractive mapping with
ψ convex. Then

(a) the composite mapping S ◦ T is (ψ ,ϕ)-weakly contractive on Y ;
(b) the mapping St = tT + ( – t)S for t ∈ (, ) is (ψ ,φ)-weakly contractive on Y and ut is

the unique solution of the fixed point equation

ut = tT(ut) + ( – t)S(ut),

where φ(s) = tϕ(s) for each fixed t ∈ (, );
(c) P(T(z)) = z if and only if z ∈ Y is the unique solution of the variational inequality

〈
T(z) – z, J(y – z)

〉 ≤  (.)

for all y ∈ Z.

Proof
(a) For any x, y ∈ Y we have

∥∥S
(
T(x)

)
– S

(
T(y)

)∥∥ ≤ ∥∥T(x) – T(y)
∥∥.

Since ψ is nondecreasing and T is a (ψ ,ϕ)-weakly contractive, the above inequality
reduces to

ψ
(∥∥S

(
T(x)

)
– S

(
T(y)

)∥∥) ≤ ψ
(∥∥T(x) – T(y)

∥
∥)

≤ ψ
(‖x – y‖) – ϕ

(‖x – y‖).
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Therefore the mapping S ◦ T is a (ψ ,ϕ)-weakly contractive.
(b) Let x, y ∈ Y . Then for each fixed t ∈ (, ), we have

∥
∥St(x) – St(y)

∥
∥ =

∥
∥(

tT(x) + ( – t)S(x)
)

–
(
tT(y) + ( – t)S(y)

)∥∥

≤ ( – t)
∥∥S(x) – S(y)

∥∥ + t
∥∥T(x) – T(y)

∥∥

≤ ( – t)‖x – y‖ + t
∥∥T(x) – T(y)

∥∥.

Since ψ is nondecreasing, the above inequality reduces to

ψ
(∥∥St(x) – St(y)

∥
∥) ≤ ψ

(
( – t)‖x – y‖ + t

∥
∥T(x) – T(y)

∥
∥)

.

Convexity of ψ implies

ψ
(∥∥St(x) – St(y)

∥∥) ≤ ( – t)ψ
(‖x – y‖) + tψ

(∥∥T(x) – T(y)
∥∥)

.

Since T is (ψ ,ϕ)-weakly contractive, we have

ψ
(∥∥St(x) – St(y)

∥∥) ≤ ( – t)ψ
(‖x – y‖) + t

[
ψ

(‖x – y‖) – ϕ
(‖x – y‖)]

= ψ
(‖x – y‖) – tϕ

(‖x – y‖).

Let φ(s) = tϕ(s). Then

ψ
(∥∥St(x) – St(y)

∥∥) ≤ ψ
(‖x – y‖) – φ

(‖x – y‖).

Thus, the mappings St is (ψ ,φ)-weakly contractive and by Theorem ., St has a
unique fixed point ut in Y .

(c) By (a) and Proposition ., the mapping P ◦ T is (ψ ,φ)-weakly contractive. By
Theorem ., P ◦ T has a unique fixed point P(T(z)) = z ∈ Z. By Lemma ., such a
z ∈ Z satisfies (.). Next, we show that the variational inequality (.) has a unique
solution. Let w ∈ Y be another solution of (.). Then

〈
T(w) – w, J(z – w)

〉 ≤  (.)

and

〈
T(z) – z, J(w – z)

〉 ≤ . (.)

Adding (.) and (.)

 ≥ 〈
w – z –

(
T(w) – T(z)

)
, J(w – z)

〉

=
∥∥w – z –

(
T(w) – T(z)

)∥∥‖w – z‖
≥ ‖w – z‖ –

∥∥T(w) – T(z)
∥∥‖w – z‖

= ‖w – z‖{‖w – z‖ –
∥∥T(w) – T(z)

∥∥}
,
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which implies that

‖w – z‖ –
∥∥T(w) – T(z)

∥∥ ≤  or ‖w – z‖ ≤ ∥∥T(w) – T(z)
∥∥.

Since ψ is nondecreasing and T is a (ψ ,ϕ)-weakly contractive, we have

ψ
(‖w – z‖) ≤ ψ

(∥∥T(w) – T(z)
∥∥)

≤ ψ
(‖w – z‖) – ϕ

(‖w – z‖).

Therefore ϕ(‖w – z‖) ≤ , and w = z. �

Now we present our first convergence result.

Theorem . Suppose the quadruple (X, Y , {Sn}, {αn}) satisfies Browder’s property and
T : Y → Y is a (ψ ,ϕ)-weakly contractive mapping with ψ convex. For each z ∈ Y , put
P(z) = limn→∞ vn, where {vn} is a sequence in Y defined by (.). Then the sequence {un} ⊂ Y
defined by

un = αnT(un) + ( – αn)Sn(un),

for n ∈N, converges strongly to P(T(z)) = z ∈ Y .

Proof Proposition .(b) ensures the existence and uniqueness of {un}. It follows from
Proposition .(a) and Proposition . that P ◦ T is a (ψ ,ϕ)-weakly contractive mapping
on Y . Therefore, by Theorem . there exists a unique element z ∈ Y such that P(T(z)) = z.
Define a sequence {vn} in Y by

vn = αnT(z) + ( – αn)Sn(vn)

for n ∈N. Then it is easy to see that {vn} converges strongly to P(T(z)).
Now, for n ∈N,

‖un – vn‖ ≤ ( – αn)
∥∥Sn(un) – Sn(vn)

∥∥ + αn
∥∥T(un) – T(z)

∥∥

≤ ( – αn)‖un – vn‖ + αn
∥
∥T(un) – T(z)

∥
∥

or

‖un – vn‖ ≤ ∥
∥T(un) – T(z)

∥
∥.

Since ψ is nondecreasing, we have

ψ
(‖un – vn‖

) ≤ ψ
(∥∥T(un) – T(z)

∥∥)
.

Further, (ψ ,ϕ)-weak contractivity of T implies

ψ
(‖un – vn‖

) ≤ ψ
(‖un – z‖) – ϕ

(‖un – z‖)

≤ ψ
(‖un – vn‖ + ‖vn – z‖) – ϕ

(‖un – z‖).
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Since vn → z as n → ∞, we get

lim
n→∞ψ

(‖un – vn‖
) ≤ lim

n→∞ψ
(‖un – vn‖ + ‖vn – z‖) – lim

n→∞
ϕ
(‖un – z‖)

= lim
n→∞ψ

(‖un – vn‖
)

– lim
n→∞

ϕ
(‖un – z‖),

or

lim
n→∞

ϕ
(‖un – z‖) ≤ .

The continuity of ϕ and ϕ() =  imply that

lim
n→∞‖un – z‖ = .

Therefore {un} converges strongly to z. �

Corollary . Let X, Y , {Sn}, {vn}, P, z and {αn} be as in Theorem . and T : Y → Y
a weakly contractive mapping. Then the sequence {un} ⊂ Y defined by

un = αnT(un) + ( – αn)Sn(un),

for n ∈N, converges strongly to P(T(z)) = z ∈ Y .

Proof This follows from Theorem . when ψ(t) = t. �

Example . Let (X,‖·‖) and Y be as in Example .. Define the mappings Sn, T : Y → Y
by

Sn(x) = x for all x ∈ Y and n ∈N and T(x) =  –
x


for all x ∈ Y .

Let ψ ,ϕ : [,∞) → [,∞) be the functions defined by

ψ(t) = t and ϕ(t) =
t


.

Then the mapping Sn is nonexpansive for each n ∈N and T is (ψ ,ϕ)-weakly contractive.
Let {αn} be a sequence in (, ] defined by αn = 

n+ . Then the quadruple (X, Y , {Sn}, {αn})
satisfies the Browder property and for each z ∈ Y , we have

vn = zαn + ( – αn)Sn(vn)

= z


n + 
+

(
 –


 + n

)
vn,

or

vn = z.



Mishra et al. Fixed Point Theory and Applications  (2016) 2016:100 Page 10 of 12

By Theorem ., put P(z) = limn→∞ vn = z. Then P is an identity mapping. Now

un = αnT(un) + ( – αn)Sn(un)

=


n + 

[
 –

un



]
+

(
 –


 + n

)
un,

or

un =



.

Now limn→∞ un = 
 = P(T( 

 )). Thus the quadruple (X, Y , {Sn}, {αn}) satisfies all the con-
ditions of Theorem . and the sequence {un} strongly converges to 

 .

The following theorem is our second convergence result.

Theorem . Suppose the quadruple (X, Y , {Sn}, {αn}) satisfies Halpern’s property and
T : Y → Y is a (ψ ,ϕ)-weakly contractive mapping with ψ is convex. Put P(z) = limn→∞ vn

for each z ∈ Y , where {vn} is defined by (.). Then the sequence {un} ⊂ Y defined by

x ∈ Y and un+ = αnT(un) + ( – αn)Sn(un)

for n ∈N, converges strongly to a unique point P(T(z)) = z ∈ Y .

Proof By Propositions . and .(a), the mapping P ◦T is (ψ ,ϕ)-weakly contractive on Y .
From Theorem ., there exists a unique z ∈ Y such that z = P(T(z)). For n ∈ N, we define
a sequence {vn} in Y by

vn+ = αnT(z) + ( – αn)Sn(vn).

Then by the assumption {vn} converges strongly to P(T(z)).
Now for n ∈N, we have

‖un+ – vn+‖ =
∥∥αn

(
T(un) – T(z)

)
+ ( – αn)

(
Sn(un) – Sn(vn)

)∥∥.

Since Sn is nonexpansive and ψ is nondecreasing and convex, we have

ψ
(‖un+ – vn+‖

)
= ψ

(
αn

∥∥T(un) – T(z)
∥∥ + ( – αn)

∥∥Sn(un) – Sn(vn)
∥∥)

≤ αnψ
(∥∥T(un) – T(z)

∥∥)
+ ( – αn)ψ

(∥∥Sn(un) – Sn(vn)
∥∥)

≤ αnψ
(∥∥T(un) – T(z)

∥
∥)

+ ( – αn)ψ
(‖un – vn‖

)
.

By (ψ ,ϕ)-weak contractivity of T , we get

ψ
(‖un+ – vn+‖

) ≤ αn
[
ψ

(‖un – z‖) – ϕ
(‖un – z‖)] + ( – αn)ψ

(‖un – vn‖
)

≤ αn
[
ψ

(‖un – vn‖ + ‖vn – z‖) – ϕ
(‖un – vn‖ + ‖vn – z‖)]

+ ( – αn)ψ
(‖un – vn‖

)
.
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The continuity of ψ ,ϕ and vn → z as n → ∞ imply that

lim
n→∞ψ

(‖un+ – vn+‖
)

≤ lim
n→∞αn

[
ψ

(‖un – vn‖
)

– ϕ
(‖un – vn‖

)
+ ( – αn)ψ

(‖un – vn‖
)]

= lim
n→∞

[
ψ

(‖un – vn‖
)

– αnϕ
(‖un – vn‖

)]

≤ lim
n→∞

[
ψ

(‖un – vn‖
)

– αnϕ
(‖un – vn‖

)
+ αn‖vn – z‖].

Thus, for some (sufficiently large) N ≤ n, we have

ψ
(‖un+ – vn+‖

) ≤ ψ
(‖un – vn‖

)
– αnϕ

(‖un – vn‖
)

+ αn‖vn – z‖.

For �n = ψ(‖un – vn‖), we get the following recursive inequality:

�n+ ≤ �n – αnϕ(�n) + βn,

where εn = ‖vn – z‖ and βn = αnεn. Now, by Lemma .,

lim
n→∞ψ

(‖un – vn‖
)

= .

The continuity of ψ and the fact that ψ() =  imply that

lim
n→∞‖un – vn‖ = .

By the triangle inequality, we have

lim
n→∞‖un – z‖ ≤ lim

n→∞‖un – vn‖ + lim
n→∞‖vn – z‖ = .

Therefore {un} strong convergence of to z = P(T(z)). �

Corollary . [] Let X, Y , {Sn}, {vn}, P, z and {αn} be as in Theorem . and T : Y → Y
a weakly contractive mapping. Then the sequence {un} ⊂ Y defined by

x ∈ Y and un+ = αnT(un) + ( – αn)Sn(un),

for n ∈N, converges strongly to a unique point P(T(z)) = z ∈ Y .

Proof This follows from Theorem . when ψ(t) = t. �
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