Strong and weak convergence theorems for split equality generalized mixed equilibrium problem

Ibrahim Karahan*

"Correspondence:
ibrahimkarahan@erzurum.edu.tr Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum, 25700, Turkey

Abstract

In this paper, we consider split equality generalized mixed equilibrium problem, which is more general than many problems such as split feasibility problem, split equality problem, split equilibrium problem, and so on. We propose a new modified algorithm to obtain strong and weak convergence theorems for split equality generalized mixed equilibrium problem for nonexpansive mappings in Hilbert spaces. Also, we give some applications to other problems. Our results extend some results in the literature.

MSC: 47H09; 47J25
Keywords: split equality generalized mixed equilibrium problem; nonexpansive mappings; fixed point; demicompactness

1 Introduction

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|, C$ be a nonempty closed convex subset of H, and $F: C \times C \rightarrow \mathbb{R}$ be a bifunction, where \mathbb{R} is the set of all real numbers. The scalar-valued equilibrium problem is finding a point $x \in C$ such that

$$
\begin{equation*}
F(x, y) \geq 0 \tag{1.1}
\end{equation*}
$$

for all $y \in C$. The equilibrium problem has been extensively studied, beginning with Blum and Oettli [1]. In 2014, Ahmad and Rahaman [2] introduced the generalized vector equilibrium problem to find a point $x \in C$ such that

$$
F(\lambda x+(1-\lambda) z, y) \nsubseteq-C \backslash\{0\}
$$

for all $y, z \in C$ and $\lambda \in(0,1]$, where $F: C \times C \rightarrow 2^{H}$ is a set-valued mapping such that $F(\lambda x+(1-\lambda) z, x) \supseteq\{0\}$. In the scalar case, the generalized equilibrium problem takes the form of finding $x \in C$ such that

$$
\begin{equation*}
F(\lambda x+(1-\lambda) z, y) \geq 0 \tag{1.2}
\end{equation*}
$$

for all $y, z \in C$ and $\lambda \in(0,1]$ under the condition $F(\lambda x+(1-\lambda) z, x)=0$. If $\lambda=1$, then problem (1.2) is reduced to problem (1.1).

Let $T: C \rightarrow C$ be a continuous mapping, and $\phi: C \rightarrow \mathbb{R}$ be a mapping. Very recently, Rahaman et al. [3] considered the generalized mixed equilibrium problem of finding a point $x \in C$ such that

$$
\begin{equation*}
F(\lambda x+(1-\lambda) z, y)+\langle T x, y-x\rangle+\phi(y)-\phi(x) \geq 0 \tag{1.3}
\end{equation*}
$$

for all $y, z \in C$ and $\lambda \in(0,1]$. The set of solutions of problem (1.3) is denoted by $\operatorname{GMEP}(F, T, \phi)$.

Let H_{1}, H_{2}, and H_{3} be real Hilbert spaces, and C and Q be nonempty closed and convex subsets of H_{1} and H_{2}, respectively. Let $F: C \times C \rightarrow \mathbb{R}$ and $G: Q \times Q \rightarrow \mathbb{R}$ be two bifunctions, $T: C \rightarrow C$ and $S: Q \rightarrow Q$ be nonlinear mappings, $\phi: C \rightarrow \mathbb{R} \cup$ $\{+\infty\}$ and $\varphi: Q \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper lower semicontinuous and convex mappings such that $C \cap \operatorname{dom} \phi \neq \emptyset$ and $Q \cap \operatorname{dom} \varphi \neq \emptyset$, and $A: H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ be bounded linear mappings. In 2015, Rahaman et al. [3] introduced the following split equality generalized mixed equilibrium problem (SEGMEP): find $x^{*} \in C$ and $y^{*} \in Q$ such that

$$
\begin{align*}
& F\left(\lambda_{1} x^{*}+\left(1-\lambda_{1}\right) b, x\right)+\left\langle T x^{*}, x-x^{*}\right\rangle+\phi(x)-\phi\left(x^{*}\right) \geq 0, \\
& G\left(\lambda_{2} y^{*}+\left(1-\lambda_{2}\right) c, y\right)+\left\langle S y^{*}, y-y^{*}\right\rangle+\varphi(y)-\varphi\left(y^{*}\right) \geq 0, \quad \text { and } \tag{1.4}\\
& A x^{*}=B y^{*}
\end{align*}
$$

for all $x, b \in C, y, c \in Q$, and $\lambda_{1}, \lambda_{2} \in(0,1]$. The solution set of problem (1.4) is denoted by $\operatorname{SEGMEP}(F, G, T, S, \phi, \varphi)$. This problem is a generalization of all the following problems.

1. If $T=S=0$ and $\lambda_{1}=\lambda_{2}=1$, then the split equality generalized mixed equilibrium problem (SEGMEP) is reduced to the split equality mixed equilibrium problem (SEMEP) introduced by Ma et al. [4]: find $x^{*} \in C$ and $y^{*} \in Q$ such that

$$
\begin{align*}
& F\left(x^{*}, x\right)+\phi(x)-\phi\left(x^{*}\right) \geq 0, \quad \forall x \in C, \\
& G\left(y^{*}, y\right)+\varphi(y)-\varphi\left(y^{*}\right) \geq 0, \quad \forall y \in Q, \quad \text { and } \tag{1.5}\\
& A x^{*}=B y^{*}
\end{align*}
$$

2. If $T=S=\phi=\varphi=0, B=I, H_{2}=H_{3}$, and $\lambda_{1}=\lambda_{2}=1$, then problem (1.4) is reduced to the split equilibrium problem $\left(\mathrm{SE}_{\mathrm{q}} \mathrm{P}\right)$ introduced by He [5]: find $x^{*} \in C$ such that

$$
\begin{align*}
& F\left(x^{*}, x\right) \geq 0, \quad \forall x \in C, \quad \text { and } \tag{1.6}\\
& A x^{*}=y^{*} \in Q \quad \text { solves } \quad G\left(y^{*}, y\right) \geq 0, \quad \forall y \in Q
\end{align*}
$$

3. If $T=S=\phi=\varphi=0$ and $\lambda_{1}=\lambda_{2}=1$, then problem (1.4) is reduced to the split equality equilibrium problem (SEEP) of finding $x^{*} \in C$ and $y^{*} \in Q$ such that

$$
\begin{align*}
& F\left(x^{*}, x\right) \geq 0, \quad \forall x \in C \\
& G\left(y^{*}, y\right) \geq 0, \quad \forall y \in Q, \quad \text { and } \tag{1.7}\\
& A x^{*}=B y^{*}
\end{align*}
$$

4. If $F=G=T=S=0$, then problem (1.4) is reduced to the split equality convex minimization problem (SECMP) of finding $x^{*} \in C$ and $y^{*} \in Q$ such that

$$
\begin{align*}
& \phi(x) \geq \phi\left(x^{*}\right), \quad \forall x \in C, \quad \varphi(y) \geq \varphi\left(y^{*}\right), \quad \forall y \in Q, \quad \text { and } \tag{1.8}\\
& A x^{*}=B y^{*} .
\end{align*}
$$

5. If $F=G=T=S=0, B=I$, and $H_{2}=H_{3}$, then problem (1.4) is reduced to the split convex minimization problem (SCMP) of finding $x^{*} \in C$ such that

$$
\begin{aligned}
& \phi(x) \geq \phi\left(x^{*}\right), \quad \forall x \in C, \quad \varphi(y) \geq \varphi\left(y^{*}\right), \quad \forall y \in Q, \quad \text { and } \\
& A x^{*}=y^{*} \in Q .
\end{aligned}
$$

6. If $F=G=\phi=\varphi=T=S=0$, then problem (1.4) is reduced to the split equality problem (SEP) of finding $x^{*} \in C$ and $y^{*} \in Q$ such that

$$
\begin{equation*}
A x^{*}=B y^{*} . \tag{1.10}
\end{equation*}
$$

7. If $F=G=\phi=\varphi=T=S=0, B=I$, and $H_{2}=H_{3}$, then problem (1.4) is reduced to the split feasibility problem (SFP) of finding $x^{*} \in C$ such that

$$
\begin{equation*}
A x^{*} \in Q \tag{1.11}
\end{equation*}
$$

This problem was introduced by Censor and Elfving [6].
Since these kinds of problems are related implicitly or explicitly to many areas, such as engineering, science optimization, economics, transportation, network and structural analysis, Nash equilibrium problems in noncooperative games, computer tomograph, radiation therapy treatment planing, physics, inverse problems that arise from phase retrievals and in medical image reconstruction, and so on, it is very important in mathematics. So, many authors have proposed some algorithms to solve such problems; see, for instance, [7-14]. We further give some of them.
In 2015, Ma et al. [4] introduced the following simultaneous iterative algorithm to obtain weak and strong convergence theorems for (SEMEP):

$$
\left\{\begin{array}{l}
F\left(u_{n}, u\right)+\phi(u)-\phi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0 \tag{1.12}\\
G\left(v_{n}, v\right)+\varphi(v)-\varphi\left(v_{n}\right)+\frac{1}{r_{n}}\left\langle v-v_{n}, v_{n}-y_{n}\right\rangle \geq 0 \\
x_{n+1}=\alpha_{n} u_{n}+\left(1-\alpha_{n}\right) T\left(u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right), \\
y_{n+1}=\alpha_{n} u_{n}+\left(1-\alpha_{n}\right) S\left(v_{n}+\gamma_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)
\end{array}\right.
$$

for all $u \in C, v \in Q$, where $n \geq 1$, and $T: H_{1} \rightarrow H_{1}$ and $S: H_{2} \rightarrow H_{2}$ are nonexpansive mappings. In the same year, Rahaman et al. [3] gave the following method as a generalization of algorithm (1.12):

$$
\left\{\begin{array}{l}
F\left(\lambda_{1} u_{n}+\left(1-\lambda_{1}\right) b, u\right)+\phi(u)-\phi\left(u_{n}\right) \tag{1.13}\\
\quad+\left\langle T u_{n}, u-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \\
G\left(\lambda_{2} v_{n}+\left(1-\lambda_{2}\right) c, v\right)+\varphi(v)-\varphi\left(v_{n}\right) \\
\quad+\left\langle S v_{n}, v-v_{n}\right\rangle+\frac{1}{r_{n}}\left\langle v-v_{n}, v_{n}-y_{n}\right\rangle \geq 0, \\
x_{n+1}=\left(1-\alpha_{n}\right)\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)+\alpha_{n} P\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right), \\
y_{n+1}=\left(1-\alpha_{n}\right)\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)+\alpha_{n} Q\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)
\end{array}\right.
$$

for all $u, b \in C, v, c \in Q$, where $n \geq 1$, and $P: H_{1} \rightarrow H_{1}$ and $Q: H_{2} \rightarrow H_{2}$ are two demicontractive mappings. They also proved that the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by algorithm (1.13) converges weakly and strongly to the solution of the split equality generalized mixed equilibrium problem (1.4) under some suitable conditions.
In this paper, inspired by algorithm (1.13), we introduce a modified algorithm to obtain weak and strong convergence results for the split equality generalized mixed equilibrium problem. Also, we give some corollaries and applications for the split equality problem, the split feasibility problem, the split equality mixed convex differentiable optimization problem, the split equality convex minimization problem, and the split equality mixed equilibrium problem. Our results extend some correspoing results of many authors.

2 Preliminaries

Throughout this paper, we use the symbols \rightarrow and \rightharpoonup for the strong and weak convergence, respectively. Now, we recall some definitions, lemmas, and properties, which we need in the proof of our main theorem.

Let T be a mapping on a Hilbert space H. The set of fixed points of T is denoted by $F(T)$, that is, $F(T)=\{x \in H: T x=x\}$. Let C be a nonempty closed convex subset of H. A mapping $T: C \rightarrow C$ it is said to be
(i) a nonexpansive mapping if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C ;
$$

(ii) a firmly nonexpansive mapping if

$$
\|T x-T y\|^{2} \leq\langle T x-T y, x-y\rangle, \quad \forall x, y \in C .
$$

Lemma 1 ([15]) Let C be a nonempty closed convex subset of a uniformly convex Banach space X, and $T: C \rightarrow C$ be a nonexpansive mapping with $F(T) \neq \emptyset$. Then $F(T)$ is closed and convex.

Lemma 2 ([16]) Let C be a nonempty closed convex subset of a real Hilbert space H, and T be a nonexpansive self-mapping on C. If $F(T) \neq \emptyset$, then $I-T$ is demiclosed, that is, if $\left\{x_{n}\right\}$ is a sequence in C weakly converging to some $x \in C$ and the sequence $\left\{(I-T) x_{n}\right\}$ strongly converges to some y, then $(I-T) x=y$. Here, I is the identity operator of H.

Recall that T is said to be demicompact if every bounded sequence $\left\{x_{n}\right\}$ in C such that $\left\{(I-T) x_{n}\right\}$ converges strongly contains a strongly convergent subsequence.

To solve a generalized mixed equilibrium problem for a bifunction $F: C \times C \rightarrow \mathbb{R}$ and mappings $T: C \rightarrow C$ and $\phi: C \rightarrow \mathbb{R}$, let us assume that the following conditions are satisfied:

A1. $F(\lambda x+(1-\lambda) b, x)=0, \forall x \in C$;
A2. F is monotone, that is, for all $x, y \in C$,

$$
F(\lambda x+(1-\lambda) b, y)+F(\lambda y+(1-\lambda) b, x) \leq 0
$$

A3. T is monotone, that is, for all $x, y \in C$,

$$
\langle T x-T y, x-y\rangle \geq 0 ;
$$

A4. $\forall x \in C, y \mapsto F(\lambda x+(1-\lambda) b, y)$ is convex and lower semicontinuous;
A5. F is hemicontinuous in the first argument;
A6. T is weakly upper semicontinuous;
A7. For all $x \in C, \lambda \in(0,1]$, and $r>0$, there exist a bounded subset $D \subseteq C$ and $a \in C$ such that, for all $z \in C \backslash D$ and $b \in C$,

$$
-F(\lambda a+(1-\lambda) b, z)+\langle T z, a-z\rangle+\phi(a)-\phi(z)+\frac{1}{r}\langle a-z, z-x\rangle<0 .
$$

Lemma 3 ([3]) Let C be a nonempty closed convex subset of a Hilbert space H_{1}. Suppose that the bifunction $F: C \times C \rightarrow \mathbb{R}$ and the mapping $T: C \rightarrow C$ satisfy conditions (A1)-(A7). Let $\phi: C \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper lower semicontinuous and convex mapping such that $C \cap \operatorname{dom} \phi=\emptyset$. For $r>0, \lambda_{1} \in(0,1]$, and $x \in H$, let $J_{r}^{F, T}: H_{1} \rightarrow C$ be the resolvent operator of F and T defined by

$$
\begin{align*}
J_{r}^{F, T}(x)= & \left\{z \in C: F\left(\lambda_{1} z+\left(1-\lambda_{1}\right) b, y\right)+\langle T z, y-z\rangle\right. \\
& \left.+\phi(y)-\phi(z)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y, b \in C\right\} . \tag{2.1}
\end{align*}
$$

Then:
(i) For each $x \in H_{1}, J_{r}^{F, T}(x) \neq \emptyset$;
(ii) $J_{r}^{F, T}$ is single valued;
(iii) $J_{r}^{F, T}$ is firmly nonexpansive, that is,

$$
\left\|J_{r}^{F, T}(x)-J_{r}^{F, T}(y)\right\|^{2} \leq\left\langle J_{r}^{F, T}(x)-J_{r}^{F, T}(y), x-y\right\rangle, \quad \forall x, y \in H_{1} ;
$$

(iv) $F\left(J_{r}^{F, T}\right)=\operatorname{GMEP}(F, T, \phi)$, and it is closed and convex.

Let the bifunction $G: Q \times Q \rightarrow \mathbb{R}$ and the mapping $S: Q \rightarrow Q$ satisfy conditions (A1)(A7). Let $\varphi: C \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper lower semicontinuous and convex mapping such that $Q \cap \operatorname{dom} \varphi=\emptyset$. For $s>0, \lambda_{2} \in(0,1]$, and $u \in H_{2}$, let $J_{s}^{G, S}: H_{2} \rightarrow Q$ be the resolvent operator of G and S defined by

$$
\begin{align*}
J_{s}^{G, S}(u)= & \left\{v \in Q: G\left(\lambda_{2} v+\left(1-\lambda_{2}\right) c, w\right)+\langle S v, w-v\rangle\right. \\
& \left.+\varphi(w)-\varphi(v)+\frac{1}{s}\langle w-v, v-u\rangle \geq 0, \forall w, c \in Q\right\} . \tag{2.2}
\end{align*}
$$

Then, clearly, $J_{s}^{G, S}$ satisfies (i)-(iv) of Lemma 3, and $F\left(J_{s}^{G, S}\right)=\operatorname{GMEP}(G, S, \varphi)$.

Lemma 4 (Opial's lemma [17]) Let H be a real Hilbert space, and $\left\{\mu_{n}\right\}$ be a sequence in H such that there exists a nonempty set $W \subset H$ satisfying the following conditions:
(i) for every $\mu \in W, \lim _{n \rightarrow \infty}\left\|\mu_{n}-\mu\right\|$ exists;
(ii) any weak cluster point of the sequence $\left\{\mu_{n}\right\}$ belongs to W.

Then there exists $w^{*} \in W$ such that $\left\{\mu_{n}\right\}$ converges weakly to w^{*}.

Lemma 5 ([18]) Let H be a real Hilbert space. Then, we have

$$
\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle
$$

and

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}
$$

for all $x, y \in H$ and $\lambda \in[0,1]$.

3 Main results

Now, we give a new modified iterative algorithm to solve the split equality generalized mixed equilibrium problem. Moreover, we prove strong and weak convergence theorems for nonexpansive mappings in Hilbert spaces. Throughout this section, we always assume that:

B1. H_{1}, H_{2}, and H_{3} are real Hilbert spaces, and $C \subseteq H_{1}$ and $Q \subseteq H_{2}$ are nonempty closed convex subsets;
B2. $F: C \times C \rightarrow \mathbb{R}$ and $G: Q \times Q \rightarrow \mathbb{R}$ are bifunctions satisfying conditions (A1), (A2), (A4), (A5), and (A7);
B3. $T: C \rightarrow C$ and $S: Q \times Q \rightarrow \mathbb{R}$ are mappings satisfying conditions (A3), (A6), and (A7);
B4. $\phi: C \rightarrow \mathbb{R} \cup\{+\infty\}$ and $\varphi: Q \rightarrow \mathbb{R} \cup\{+\infty\}$ are proper lower semicontinuous and convex mappings such that $C \cap \operatorname{dom} \phi \neq \emptyset$ and $Q \cap \operatorname{dom} \varphi \neq \emptyset$;
B5. $P_{1}, P_{2}: H_{1} \rightarrow H_{1}$ and $P_{3}, P_{4}: H_{2} \rightarrow H_{2}$ are nonexpansive mapping;
B6. $A: H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ are bounded linear mappings.
For an arbitrary initial value $\left(x_{1}, y_{1}\right) \in C \times Q$, define the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $C \times Q$ generated by

$$
\left\{\begin{array}{l}
F\left(\lambda_{1} u_{n}+\left(1-\lambda_{1}\right) b, u\right)+\phi(u)-\phi\left(u_{n}\right) \tag{3.1}\\
\quad+\left\langle T u_{n}, u-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \\
G\left(\lambda_{2} v_{n}+\left(1-\lambda_{2}\right) c, v\right)+\varphi(v)-\varphi\left(v_{n}\right) \\
\quad+\left\langle\left\langle S v_{n}, v-v_{n}\right\rangle+\frac{1}{r_{n}}\left\langle v-v_{n}, v_{n}-y_{n}\right\rangle \geq 0,\right. \\
x_{n+1}=\left(1-\alpha_{n}\right) P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)+\alpha_{n} P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right), \\
y_{n+1}=\left(1-\alpha_{n}\right) P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)+\alpha_{n} P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)
\end{array}\right.
$$

for all $u, b \in C$ and $v, c \in Q$, where $n \geq 1, \lambda_{1}, \lambda_{2} \in(0,1]$, and the sequences $\left\{\delta_{n}\right\},\left\{\alpha_{n}\right\}$, and $\left\{r_{n}\right\}$ satisfy the following conditions:
C1. $\left\{\delta_{n}\right\}$ is a positive real sequence such that $\delta_{n} \in\left(\varepsilon, \frac{2}{\lambda_{A}+\lambda_{B}}-\varepsilon\right)$ for sufficiently small ε, where λ_{A} and λ_{B} are the spectral radii of $A^{*} A$ and $B^{*} B$, respectively;
C2. $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ such that, for some $\alpha, \beta \in(0,1), 0<\alpha \leq \alpha_{n} \leq \beta<1$;
C3. $\left\{r_{n}\right\} \subset(0, \infty)$ is such that $\liminf _{n \rightarrow \infty} r_{n}>0$ and $\lim _{n \rightarrow \infty}\left|r_{n+1}-r_{n}\right|=0$.

Theorem 1 Let $H_{1}, H_{2}, H_{3}, F, G, T, S, P_{1}, P_{2}, P_{3}, P_{4}, \phi, \varphi, A$, and B satisfy conditions (B1)(B6). Let $\left\{\left(x_{n}, y_{n}\right)\right\}$ be a sequence generated by (3.1). If $\mathcal{F}:=\bigcap_{i=1}^{4} F\left(P_{i}\right) \cap \operatorname{SEGMEP}\left(F, G, P_{i}\right.$, $\phi, \varphi) \neq \emptyset$, then:
(i) the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a solution of problem (1.4);
(ii) if $P_{i}, i=1,2,3,4$, are demicompact, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to a solution of problem (1.4).

Proof (i) Let $(x, y) \in \mathcal{F}$. So, $x \in F\left(P_{1}\right) \cap F\left(P_{2}\right)$ and $y \in F\left(P_{3}\right) \cap F\left(P_{4}\right)$. It is easy to see from Lemma 3 that

$$
\begin{equation*}
\left\|u_{n}-x\right\|=\left\|J_{r_{n}}^{F, T}\left(x_{n}\right)-J_{r_{n}}^{F, T}(x)\right\| \leq\left\|x_{n}-x\right\| \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|v_{n}-y\right\|=\left\|J_{r_{n}}^{F, T}\left(y_{n}\right)-J_{r_{n}}^{F, T}(y)\right\| \leq\left\|y_{n}-y\right\| . \tag{3.3}
\end{equation*}
$$

Since $P_{i}, i=1,2,3,4$, are nonexpansive mappings and

$$
\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2\langle y, x\rangle
$$

for all $x, y \in H$, we get from Lemma 5 that

$$
\begin{align*}
\left\|x_{n+1}-x\right\|^{2}= & \|\left(1-\alpha_{n}\right) P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& +\alpha_{n} P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)-x \|^{2} \\
= & \|\left(1-\alpha_{n}\right)\left(P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)-x\right) \\
& +\alpha_{n}\left(P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)-x\right) \|^{2} \\
\leq & \left(1-\alpha_{n}\right)\left\|u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)-x\right\|^{2} \\
& +\alpha_{n}\left\|u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)-x\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right) \| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2} \\
= & \left\|u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)-x\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right) \| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2} \\
= & \left\|u_{n}-x\right\|^{2}+\delta_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \\
& -2 \delta_{n}\left(A^{*}\left(A u_{n}-B v_{n}\right), u_{n}-x\right\rangle \\
& -\alpha_{n}\left(1-\alpha_{n}\right) \| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2} \\
\leq & \left\|x_{n}-x\right\|^{2}+\delta_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \\
& -2 \delta_{n}\left(A^{*}\left(A u_{n}-B v_{n}\right), u_{n}-x\right\rangle \\
& -\alpha_{n}\left(1-\alpha_{n}\right) \| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2} . \tag{3.4}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
\delta_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} & =\delta_{n}^{2}\left\langle A u_{n}-B v_{n}, A A^{*}\left(A u_{n}-B v_{n}\right)\right\rangle \\
& \leq \lambda_{A} \delta_{n}^{2}\left\|A u_{n}-B v_{n}\right\|^{2} . \tag{3.5}
\end{align*}
$$

So, it follows from (3.4) and (3.5) that

$$
\begin{align*}
\left\|x_{n+1}-x\right\|^{2} \leq & \left\|x_{n}-x\right\|^{2}+\lambda_{A} \delta_{n}^{2}\left\|A u_{n}-B v_{n}\right\|^{2} \\
& -2 \delta_{n}\left\langle A u_{n}-B v_{n}, A u_{n}-A x\right\rangle \\
& -\alpha_{n}\left(1-\alpha_{n}\right) \| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2} . \tag{3.6}
\end{align*}
$$

In a similar way, we get

$$
\begin{align*}
\left\|y_{n+1}-y\right\|^{2} \leq & \left\|y_{n}-y\right\|^{2}+\lambda_{B} \delta_{n}^{2}\left\|A u_{n}-B v_{n}\right\|^{2} \\
& +2 \delta_{n}\left\langle A u_{n}-B v_{n}, B v_{n}-B y\right\rangle \\
& -\alpha_{n}\left(1-\alpha_{n}\right) \| P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& -P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2} . \tag{3.7}
\end{align*}
$$

By adding inequalities (3.6) and (3.7) side by side and using $A x=B y$, we obtain

$$
\begin{align*}
& \left\|x_{n+1}-x\right\|^{2}+\left\|y_{n+1}-y\right\|^{2} \\
& \leq\left\|x_{n}-x\right\|^{2}+\left\|y_{n}-y\right\|^{2}+\delta_{n}^{2}\left(\lambda_{A}+\lambda_{B}\right)\left\|A u_{n}-B v_{n}\right\|^{2} \\
& -2 \delta_{n}\left\|A u_{n}-B v_{n}\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right)\left\{\| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)\right. \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)\left\|^{2}+\right\| P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& \left.-P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2}\right\} \\
& =\left\|x_{n}-x\right\|^{2}+\left\|y_{n}-y\right\|^{2}-\delta_{n}\left(2-\delta_{n}\left(\lambda_{A}+\lambda_{B}\right)\right)\left\|A u_{n}-B v_{n}\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\{\| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)\right. \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)\left\|^{2}+\right\| P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& \left.-P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2}\right\} . \tag{3.8}
\end{align*}
$$

Let $\xi_{n}(x, y)=\left\|x_{n}-x\right\|^{2}+\left\|y_{n}-y\right\|^{2}$. Thus, we have from (3.8) that

$$
\begin{align*}
\xi_{n+1}(x, y) \leq & \xi_{n}(x, y)-\delta_{n}\left(2-\delta_{n}\left(\lambda_{A}+\lambda_{B}\right)\right)\left\|A u_{n}-B v_{n}\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\{\| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)\right. \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)\left\|^{2}+\right\| P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& \left.-P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2}\right\} . \tag{3.9}
\end{align*}
$$

Since $\alpha_{n} \in(0,1)$ and $\delta_{n} \in\left(\varepsilon, \frac{2}{\lambda_{A}+\lambda_{B}}-\varepsilon\right)$, we get $2-\delta_{n}\left(\lambda_{A}+\lambda_{B}\right)>0$. So, from (3.9) we obtain

$$
\xi_{n+1}(x, y) \leq \xi_{n}(x, y)
$$

Therefore, the sequence $\left\{\xi_{n}(x, y)\right\}$ is nonincreasing and lower bounded by 0 . Hence, $\lim _{n \rightarrow \infty} \xi_{n}(x, y)$ exists. Let $\lim _{n \rightarrow \infty} \xi_{n}(x, y)=\sigma(x, y)$. So condition (i) of Lemma 4 is satisfied with $\mu_{n}=\left(x_{n}, y_{n}\right), \mu^{*}=(x, y)$, and $W=\mathcal{F}$. Since the sequence $\left\{\xi_{n}(x, y)\right\}$ converges to a finite limit, we have from inequality (3.9) that

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|A u_{n}-B v_{n}\right\|=0 \tag{3.10}\\
& \lim _{n \rightarrow \infty}\left\|P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)-P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)\right\|=0 \tag{3.11}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)-P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)\right\|=0 \tag{3.12}
\end{equation*}
$$

Moreover, since $\left\|x_{n}-x\right\|^{2} \leq \xi_{n}(x, y)$ and $\left\|y_{n}-y\right\|^{2} \leq \xi_{n}(x, y)$, the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded, and $\lim \sup _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ and $\lim \sup _{n \rightarrow \infty}\left\|y_{n}-y\right\|$ exist. Also, it follows from (3.2) and (3.3) that $\lim \sup _{n \rightarrow \infty}\left\|u_{n}-x\right\|$ and $\lim \sup _{n \rightarrow \infty}\left\|v_{n}-y\right\|$ exist. Let us assume that the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to points x^{*} and y^{*}, respectively. So, by (3.10), the sequence $\left\{u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right\}$ converges weakly to x^{*}, and $\left\{v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right\}$ converges weakly to y^{*}. By Lemma 5 we get

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|^{2}= & \left\|x_{n+1}-x-x_{n}+x\right\|^{2} \\
= & \left\|x_{n+1}-x\right\|^{2}-\left\|x_{n}-x\right\|^{2}-2\left\langle x_{n+1}-x_{n}, x_{n}-x\right\rangle \\
= & \left\|x_{n+1}-x\right\|^{2}-\left\|x_{n}-x\right\|^{2} \\
& -2\left\langle x_{n+1}-x^{*}, x_{n}-x\right\rangle+2\left\langle x_{n}-x^{*}, x_{n}-x\right\rangle .
\end{aligned}
$$

Hence, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

and, similarly,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0 \tag{3.14}
\end{equation*}
$$

By Lemma 3, since $u_{n}=J_{r_{n}}^{F, T}\left(x_{n}\right)$ and $u_{n+1}=J_{r_{n+1}}^{F, T}\left(x_{n+1}\right)$, we have that, for all $u \in C$,

$$
\begin{align*}
& F\left(\lambda_{1} u_{n}+\left(1-\lambda_{1}\right) b, u\right)+\left\langle T u_{n}, u-u_{n}\right\rangle \\
& \quad+\phi(u)-\phi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0 \tag{3.15}
\end{align*}
$$

and

$$
\begin{align*}
& F\left(\lambda_{1} u_{n+1}+\left(1-\lambda_{1}\right) b, u\right)+\left\langle T u_{n+1}, u-u_{n+1}\right\rangle \\
& \quad+\phi(u)-\phi\left(u_{n+1}\right)+\frac{1}{r_{n+1}}\left\langle u-u_{n+1}, u_{n+1}-x_{n+1}\right\rangle \geq 0 . \tag{3.16}
\end{align*}
$$

Taking $u=u_{n}$ in (3.16) and $u=u_{n+1}$ in (3.15) and adding the resulting inequalities side by side, we obtain

$$
\begin{aligned}
0 \leq & F\left(\lambda_{1} u_{n}+\left(1-\lambda_{1}\right) b, u_{n+1}\right)+F\left(\lambda_{1} u_{n+1}+\left(1-\lambda_{1}\right) b, u_{n}\right) \\
& +\left\langle T u_{n}, u_{n+1}-u_{n}\right\rangle+\left\langle T u_{n+1}, u_{n}-u_{n+1}\right\rangle \\
& +\frac{1}{r_{n}}\left\langle u_{n+1}-u_{n}, u_{n}-x_{n}\right\rangle+\frac{1}{r_{n+1}}\left\langle u_{n}-u_{n+1}, u_{n+1}-x_{n+1}\right\rangle .
\end{aligned}
$$

Using conditions (A2)-(A3), we have

$$
\begin{aligned}
0 \leq & \frac{1}{r_{n+1}}\left\langle u_{n}-u_{n+1}, u_{n+1}-x_{n+1}\right\rangle+\frac{1}{r_{n}}\left\langle u_{n+1}-u_{n}, u_{n}-x_{n}\right\rangle \\
\leq & \left\langle u_{n+1}-u_{n}, \frac{u_{n}-x_{n}}{r_{n}}-\frac{u_{n+1}-x_{n+1}}{r_{n+1}}\right\rangle \\
= & \left\langle u_{n+1}-u_{n}, u_{n}-u_{n+1}+u_{n+1}-x_{n}-\frac{r_{n}}{r_{n+1}}\left(u_{n+1}-x_{n+1}\right)\right\rangle \\
= & \left\langle u_{n+1}-u_{n}, u_{n}-u_{n+1}\right\rangle \\
& +\left\langle u_{n+1}-u_{n}, x_{n+1}-x_{n}+\left(1-\frac{r_{n}}{r_{n+1}}\right)\left(u_{n+1}-x_{n+1}\right)\right\rangle \\
= & -\left\|u_{n+1}-u_{n}\right\|^{2} \\
& +\left\langle u_{n+1}-u_{n}, x_{n+1}-x_{n}+\left(1-\frac{r_{n}}{r_{n+1}}\right)\left(u_{n+1}-x_{n+1}\right)\right\rangle,
\end{aligned}
$$

which implies that

$$
\left\|u_{n+1}-u_{n}\right\|^{2} \leq\left\|u_{n+1}-u_{n}\right\|\left(\left\|x_{n+1}-x_{n}\right\|+\left|1-\frac{r_{n}}{r_{n+1}}\right|\left\|u_{n+1}-x_{n+1}\right\|\right) .
$$

Thus, we get

$$
\begin{equation*}
\left\|u_{n+1}-u_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\left|1-\frac{r_{n}}{r_{n+1}}\right|\left\|u_{n+1}-x_{n+1}\right\| . \tag{3.17}
\end{equation*}
$$

Using (3.13) and (C3), from (3.17) we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n+1}-u_{n}\right\|=0 \tag{3.18}
\end{equation*}
$$

In a similar way, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|v_{n+1}-v_{n}\right\|=0 \tag{3.19}
\end{equation*}
$$

On the other hand, from (3.6) and (3.7) we get

$$
\begin{align*}
\left\|x_{n+1}-x\right\|^{2} \leq & \left\|u_{n}-x\right\|^{2}+\delta_{n}^{2} \lambda_{A}\left\|A u_{n}-B v_{n}\right\|^{2} \\
& -2 \delta_{n}\left\langle A u_{n}-B v_{n}, A u_{n}-A x\right\rangle \\
& -\alpha_{n}\left(1-\alpha_{n}\right) \| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2} \tag{3.20}
\end{align*}
$$

and

$$
\begin{align*}
\left\|y_{n+1}-y\right\|^{2} \leq & \left\|v_{n}-y\right\|^{2}+\delta_{n}^{2} \lambda_{B}\left\|A u_{n}-B v_{n}\right\|^{2} \\
& +2 \delta_{n}\left\langle A u_{n}-B v_{n}, B v_{n}-B y\right\rangle \\
& -\alpha_{n}\left(1-\alpha_{n}\right) \| P_{2}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& -P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2} . \tag{3.21}
\end{align*}
$$

Using $A x=B y$ and adding inequalities (3.20) and (3.21) side by side, we have

$$
\begin{align*}
& \left\|x_{n+1}-x\right\|^{2}+\left\|y_{n+1}-y\right\|^{2} \\
& \leq\left\|u_{n}-x\right\|^{2}+\left\|v_{n}-y\right\|^{2} \\
& -\delta_{n}\left(2-\delta_{n}\left(\lambda_{A}+\lambda_{B}\right)\right)\left\|A u_{n}-B v_{n}\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\{\| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)\right. \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2} \\
& +\| P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& \left.-P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2}\right\}, \tag{3.22}
\end{align*}
$$

where

$$
\begin{align*}
\left\|u_{n}-x\right\|^{2} & =\left\|J_{r_{n}}^{F, T}\left(x_{n}\right)-J_{r_{n}}^{F, T}(x)\right\|^{2} \leq\left\langle x_{n}-x, u_{n}-x\right\rangle \\
& =\frac{1}{2}\left\{\left\|x_{n}-x\right\|^{2}+\left\|u_{n}-x\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}\right\} \tag{3.23}
\end{align*}
$$

and

$$
\begin{align*}
\left\|v_{n}-y\right\|^{2} & =\left\|J_{r_{n}}^{G, S}\left(y_{n}\right)-J_{r_{n}}^{F, T}(y)\right\|^{2} \leq\left\langle y_{n}-y, v_{n}-y\right\rangle \\
& =\frac{1}{2}\left\{\left\|y_{n}-y\right\|^{2}+\left\|v_{n}-y\right\|^{2}-\left\|y_{n}-v_{n}\right\|^{2}\right\} . \tag{3.24}
\end{align*}
$$

From (3.22)-(3.24) we conclude that

$$
\begin{align*}
\| x_{n}- & u_{n}\left\|^{2}+\right\| y_{n}-v_{n} \|^{2} \\
\leq & \left\|x_{n}-x\right\|^{2}-\left\|x_{n+1}-x\right\|^{2}+\left\|y_{n}-y\right\|^{2}-\left\|y_{n+1}-y\right\|^{2} \\
& -\delta_{n}\left(2-\delta_{n}\left(\lambda_{A}+\lambda_{B}\right)\right)\left\|A u_{n}-B v_{n}\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\{\| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)\right. \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2} \\
& +\| P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& \left.-P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \|^{2}\right\} . \tag{3.25}
\end{align*}
$$

Using (3.10)-(3.14), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-v_{n}\right\|=0 \tag{3.27}
\end{equation*}
$$

Hence, $u_{n} \rightharpoonup x^{*}$ and $v_{n} \rightharpoonup y^{*}$.
Since $P_{i}, i=1,2,3,4$, are nonexpansive mappings, we obtain

$$
\begin{aligned}
\left\|u_{n}-P_{1} u_{n}\right\|= & \left\|u_{n}-x_{n+1}+x_{n+1}-P_{1} u_{n}\right\| \\
\leq & \left\|u_{n}-x_{n+1}\right\|+\left\|x_{n+1}-P_{1} u_{n}\right\| \\
= & \left\|u_{n}-u_{n+1}+u_{n+1}-x_{n+1}\right\| \\
& +\|\left(1-\alpha_{n}\right) P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& +\alpha_{n} P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)-P_{1} u_{n} \| \\
\leq & \left\|u_{n}-u_{n+1}\right\|+\left\|u_{n+1}-x_{n+1}\right\| \\
& +\left\|P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)-P_{1} u_{n}\right\| \\
& +\alpha_{n} \| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \| \\
\leq & \left\|u_{n}-u_{n+1}\right\|+\left\|u_{n+1}-x_{n+1}\right\| \\
& +\left|\delta_{n}\right|\left\|A^{*}\right\|\left\|A u_{n}-B v_{n}\right\|+\alpha_{n} \| P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& -P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \| .
\end{aligned}
$$

Using (3.10), (3.11), (3.18), and (3.26), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-P_{1} u_{n}\right\|=0 \tag{3.28}
\end{equation*}
$$

Similarly, using the same steps as before for P_{2}, P_{3}, and P_{4}, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-P_{2} u_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|v_{n}-P_{3} v_{n}\right\|=0, \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|v_{n}-P_{4} v_{n}\right\|=0 \tag{3.29}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|x_{n}-P_{1} x_{n}\right\| & =\left\|x_{n}-u_{n}+u_{n}-P_{1} u_{n}+P_{1} u_{n}-P_{1} x_{n}\right\| \\
& \leq\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-P_{1} u_{n}\right\|+\left\|u_{n}-x_{n}\right\| \\
& =2\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-P_{1} u_{n}\right\|,
\end{aligned}
$$

we have from (3.26) and (3.28) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-P_{1} x_{n}\right\|=0 \tag{3.30}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-P_{2} x_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|y_{n}-P_{3} y_{n}\right\|=0, \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|y_{n}-P_{4} y_{n}\right\|=0 \tag{3.31}
\end{equation*}
$$

Since the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to x^{*} and y^{*}, respectively, and $\left(I-P_{i}\right)$, $i=1,2,3,4$, are demiclosed at zero, it follows from (3.30) and (3.31) that $x^{*} \in F\left(P_{1}\right) \cap F\left(P_{2}\right)$ and $y^{*} \in F\left(P_{3}\right) \cap F\left(P_{4}\right)$. On the other hand, it is well known that every Hilbert space satisfies Opial's condition. So, we have that the weakly subsequential limit of $\left\{\left(x_{n}, y_{n}\right)\right\}$ is unique.

Now, we show that $x^{*} \in \operatorname{GMEP}(F, T, \phi)$ and $y^{*} \in \operatorname{GMEP}(G, S, \varphi)$. Since $u_{n}=J_{r_{n}}^{F, T}\left(x_{n}\right)$, we have

$$
F\left(\lambda_{1} u_{n}+\left(1-\lambda_{1}\right) b, u\right)+\left\langle T u_{n}, u-u_{n}\right\rangle+\phi(u)-\phi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0
$$

for all $b, u \in C$ and $\lambda \in(0,1]$. From conditions (A2) and (A3) we obtain

$$
\begin{aligned}
\phi(u)-\phi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle & \geq-F\left(\lambda_{1} u_{n}+\left(1-\lambda_{1}\right) b, u\right)-\left\langle T u_{n}, u-u_{n}\right\rangle \\
& \geq F\left(\lambda_{1} u+\left(1-\lambda_{1}\right) b, u_{n}\right)+\left\langle T u, u_{n}-u\right\rangle
\end{aligned}
$$

and hence

$$
\phi(u)-\phi\left(u_{n_{k}}\right)+\frac{1}{r_{n_{k}}}\left\langle u-u_{n_{k}}, u_{n_{k}}-x_{n_{k}}\right\rangle \geq F\left(\lambda_{1} u+\left(1-\lambda_{1}\right) b, u_{n_{k}}\right)+\left\langle T u, u_{n_{k}}-u\right\rangle .
$$

From (3.26) it is easy to see that $u_{n_{k}} \rightharpoonup x^{*}$. So, we can write $\lim _{k \rightarrow \infty} \frac{\left\|u_{n_{k}}-x_{n_{k}}\right\|}{r_{n_{k}}}=0$, and from the lower semicontinuity of ϕ we get

$$
\begin{equation*}
F\left(\lambda_{1} u+\left(1-\lambda_{1}\right) b, x^{*}\right)+\left\langle T u, x^{*}-u\right\rangle+\phi\left(x^{*}\right)-\phi(u) \leq 0 \tag{3.32}
\end{equation*}
$$

for all $b, u \in C$. Set $u_{t}=t u+(1-t) x^{*}$ for $t \in(0,1]$ and $u \in C$. Since C is a convex set, we have $u_{t} \in C$. Hence, from (3.32) we have

$$
\begin{equation*}
F\left(\lambda_{1} u_{t}+\left(1-\lambda_{1}\right) b, x^{*}\right)+\left\langle T u_{t}, x^{*}-u_{t}\right\rangle+\phi\left(x^{*}\right)-\phi\left(u_{t}\right) \leq 0 . \tag{3.33}
\end{equation*}
$$

Using inequality (3.33), the convexity of ϕ, and conditions (A1)-(A4), we get

$$
\begin{aligned}
0= & F\left(\lambda_{1} u_{t}+\left(1-\lambda_{1}\right) b, u_{t}\right)+(1-t)\left\langle T u_{t}, u_{t}-u_{t}\right\rangle+\phi\left(u_{t}\right)-\phi\left(u_{t}\right) \\
\leq & t F\left(\lambda_{1} u_{t}+\left(1-\lambda_{1}\right) b, u\right)+(1-t) F\left(\lambda_{1} u_{t}+\left(1-\lambda_{1}\right) b, x^{*}\right) \\
& +t \phi(u)+(1-t) \phi\left(x^{*}\right)-\phi\left(u_{t}\right)+(1-t)\left\langle T u_{t}, u_{t}-x^{*}\right\rangle \\
& +(1-t)\left\langle T u_{t}, x^{*}-u_{t}\right\rangle \\
= & t\left\{F\left(\lambda_{1} u_{t}+\left(1-\lambda_{1}\right) b, u\right)+(1-t)\left\langle T u_{t}, u-x^{*}\right\rangle+\phi(u)-\phi\left(u_{t}\right)\right\} \\
& +(1-t)\left\{F\left(\lambda_{1} u_{t}+\left(1-\lambda_{1}\right) b, x^{*}\right)+\left\langle T u_{t}, x^{*}-u_{t}\right\rangle+\phi\left(x^{*}\right)-\phi\left(u_{t}\right)\right\} \\
\leq & t\left\{F\left(\lambda_{1} u_{t}+\left(1-\lambda_{1}\right) b, u\right)+(1-t)\left\langle T u_{t}, u-x^{*}\right\rangle+\phi(u)-\phi\left(u_{t}\right)\right\},
\end{aligned}
$$

which implies that

$$
F\left(\lambda_{1} u_{t}+\left(1-\lambda_{1}\right) b, u\right)+(1-t)\left\langle T u_{t}, u-x^{*}\right\rangle+\phi(u)-\phi\left(u_{t}\right) \geq 0
$$

for all $b, u \in C$. From the definition of u_{t} it is clear that $u_{t} \rightarrow x^{*}$ as $t \rightarrow 0$. Using conditions (A5) and (A6) and the proper lower semicontinuity of ϕ, we obtain

$$
F\left(\lambda_{1} x^{*}+\left(1-\lambda_{1}\right) b, u\right)+(1-t)\left\langle T x^{*}, u-x^{*}\right\rangle+\phi(u)-\phi\left(x^{*}\right) \geq 0
$$

for all $b, u \in C$, which shows that $x^{*} \in \operatorname{GMEP}(F, T, \phi)$. By using similar steps we have that $y^{*} \in \operatorname{GMEP}(G, S, \varphi)$.

Since $A: H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ are bounded linear mappings and $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ converge weakly to x^{*} and y^{*}, respectively, for arbitrary $f \in H_{3}^{*}$, we have

$$
f\left(A u_{n}\right) \rightarrow f\left(A x^{*}\right)
$$

Similarly,

$$
f\left(B v_{n}\right) \rightarrow f\left(B y^{*}\right)
$$

Hence, we get

$$
A u_{n}-B v_{n} \rightharpoonup A x^{*}-B y^{*},
$$

which implies that

$$
\left\|A x^{*}-B y^{*}\right\| \leq \liminf _{n \rightarrow \infty}\left\|A u_{n}-B v_{n}\right\|=0,
$$

so that $A x^{*}=B y^{*}$. So, it follows that $\left(x^{*}, y^{*}\right) \in \operatorname{SEGMEP}(F, G, T, S, \phi, \varphi)$. Therefore, $\left(x^{*}, y^{*}\right) \in \mathcal{F}$.

Finally, we conclude that, for each $\left(x^{*}, y^{*}\right) \in \mathcal{F}, \lim _{n \rightarrow \infty}\left(\left\|x_{n}-x^{*}\right\|+\left\|y_{n}-y^{*}\right\|\right)$ exists and each weak cluster point of the sequence $\left\|\left(x^{*}, y^{*}\right)\right\|$ belongs to \mathcal{F}. Let $H=H_{1} \times H_{2}$ with norm $\|(x, y)\|=\sqrt{\|x\|^{2}+\|y\|^{2}}, W=\mathcal{F}, \mu_{n}=\left(x_{n}, y_{n}\right)$, and $\mu=\left(x^{*}, y^{*}\right)$. From Lemma 4 we see that there exists $(\bar{x}, \bar{y}) \in \mathcal{F}$ such that $x_{n} \rightharpoonup \bar{x}$ and $y_{n} \rightharpoonup \bar{y}$. Therefore, the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by the iterative algorithm (3.1) converges weakly to a solution of problem (1.4) in \mathcal{F}. This completes the proof.
(ii) Now, we prove the strong convergence of the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by the iterative algorithm (3.1) under the demicompact condition.
Since $P_{i}, i=1,2,3,4$, are demicompact, $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded sequences, and $\lim _{n \rightarrow \infty}\left\|x_{n}-P_{1} x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|x_{n}-P_{2} x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|y_{n}-P_{3} y_{n}\right\|=0$, and $\lim _{n \rightarrow \infty} \| y_{n}-$ $P_{4} y_{n} \|=0$, there exist subsequences $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ and $\left\{y_{n_{k}}\right\}$ of $\left\{y_{n}\right\}$ such that $\left\{x_{n_{k}}\right\}$ and $\left\{y_{n_{k}}\right\}$ converge strongly to some points u^{*} and v^{*}, respectively. The weak convergence of $\left\{x_{n_{k}}\right\}$ and $\left\{y_{n_{k}}\right\}$ to x^{*} and y^{*}, respectively, implies that $x^{*}=u^{*}$ and $y^{*}=v^{*}$. It follows from the demiclosedness of P_{i} that $x^{*} \in F\left(P_{1}\right) \cap F\left(P_{2}\right)$ and $y^{*} \in F\left(P_{3}\right) \cap F\left(P_{4}\right)$. Using similar steps to the previous ones, we get that $x^{*} \in \operatorname{GMEP}(F, T, \phi)$ and $y^{*} \in \operatorname{GMEP}(G, S, \varphi)$. Thus, we have

$$
\left\|A x^{*}-B y^{*}\right\|=\lim _{k \rightarrow \infty}\left\|A x_{n_{k}}-B y_{n_{k}}\right\|=0,
$$

which implies that $A x^{*}=B y^{*}$. Hence, $\left(x^{*}, y^{*}\right) \in \mathcal{F}$. On the other hand, since $\xi_{n}(x, y)=$ $\left\|x_{n}-x\right\|^{2}+\left\|y_{n}-y\right\|^{2}$ for $(x, y) \in \mathcal{F}$, we know that $\lim _{k \rightarrow \infty} \xi_{n_{k}}\left(x^{*}, y^{*}\right)=0$. From conjecture
(i) we see that $\lim _{n \rightarrow \infty} \xi_{n}\left(x^{*}, y^{*}\right)$ exists; therefore, $\lim _{n \rightarrow \infty} \xi_{n}\left(x^{*}, y^{*}\right)=0$. So, the iterative scheme (3.1) converges strongly to a solution of problem (1.4). This completes the proof of conjecture (ii).

Taking $F=G=T=S=\phi=\varphi=0$ in Theorem 1, we get the following convergence theorem for the split equality problem (1.10).

Corollary 1 Let $H_{1}, H_{2}, H_{3}, P_{1}, P_{2}, P_{3}, P_{4}, A$, and B satisfy conditions (B1), (B5), and (B6). For an arbitrary initial value $\left(x_{1}, y_{1}\right) \in C \times Q$, define the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $C \times Q$ generated by

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) P_{1}\left(x_{n}-\delta_{n} A^{*}\left(A x_{n}-B y_{n}\right)\right)+\alpha_{n} P_{2}\left(x_{n}-\delta_{n} A^{*}\left(A x_{n}-B y_{n}\right)\right), \\
y_{n+1}=\left(1-\alpha_{n}\right) P_{3}\left(y_{n}+\delta_{n} B^{*}\left(A x_{n}-B y_{n}\right)\right)+\alpha_{n} P_{4}\left(y_{n}+\delta_{n} B^{*}\left(A x_{n}-B y_{n}\right)\right),
\end{array}\right.
$$

where $n \geq 1$, and the sequences $\left\{\delta_{n}\right\}$ and $\left\{\alpha_{n}\right\}$ satisfy conditions $(\mathrm{C} 1)$ and $(\mathrm{C} 2)$, respectively. If $\mathcal{F}:=\bigcap_{i=1}^{4} F\left(P_{i}\right) \cap \mathrm{SEP} \neq \emptyset$, then:
(i) The sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a solution of problem (1.10);
(ii) If $P_{i}, i=1,2,3,4$, are demicompact, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to a solution of problem (1.10).

Taking $B=I$ and $H_{2}=H_{3}$ in Corollary 1, we obtain the following convergence theorem for the split feasibility problem (1.11).

Corollary 2 Let $H_{1}, H_{2}, P_{1}, P_{2}, P_{3}, P_{4}$, and A satisfy conditions (B1), (B5), and (B6) with $A: H_{1} \rightarrow H_{2}$. For an arbitrary initial value $\left(x_{1}, y_{1}\right) \in C \times Q$, define the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $C \times Q$ generated by

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) P_{1}\left(x_{n}-\delta_{n} A^{*}\left(A x_{n}-y_{n}\right)\right)+\alpha_{n} P_{2}\left(x_{n}-\delta_{n} A^{*}\left(A x_{n}-y_{n}\right)\right), \\
y_{n+1}=\left(1-\alpha_{n}\right) P_{3}\left(y_{n}+\delta_{n}\left(A x_{n}-y_{n}\right)\right)+\alpha_{n} P_{4}\left(y_{n}+\delta_{n}\left(A x_{n}-y_{n}\right)\right), \quad n \geq 1,
\end{array}\right.
$$

where $\left\{\delta_{n}\right\}$ is a positive real sequence such that $\delta_{n} \in\left(\varepsilon, \frac{1}{\lambda_{A}}-\varepsilon\right)$ for sufficiently small ε, where λ_{A} denotes the spectral radius of $A^{*} A$, and $\left\{\alpha_{n}\right\}$ satisfy condition (C2). If $\mathcal{F}:=\bigcap_{i=1}^{4} F\left(P_{i}\right) \cap$ SFP $\neq \emptyset$, then:
(i) The sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a solution of problem (1.11);
(ii) If $P_{i}, i=1,2,3,4$, are demicompact, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to a solution of problem (1.11).

4 Applications

Let C be a nonempty closed convex subset of a real Hilbert space H, and $\psi: C \rightarrow C$ be a convex and differentiable mapping. It is known that the convex differentiable minimization problem is to find $x^{*} \in C$ such that

$$
\begin{equation*}
\min _{x \in C} \psi(x)=\psi\left(x^{*}\right) \tag{4.1}
\end{equation*}
$$

Also, it is well known that a point x^{*} is a solution of problem (4.1) if and only if

$$
\begin{equation*}
\left\langle\nabla \psi\left(x^{*}\right), y-x^{*}\right\rangle \geq 0 \tag{4.2}
\end{equation*}
$$

for all $y \in C$. Problem (4.2) is called the classical variational inequality problem. If we get $F\left(x^{*}, y\right)=\left\langle\nabla \psi\left(x^{*}\right), y-x^{*}\right\rangle$, then the equilibrium problem (1.1) and the variational inequality problem (4.2) have the same solution.

In 2015, Rahaman et al. [3] introduced the split equality mixed convex differentiable optimization problem of finding $x^{*} \in C$ and $y^{*} \in Q$ such that

$$
\begin{align*}
& \left\langle\nabla \psi\left(x^{*}\right), x-x^{*}\right\rangle+\left\langle T\left(x^{*}\right), x-x^{*}\right\rangle+\phi(x)-\phi\left(x^{*}\right) \geq 0, \quad \forall x \in C, \\
& \left\langle\nabla \sigma\left(y^{*}\right), y-y^{*}\right\rangle+\left\langle S\left(y^{*}\right), y-y^{*}\right\rangle+\varphi(y)-\varphi\left(y^{*}\right) \geq 0, \quad \forall y \in Q, \quad \text { and } \tag{4.3}\\
& A x^{*}=B y^{*}
\end{align*}
$$

where $\psi: C \rightarrow H_{1}$ and $\sigma: Q \rightarrow H_{2}$ are convex differentiable mappings. The set of solutions of the split equality mixed convex differentiable optimization problem (4.3) is denoted by $\operatorname{SEMCDOP}(\psi, \sigma, T, S, \phi, \varphi)$. If $T=0$, then this problem is reduced to the split equality mixed variational inequality problem introduced by Ma et al. [4] in 2015. Also, if $B=I$ and $H_{2}=H_{3}$, then problem (4.3) is reduced to the split mixed convex differentiable optimization problem of finding $x^{*} \in C$ such that

$$
\left\langle\nabla \psi\left(x^{*}\right), x-x^{*}\right\rangle+\left\langle T\left(x^{*}\right), x-x^{*}\right\rangle+\phi(x)-\phi\left(x^{*}\right) \geq 0, \quad \forall x \in C,
$$

and such that $A x^{*}=y^{*} \in Q$ solves

$$
\begin{equation*}
\left\langle\nabla \sigma\left(y^{*}\right), y-y^{*}\right\rangle+\left\langle S\left(y^{*}\right), y-y^{*}\right\rangle+\varphi(y)-\varphi\left(y^{*}\right) \geq 0, \quad \forall y \in Q . \tag{4.4}
\end{equation*}
$$

The solution set of this problem is denoted by $\operatorname{SMCDOP}(\psi, \sigma, T, S, \phi, \varphi)$.
Since the gradients $\nabla \psi$ and $\nabla \sigma$ are monotone mappings, if $F\left(x^{*}, y\right)=\left\langle\nabla \psi\left(x^{*}\right), x-x^{*}\right\rangle$, $G\left(x, y^{*}\right)=\left\langle\nabla \sigma\left(y^{*}\right), y-y^{*}\right\rangle$, and $\lambda_{1}=\lambda_{2}=1$, then F and G satisfy condition (B2). So, we can give the following result.

Theorem 2 Let $H_{1}, H_{2}, H_{3}, T, S, \phi, \varphi, P_{1}, P_{2}, P_{3}, P_{4}, A$, and B satisfy conditions (B1)(B6) except (B2). Suppose that the mappings $\psi: C \rightarrow H_{1}$ and $\sigma: Q \rightarrow H_{2}$ are convex and differentiable mappings. For an arbitrary initial value $\left(x_{1}, y_{1}\right) \in C \times Q$, define the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $C \times Q$ generated by

$$
\left\{\begin{array}{l}
\left\langle\nabla \psi\left(u_{n}\right), u-u_{n}\right\rangle+\phi(u)-\phi\left(u_{n}\right)+\left\langle T u_{n}, u-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \\
\left\langle\nabla \sigma\left(v_{n}\right), v-v_{n}\right\rangle+\varphi(v)-\varphi\left(v_{n}\right)+\left\langle S v_{n}, v-v_{n}\right\rangle+\frac{1}{r_{n}}\left\langle v-v_{n}, v_{n}-y_{n}\right\rangle \geq 0 \\
x_{n+1}=\left(1-\alpha_{n}\right) P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)+\alpha_{n} P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right), \\
y_{n+1}=\left(1-\alpha_{n}\right) P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)+\alpha_{n} P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)
\end{array}\right.
$$

for all $u \in C$ and $v \in Q$, where $n \geq 1$, and the sequences $\left\{\delta_{n}\right\},\left\{\alpha_{n}\right\}$, and $\left\{r_{n}\right\}$ satisfy conditions (C1)-(C3), respectively. If $\mathcal{F}:=\bigcap_{i=1}^{4} F\left(P_{i}\right) \cap \operatorname{SEMCDOP}(\psi, \sigma, T, S, \phi, \varphi) \neq \emptyset$, then:
(i) The sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a solution of problem (4.3);
(ii) If $P_{i}, i=1,2,3,4$, are demicompact, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to a solution of problem (4.3).

In Theorem 2, if we take $B=I$ and $H_{2}=H_{3}$, then we get the following result.

Corollary 3 Let $H_{1}, H_{2}, T, S, \phi, \varphi, P_{1}, P_{2}, P_{3}, P_{4}$, and A satisfy conditions (B1)-(B6) except (B2) with $A: H_{1} \rightarrow H_{2}$. Suppose that the mappings $\psi: C \rightarrow H_{1}$ and $\sigma: Q \rightarrow H_{2}$ are convex and differentiable mappings. For an arbitrary initial value $\left(x_{1}, y_{1}\right) \in C \times Q$, define the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $C \times Q$ generated by

$$
\left\{\begin{array}{l}
\left\langle\nabla \psi\left(u_{n}\right), u-u_{n}\right\rangle+\phi(u)-\phi\left(u_{n}\right)+\left\langle T u_{n}, u-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \\
\left\langle\nabla \sigma\left(v_{n}\right), v-v_{n}\right\rangle+\varphi(v)-\varphi\left(v_{n}\right)+\left\langle S v_{n}, v-v_{n}\right\rangle+\frac{1}{r_{n}}\left\langle v-v_{n}, v_{n}-y_{n}\right\rangle \geq 0, \\
x_{n+1}=\left(1-\alpha_{n}\right) P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-v_{n}\right)\right)+\alpha_{n} P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-v_{n}\right)\right), \\
y_{n+1}=\left(1-\alpha_{n}\right) P_{3}\left(v_{n}+\delta_{n}\left(A u_{n}-v_{n}\right)\right)+\alpha_{n} P_{4}\left(v_{n}+\delta_{n}\left(A u_{n}-v_{n}\right)\right)
\end{array}\right.
$$

for all $u \in C$ and $v \in Q$, where $n \geq 1,\left\{\delta_{n}\right\}$ is a positive real sequences such that $\delta_{n} \in$ $\left(\varepsilon, \frac{1}{\lambda_{A}}-\varepsilon\right)$ for sufficiently small ε, where λ_{A} denotes the spectral radius of $A^{*} A$, and the sequences $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy conditions (C 2) and $(\mathrm{C} 3)$, respectively. If $\mathcal{F}:=\bigcap_{i=1}^{4} F\left(P_{i}\right) \cap$ $\operatorname{SMCDOP}(\psi, \sigma, T, S, \phi, \varphi) \neq \emptyset$, then:
(i) The sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a solution of problem (4.4);
(ii) If $P_{i}, i=1,2,3,4$, are demicompact, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to a solution of problem (4.4).

In Theorem 1, if we take $F=G=T=S=0$, then we have the following result for the split equality convex minimization problem (1.8).

Theorem 3 Let $H_{1}, H_{2}, H_{3}, \phi, \varphi, P_{1}, P_{2}, P_{3}, P_{4}, A$, and B satisfy conditions (B1), (B4), (B5), and (B6). For an arbitrary initial value $\left(x_{1}, y_{1}\right) \in C \times Q$, define the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $C \times$ Q generated by

$$
\left\{\begin{array}{l}
\phi(u)-\phi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \\
\varphi(v)-\varphi\left(v_{n}\right)+\frac{1}{r_{n}}\left\langle v-v_{n}, v_{n}-y_{n}\right\rangle \geq 0, \\
x_{n+1}=\left(1-\alpha_{n}\right) P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)+\alpha_{n} P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right), \\
y_{n+1}=\left(1-\alpha_{n}\right) P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)+\alpha_{n} P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)
\end{array}\right.
$$

for all $u \in C$ and $v \in Q$, where $n \geq 1$, and the sequences $\left\{\delta_{n}\right\},\left\{\alpha_{n}\right\}$, and $\left\{r_{n}\right\}$ satisfy conditions (C1)-(C3), respectively. If $\mathcal{F}:=\bigcap_{i=1}^{4} F\left(P_{i}\right) \cap \operatorname{SECMP}(\phi, \varphi) \neq \emptyset$, then:
(i) The sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a solution of problem (1.8);
(ii) If $P_{i}, i=1,2,3,4$, are demicompact, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to a solution of problem (1.8).

If we take $B=I$ and $H_{2}=H_{3}$ in Theorem 3, then we get the following result for the split convex minimization problem (1.9).

Corollary 4 Let $H_{1}, H_{2}, P_{1}, P_{2}, P_{3}, P_{4}, \phi, \varphi$, and A satisfy conditions (B1), (B4), (B5), and (B6) with $A: H_{1} \rightarrow H_{2}$. For an arbitrary initial value $\left(x_{1}, y_{1}\right) \in C \times Q$, define the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $C \times Q$ generated by

$$
\left\{\begin{array}{l}
\phi(u)-\phi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0 \\
\varphi(v)-\varphi\left(v_{n}\right)+\frac{1}{r_{n}}\left\langle v-v_{n}, v_{n}-y_{n}\right\rangle \geq 0, \\
x_{n+1}=\left(1-\alpha_{n}\right) P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-v_{n}\right)\right)+\alpha_{n} P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-v_{n}\right)\right), \\
y_{n+1}=\left(1-\alpha_{n}\right) P_{3}\left(v_{n}+\delta_{n}\left(A u_{n}-v_{n}\right)\right)+\alpha_{n} P_{4}\left(v_{n}+\delta_{n}\left(A u_{n}-v_{n}\right)\right)
\end{array}\right.
$$

for all $u \in C$ and $v \in Q$, where $n \geq 1,\left\{\delta_{n}\right\}$ is a positive real sequences such that $\delta_{n} \in\left(\varepsilon, \frac{1}{\lambda_{A}}-\varepsilon\right)$ for sufficiently small ε, where λ_{A} denotes the spectral radius of $A^{*} A$, and the sequences $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy conditions $(\mathrm{C} 2)$ and $(\mathrm{C} 3)$, respectively. If $\mathcal{F}:=\bigcap_{i=1}^{4} F\left(P_{i}\right) \cap \operatorname{SCMP}(\phi, \varphi) \neq \emptyset$, then:
(i) The sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a solution of problem (1.9);
(ii) If $P_{i}, i=1,2,3,4$, are demicompact, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to a solution of problem (1.9).

In Theorem 1, if we take $T=S=0$ and $\lambda_{1}=\lambda_{2}=1$, then we have the following convergence result for the split equality mixed equilibrium problem (1.5).

Theorem 4 Let $H_{1}, H_{2}, H_{3}, F, G, \phi, \varphi, P_{1}, P_{2}, P_{3}, P_{4}, A$, and B satisfy conditions (B1)-(B6) except (B3). For an arbitrary initial value $\left(x_{1}, y_{1}\right) \in C \times Q$, define the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $C \times$ Q generated by

$$
\left\{\begin{array}{l}
F\left(u_{n}, u\right)+\phi(u)-\phi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \\
G\left(v_{n}, v\right)+\varphi(v)-\varphi\left(v_{n}\right)+\frac{1}{r_{n}}\left\langle v-v_{n}, v_{n}-y_{n}\right\rangle \geq 0, \\
x_{n+1}=\left(1-\alpha_{n}\right) P_{1}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)+\alpha_{n} P_{2}\left(u_{n}-\delta_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right), \\
y_{n+1}=\left(1-\alpha_{n}\right) P_{3}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)+\alpha_{n} P_{4}\left(v_{n}+\delta_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right)
\end{array}\right.
$$

for all $u \in C$ and $v \in Q$, where $n \geq 1$, and the sequences $\left\{\delta_{n}\right\},\left\{\alpha_{n}\right\}$, and $\left\{r_{n}\right\}$ satisfy conditions (C1)-(C3), respectively. If $\mathcal{F}:=\bigcap_{i=1}^{4} F\left(P_{i}\right) \cap \operatorname{SEMEP}(F, G, \phi, \varphi) \neq \emptyset$, then:
(i) The sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a solution of problem (1.5);
(ii) If $P_{i}, i=1,2,3,4$, are demicompact, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to a solution of problem (1.5).

Competing interests

The author has no competing interests.
Received: 24 February 2016 Accepted: 25 November 2016 Published online: 01 December 2016

References

1. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145 (1994)
2. Ahmad, R, Rahaman, M : Generalized strongly vector equilibrium problem for set-valued mappings. Filomat 28(9), 1783-1790 (2014)
3. Rahaman, M, Liou, YC, Ahmad, R, Ahmad, I: Convergence theorems for split equality generalized mixed equilibrium problems for demi-contractive mappings. J. Inequal. Appl. 2015, 418 (2015)
4. Ma, Z, Wang, L, Chang, SS, Duan, W: Convergence theorems for split equality mixed equilibrium problems with applications. Fixed Point Theory Appl. 2015, 31 (2015). doi:10.1186/s13663-015-0281-x
5. He, Z: The split equilibrium problem and its convergence algorithms. J. Inequal. Appl. 2012, 162 (2012). doi:10.1186/1029-242X-2012-162
6. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2), 221-239 (1994)
7. Censor, Y, Bortfeld, T, Martin, B, Trofimov, A: A unified approach for inverse problem in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2352-2365 (2006)
8. Censor, Y, Elfving, T, Kopf, N, Bortfeld, T: The multiple-sets split feasibility problem and its applications. Inverse Probl. 21, 2071-2084 (2005)
9. Censor, Y, Motova, A, Segal, A: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327, 1244-1256 (2007)
10. Chang, SS, Lee, HWJ, Chan, CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. 70, 3307-3319 (2009)
11. Qin, X, Chang, SS, Cho, YJ: Iterative methods for generalized equilibrium problems and fixed point problems with applications. Nonlinear Anal. 11, 2963-2972 (2010)
12. Qin, X, Shang, M, Su, Y: A general iterative method for equilibrium problem and fixed point problem in Hilbert spaces Nonlinear Anal. 69, 3897-3909 (2008)
13. Noor, M, Oettli, W: On general nonlinear complementarity problems and quasi-equilibria. Matematiche 49, 313-346 (1994)
14. Chang, SS, Agarwal, R: Strong convergence theorems of general split equality problems for quasi-nonexpansive mappings. J. Inequal. Appl. 2014, 367 (2014)
15. Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York (1984)
16. Goebel, K, Kirk, WA: Topics on Metric Fixed-Point Theory. Cambridge University Press, Cambridge (1990)
17. Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591-597 (1967)
18. Marino, $G, X u, H K$: Weak and strong convergence theorems for strict pseudocontractions in Hilbert space. J. Math. Anal. Appl. 329, 336-346 (2007)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

