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Abstract
The aim of this paper is to give a generalized version of Caristi fixed point theorems in
pseudo-metric spaces. Our results generalize and improve many of well-known
theorems. As an application of our results, we give a new existence theorem to the
generalized nonlinear complementarity problem and a solution of differential
inclusion in the distributions setting.
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1 Introduction
It is well known that the Ekeland variational principle [] and Caristi-Kirk fixed point the-
orem are both equivalent. Many authors [–] have established a generalized version of
these two results in different settings, that is, in vector-valued generalized metric space
with respect to a convex cone K in a Banach space. Recall that a subset K ⊂ Y is called a
convex cone on a topological vector space Y if:

. K + K ⊂K;
. for every λ > , λK ⊂K;
. K∩ (–K) = {θ}, where θ denotes the zero of Y.
A convex cone K ⊂ Y generates a partial ordering on Y (i.e. a reflexive, antisymmetric,

and transitive relation) by

x � y ⇐⇒ y – x ∈K.

Thereby, since its appearance, the Brezis-Browder ordering principle [] seems to be a
strong tool to prove fixed point or minimal point theorems in an ordered set. Zermelo’s
theorem [] shows that there is an equivalency between the existence of a fixed point of
such a map and the monotonicity of the map. By the way, Hamel [] studied existence
theorems, namely minimal point, Caristi fixed point, and Ekeland variational principle in
the topological product space X × Y where X is a separated uniform space, and Y is a
topological vector space.

Fang [] introduced the concept of ‘F-type topological spaces’ generating the topology
by families of quasi-metrics and gave a generalization of Ekeland’s variational principle.

Furthermore, Isac [] proved an interesting Caristi-type theorem in the framework of
locally convex space, which led him to derive an existence result of a nonlinear equation.
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Hence, the aim of this paper is to generalize some of the well-known fixed point the-
orems [, –] for a pseudo-metric space X. This paper is divided into three sections
after showing some basic results in preliminaries. Using in Section  the Brezis-Browder
principle, we give generalized Caristi’s fixed point theorems for set-valued maps and de-
rive some corollaries. Section  is devoted to an Ekeland-type variational principle in more
applied general setting, namely pseudo-metric spaces, and also discuss the relationships
of our main results. Finally, following investigations by Isac, Section  is devoted to appli-
cations.

2 Preliminaries
Over this section, Y is a locally convex space, and K is a convex cone in Y. A set � is said
to be a directed set if ‘≺’ is a preorder and every pair of elements of � has an upper bound.

Definition . Let X be a nonempty set, and (�,≺) a directed set. A family of cone
pseudo-metrics on X is a system {dα}α∈� of mappings dα : X×X → K satisfying the fol-
lowing conditions for each α ∈ � and x, y, z ∈X:

(A) θ � dα(x, y), and dα(x, x) = θ ;
(A) dα(x, y) = dα(y, x);
(A) dα(x, z) � dα(x, y) + dα(y, z);
(A) If α ≺ β then dα(x, y) � dβ (x, y).

Then the pair (X, {dα}α∈�) is called a cone pseudo-metric space. Additionally, if

(A) for all α ∈ � and x, y ∈X, dα(x, y) = θ implies x = y,

then the family of cone pseudo-metrics is said to be separating.

The concept of a cone pseudo-metric space was already defined by Włodarczyk et al. [],
who called it a Hausdorff cone pseudo-metric space. In this paper, we use a locally convex
space as a target set for a cone pseudo-metric, which is more general that a normed space.
If (Y, τ ) is a locally convex space, then it is known that the topology τ can be generated
by a family of seminorms {pi}i∈I []. A subset B of {pi}i∈I is called a basis for {pi}i∈I if for
every i ∈ I , there exist q ∈ B and λ >  such that pi ≤ λq.

We say that a family of seminorms {pi}i∈I is separating if ker{pi}i∈I = {θ} or has a Haus-
dorff basis B if ker B = {θ}, where

ker B =
{

x ∈Y : p(x) = ,∀p ∈ B
}

.

The most useful class of cones in topological vector space is the class of normal cones.
For more details, we refer the reader to [].

Definition . ([]) If (Y, {pi}i∈I) is a locally convex space, then a convex cone K ⊂ Y is
said to be normal if there exists a basis B of {pi}i∈I such that, for each p ∈ B and all x, y ∈ K,

θ � x � y �⇒ p(x) ≤ p(y).

Throughout this paper, we assume that the topology defined on Y is generated by the
basis B [], and we simply write B = {pi}i∈I .



Lazaiz et al. Fixed Point Theory and Applications  (2017) 2017:3 Page 3 of 18

Proposition . Let (X, {dα}α∈�) be a cone pseudo-metric space over a normal cone K.
Then the mappings δαi : X×X → [,∞[ defined for each (α, i) ∈ � × I by δαi = pi ◦ dα is

a family of pseudo-metrics on X.

Proof By (A) and (A) we have immediately δαi(x, x) =  and δαi(x, y) = δαi(y, x) for every
x, y ∈X.

Since for each α ∈ � and all x, y, z ∈X, we have dα(x, y) ∈K and

θ � dα(x, z) � dα(x, y) + dα(y, x)

and since K is a normal cone, we get, for each i ∈ I ,

pi
(
dα(x, z)

) ≤ pi
(
dα(x, y) + dα(y, x)

) ≤ pi
(
dα(x, y)

)
+ pi

(
dα(y, x)

)
.

Then δαi satisfies the triangle inequality. If we assume that {dα}α∈� is a separating family,
so is {δαi}(α,i)∈�×I . �

If the convex cone K is solid (intK �= ∅) and not normal and if Y is a locally convex space,
then the Gerstewitz functional [] ξe : Y →R, where e ∈ intK, is defined as

ξe(x) = inf{λ ∈R : x ∈ λe – K}

for each x ∈Y.
We have the following result.

Lemma . For all λ ∈R and x ∈Y, we have the following statements:
(i) ξe(x) ≤ λ ⇐⇒ x ∈ λe – K;

(ii) ξe(x) > λ ⇐⇒ x /∈ λe – K;
(iii) ξe(x) ≥ λ ⇐⇒ x /∈ λe – intK;
(iv) ξe(x) < λ ⇐⇒ x ∈ λe – intK;
(v) ξe(·) is positively homogeneous and continuous on Y;

(vi) if x ∈ x + K, then ξe(x) ≤ ξe(x);
(vii) ξe(x + x) ≤ ξe(x) + ξe(x) for all x, x ∈Y.

Proof See, for instance, [, –]. �

The following result is Theorem . of Du [].

Proposition . Let (X, {dα}α) be a cone pseudo-metric space over a solid cone K. Then the
family of mappings δα : X×X→ [,∞[ defined by δα = ξe ◦dα is a family of pseudo-metrics
on X.

Proof Since ξe(·) is a seminorm on Y by Lemma ., Proposition . gives the result. �

If the cone K is normal and solid, then ξe(·) is a norm over Y, and we have the following
proposition.
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Proposition . If (Y, τ ) is a Hausdorff topological space ordered by a normal solid cone
K, then (Y, τ ) is a normable space.

Proof See Proposition . in [], Chapter . �

Next, we discuss some convergence properties of cone pseudo-metric spaces. We note
that x � y if and only if y – x ∈ intK, where the ‘int’ is the interior.

Definition . Let (X, {dα}α) be a cone pseudo-metric space over a solid convex cone
K ⊂Y, where Y is a locally convex space, x ∈X, and {xn}n a sequence in X.

. {xn}n is Cauchy sequence whenever for every α ∈ � and c ∈Y with θ � c, there is a
natural number N such that

dα(xn, xm) � c, ∀n, m ≥ N.

. {xn}n converges to x whenever for every α ∈ � and c ∈Y with θ � c, there is a
natural number N such that

dα(xn, x) � c, ∀n ≥ N.

. (X, {dα}α) is complete if each Cauchy sequence converges in X.

Proposition . Let (X, {dα}α) be a cone pseudo-metric space over a solid convex cone
K ⊂Y, where Y is a locally convex space.

Then, for each α ∈ �, we get

dα(xn, x) −→ θ ⇐⇒ δα(xn, x) = ξe
(
dα(xn, x)

) −→ .

Proof It is similar to the proof of Theorem . in []. �

Using this pseudo-metric δα , we keep saying that (X, {δα}α) is a pseudo-metric space
over a solid convex cone K.

3 Fixed point theorems
Recall that the most famous ordering principle.

Theorem . (Brezis-Browder) Let (W ,�) be a quasi-ordered set (i.e. � is a reflexive and
transitive relation), and let Ψ : W −→R be a function satisfying the following conditions:

(B) Ψ is bounded below;
(B) w � w �⇒ Ψ (w) ≤ Ψ (w);
(B) For every decreasing sequence {wn}n∈N ⊂ W with respect to ‘�’, there exists w ∈ W such

that w ≤ wn for all n ∈N.

Then, for every w ∈ W , there exists w̄ ∈ W such that

(i) w̄ � w;
(ii) ŵ � w̄ �⇒ Ψ (ŵ) = Ψ (w̄).
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In particular, if we strengthen (B) to

(B′) (w � w, w �= w) �⇒ Ψ (w) < Ψ (w),

then

(ii′) ŵ � w̄ �⇒ ŵ = w̄, that is, w̄ is minimal in W with respect to ‘�’.

Proof See Corollary  in []. �

Now we are able to give the main result of this section.

Theorem . Let (Y, {pi}i∈I) a complete separated locally convex space, (X, {δα}α∈�) be
a complete Hausdorff pseudo-metric space over a solid convex cone K, T : X −→ X and
S : X−→ Y two set-valued maps with nonempty values.

Suppose that, for every (α, i) ∈ � × I and two constants cα , ci > , there exist lower semi-
continuous functions ϕαi : Y −→ [,∞), and for each (x, y) ∈ GS , there exist u ∈ Tx and
v ∈ Su such that

max
{

cαδα(x, u), cipi(y – v)
} ≤ ϕαi(y) – ϕαi(v). ()

Then T has a fixed point in X.

Proof Put

W =
{

(x, y) ∈ GS;∀(α, i) ∈ � × I, max
{

cαδα(x, x), cipi(y – y)
}

+ ϕαi(y) ≤ ϕαi(y)
}

for some (x, y) ∈ GS . Then W is a nonempty closed subset of GS . Indeed, let (xn, yn)n

be a sequence in W that converges to (x, y), that is, limn→∞ pi(yn – y) = . Since for each
(α, i) ∈ � × I , the function ϕαi is lower semicontinuous, that is,

ϕαi(y) ≤ lim inf
n→∞ ϕαi(yn),

we have

cipi(y – y) ≤ cipi(y – yn) + cipi(yn – y)

≤ ϕαi(y) – ϕαi(yn) + cipi(yn – y)

≤ ϕαi(y) – lim inf
k→∞

ϕαi(yk) + cipi(yn – y)

≤ ϕαi(y) – ϕαi(y) + cipi(yn – y).

So, taking the limit with respect to n, we get cipi(y – y) ≤ ϕαi(y) – ϕαi(y), and by similar
arguments we get

cαδα(x, x) ≤ ϕαi(y) – ϕαi(y).

Hence, max{cαδα(x, x), cipi(y – y)} + ϕαi(y) ≤ ϕαi(y), so that (x, y) ∈ W.
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Now we define a binary relation in W as follows: for every (x, y) and (x, y) in W,

(x, y) � (x, y) ⇐⇒ max
{

cαδα(x, x), cipi(y – y)
} ≤ ϕαi(y) – ϕαi(y)

for each (α, i) ∈ � × I . We can show that the relation � is an ordering on W.
Next, we show that, for every decreasing sequence (xn, yn)n∈N ⊂ W with respect to ‘�’,

there exists (x∗, y∗) ∈ W such that (x∗, y∗) � (xn, yn) for all n ∈ N. Let (xn, yn)n∈N be a �-
decreasing sequence in W. Then, for any m, n ∈N such that m ≥ n, we have

(xm, ym) � (xn, yn) ⇐⇒ max
{

cαδα(xm, xn), cipi(ym – yn)
} ≤ ϕαi(yn) – ϕαi(ym)

for each (α, i) ∈ � × I,

which gives that the positive sequence {ϕαi(yn)}n is decreasing (for α and i fixed). Hence,
there exists rαi such that limϕαi(yn) = rαi. Let ε >  and (α, i) ∈ �× I . There exists N ∈N

∗

such that, for any n ≥ N, we have

rαi ≤ ϕαi(yn) ≤ rαi + min(cα , ci) · ε

and then, for every m ≥ n ≥ N,

cipi(ym – yn) ≤ ϕαi(yn) – ϕαi(ym)

≤ rαi + min(cα , ci) · ε – rαi.

Thus,

cipi(ym – yn) ≤ min(cα , ci) · ε ≤ ciε.

Also, we get

cαδα(xm, xn) ≤ ϕαi(yn) – ϕαi(ym)

≤ rαi + min(cα , ci) · ε – rαi

and thus

cαδα(xm, xn) ≤ cαε.

Repeating the last computation for every (α, i) ∈ � × I and using the fact that {δα}α∈�

and {pi}i∈I are separated families, we obtain that {xn}n and {yn}n are Cauchy sequences in
the complete spaces X and Y, respectively. Therefore, there exist x∗ ∈ X and y∗ ∈ Y such
that

xn −→ x∗ and yn −→ y∗.

Since W is closed, we have that (x∗, y∗) ∈ W and y∗ ∈ Sx∗ by the definition of W.
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Also, for all (n, m) ∈ N
 such that m ≥ n, we have (xm, ym) � (xn, yn), so that for all (α, i) ∈

� × I ,

max
{

cαδα(xm, xn), cipi(ym – yn)
} ≤ ϕαi(yn) – ϕαi(ym)

≤ ϕαi(yn) – lim inf
k→∞

ϕαi(yk)

≤ ϕαi(yn) – ϕαi
(
y∗).

Taking the limit with respect to m and using the fact that δα and pi are continuous, we get

max
{

cαδα

(
x∗, xn

)
, cipi

(
y∗ – yn

)} ≤ ϕαi(yn) – ϕαi
(
y∗) for all (α, i) ∈ � × I.

Thus, for each n ∈N,

(
x∗, y∗) � (xn, yn).

Let (α, i) ∈ � × I be fixed and choose Ψ : W −→ R as follows: Ψ (x, y) = ϕαi(y) for each
(x, y) ∈ W. Condition (B) from Theorem . holds since ϕαi(y) ≥ . We also have

(x, y) � (x, y) �⇒ ϕαi(y) ≤ ϕαi(y) for each (α, i) ∈ � × I.

So Ψ (x, y) ≤ Ψ (x, y), and thus (B) also holds. Then all assumptions of the Brezis-
Browder principle are satisfied. Hence, for each (x, y) ∈ W, there exists (x̄, ȳ) ∈ W such
that:

(i) (x̄, ȳ) � (x, y);
(ii) if (x̂, ŷ) � (x̄, ȳ), then Ψ (x̂, ŷ) = Ψ (x̄, ȳ).
We claim that x̄ is a fixed point for T . For this (x̄, ȳ) ∈ W ⊂ GS , there exists (u, v) ∈X×Y

such that u ∈ Tx̄ and v ∈ Sū satisfy the following inequality for each (α, i) ∈ � × I :

max
{

cαδα(u, x̄), cipi(v – ȳ)
} ≤ ϕαi(ȳ) – ϕαi(v).

Given (u, v) � (x̄, ȳ), we have Ψ (u, v) = Ψ (x̄, ȳ); hence, x = x̄, and thus x̄ ∈ Tx̄, which com-
pletes the proof. �

Theorem . Under the hypotheses of Theorem ., suppose that the condition ‘for each
(x, y) ∈ GS , there exist u ∈ Tx and v ∈ Su’ is replaced by ‘for each (x, y) ∈ GS and for every
u ∈ Tx, there exists v ∈ Su’.

Then T has a critical point, that is, there exists x̄ ∈X such that {x̄} = Tx̄.

Proof By Theorem ., T has a fixed point x̄ in X. We claim that it is a critical point. For
this, let us show that assumption (B′) of Brezis-Browder holds, and so we have (ii′). Let
(α, i) ∈ � × I be fixed and choose Ψ : W −→ R as in the above proof: Ψ (x, y) = ϕαi(y) for
each (x, y) ∈ W. Then

(x, y) � (x, y), (x, y) �= (x, y) �⇒ Ψ (x, y) < Ψ (x, y).
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Indeed, suppose that x �= x. Then, for each α ∈ �, we get

δα(x, x) �=  �⇒ δα(x, x) > .

Then

 < cαδα(x, x) ≤ ϕαi(y) – ϕαi(y),

and hence ϕαi(y) < ϕαi(y) ⇐⇒ Ψ (x, y) < Ψ (x, y).
Otherwise, if x = x, then by the assumption (x, y) �= (x, y) we must have y �= y, and

then ϕαi(y) < ϕαi(y). Therefore, assumption (B′) in Theorem . is satisfied. Then (x̄, ȳ)
is minimal point in W by (ii′) of the Brezis-Browder principle.

Now we claim that x̄ is a critical point for T . By inequality () we have

max
{

cαδα(u, x̄), cipi(v – ȳ)
} ≤ ϕαi(ȳ) – ϕαi(v)

for each u ∈ Tx̄ and (α, i) ∈ � × I , and then (u, v) � (x̄, ȳ). Since (x̄, ȳ) is a minimal point in
W, it follows that u = x̄, and thus Tx̄ = {x̄}, which completes the proof. �

By the same process as before we can also get the same results if we replace the cone
pseudo-distance {δα}α∈� with respect to the solid cone with the real-valued pseudo-
distance {dα}α∈�.

Proposition . Let (X, {dα}α∈�) be a complete Hausdorff pseudo-metric space, (Y, {pi}i∈I)
a complete separated locally convex space, and T : X −→ X and S : X −→ Y two set-
valued maps with nonempty values.

Suppose that, for every (α, i) ∈ � × I and two constants cα , ci > , there exist lower semi-
continuous functions ϕαi : Y −→ [,∞) and, for each (x, y) ∈ GS , there exist u ∈ Tx and
v ∈ Su (resp., for every u ∈ Tx, there exists v ∈ Su) such that:

max
{

cαdα(x, u), cipi(y – v)
} ≤ ϕαi(y) – ϕαi(v). ()

Then T has a fixed point (resp. critical point) in X.

If the set-valued map S in Proposition . is only a single-valued map, then we have the
following:

Corollary . (Isac []) Let (X, {pα}α∈�) be a Hausdorff locally convex space, and M ⊂X

be a nonempty set. The set-valued map T : X −→ X has a critical point if and only if there
exist a complete Hausdorff locally convex space (Y, {qi}i∈I), a subset M ⊆ M, S : M −→ Y,
for every couple (α, i) ∈ �× I , a function ϕαi : S(M) −→ [,∞), and two constants cα , ci > 
such that:

(i) T(M) ⊂ M, and M ⊂ M is closed;
(ii) S is closed, and S(M) is complete;

(iii) ϕαi is lower semicontinuous for each (α, i) ∈ � × I ;
(iv) max{cαpα(x – y), ciqi(S(x) – S(y))} ≤ ϕαi(S(x)) – ϕαi(S(y)) for all x ∈ M and all

y ∈ Tx.
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Proof If T has a critical point x̄ ∈ M, then the assumptions of Isac’s theorem are satisfied
if we put M = {x̄}, X = Y, {pα}α∈� = {qi}i∈I , S = IM , and for each (α, i) ∈ � × I , cα = ci = 
and ϕαi = .

Conversely, {pα}α∈� is generating family of separated seminorms on X, and if we set

pα(x – y) = dα(x, y)

for each α ∈ �, then (M, {dα}α∈�) is a complete Hausdorff pseudo-metric subspace of X.
Also, by (ii) we get that (S(M), {qi}i∈I) is a complete Hausdorff locally convex subspace of
Y, and since T(M) ⊂ M, all assumptions of Proposition . are satisfied, so that we get
the result. �

Remark . Our main result does not involve any assumptions about closeness of inter-
mediary set-valued map S, contrary to the result of Isac [].

Corollary . (Fang []) Let T : X −→X be a map of a complete Hausdorff locally convex
space (X, {pα}α∈�). Suppose that there exists a lower semicontinuous function ϕ : X −→
[,∞) such that, for each x ∈X and for each α ∈ �,

pα(x – Tx) ≤ ϕ(x) – ϕ(Tx). ()

Then T has a fixed point.

Proof For every x, y ∈ X, we even replace pα(x – y) = dα(x, y) and take single-valued maps
T ′ and S with Sx = {x} and T ′x = {Tx} for all x ∈ X. Then inequality () implies inequality
() of Proposition ., and the result follows. �

We get the next obvious two corollaries.

Corollary . (Downing and Kirk []) Let X and Y be complete metric spaces, and T :
X −→ X an arbitrary mapping. Suppose that there exist a closed mapping S : X −→ Y, a
lower semicontinuous mapping ϕ : S(X) −→ [,∞), and a constant c >  such that, for each
x ∈X,

max
{

dX(x, Tx), cdY

(
S(x), S(Tx)

)} ≤ ϕ
(
S(x)

)
– ϕ

(
S(Tx)

)
.

Then there exists x ∈X such that Tx = x.

Corollary . (Caristi []) Let (X, d) be a complete metric space, and let ϕ : X −→ [,∞)
be a lower semicontinuous function. If a mapping T : X −→ X satisfies for each x ∈ X the
condition

d(x, Tx) ≤ ϕ(x) – ϕ(Tx),

then T has a fixed point in X.

We conclude this section with an application of Theorem ..
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Theorem . Let (Y, {pi}i∈I) be a complete separated locally convex space, (X, {δα}α∈�) be
a complete Hausdorff pseudo-metric space over a solid cone K, S : X −→ Y be set-valued
map, and for every (α, i) ∈ � × I , ϕαi : Y−→ [,∞) be lower semicontinuous function.

Suppose that, for each (x, y) ∈ GS , there exists (x, y) ∈ GS such that
. x �= x;
. ϕαi(y) + max{cαδα(x, x), cipi(y – y)} ≤ ϕαi(y) for every (α, i) ∈ � × I .

Then there exist (x̄, ȳ) ∈ GS and (α, i) ∈ � × I such that ϕαi (ȳ) = inft∈Y ϕαi (t).

Proof By contradiction suppose that, for each (x, y) ∈ GS and for every (α, i) ∈ � × I , we
have

ϕαi(y) > inf
t∈Y

ϕαi(t).

By assumptions, there exists (x, y) ∈ GS such that  and  hold. Set

E(x, y) =
{

(z, t) ∈ GS : z �= x, and ∀(α, i) ∈ � × I,

ϕαi(t) + max
{

cαδα(x, z), cipi(y – t)
} ≤ ϕαi(y)

}
.

For all (x, y) ∈ GS , we have (x, y) ∈ E(x, y) and (x, y) /∈ E(x, y). For all x ∈X, we put GS(x) =
{y ∈Y : (x, y) ∈ GS}. Define the set-valued map T by

Tx =
⋃

y∈GS(x)

{
z ∈X : ∃t ∈ Sz such that (z, t) ∈ E(x, y)

}

for x ∈X. For all (x, y) ∈ GS and (α, i) ∈ � × I , there exist z ∈ Tx and t ∈ Sz such that

max
{

cαδα(x, z), cipi(y – t)
} ≤ ϕαi(y) – ϕαi(t).

Then by Theorem ., T admits a point x̄ such that x̄ ∈ Tx̄. For this x̄, we get that, for some
ȳ, ȳ ∈Y, (x̄, ȳ) ∈ E(x̄, ȳ), which is absurd. �

4 Variational principle
Theorem . Let (Y, {pi}i∈I) be a complete separated locally convex space, (X, {δα}α∈�) be
a complete Hausdorff pseudo-metric space over a solid cone K, S : X −→ Y be a set-valued
map, and, for every (α, i) ∈ � × I , ϕαi : Y−→ [,∞) be a lower semicontinuous function.

Then, for each ε >  and (x, y) ∈ GS satisfying

ϕαi(y) ≤ infϕαi + ε, ∀(α, i) ∈ � × I,

there exists (x̄, ȳ) ∈ GS such that:
(i) for each (α, i) ∈ � × I , ϕαi(ȳ) ≤ ϕαi(y);

(ii) for each (x, y) ∈ GS with x �= x̄, there exist (α, i) ∈ � × I and two constants cα , ci > 
such that

ϕαi(ȳ) < ϕαi(y) + ε max
{

cαδα(x, x̄), cipi(y – ȳ)
}

.
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Proof Let ε >  and (x, y) ∈ GS . Put

W =
{

(x, y) ∈ GS;∀(α, i) ∈ � × I,ϕαi(y) + ε max
{

cαδα(x, x), cipi(y – y)
} ≤ ϕαi(y)

}
.

It is a nonempty and closed subset of GS since the family {ϕαi}αi is lower semicontinuous.
For all x ∈ X, we put W(x) = {y ∈ Y : (x, y) ∈ W}. Next, we define the set-valued map

T : X −→ X by

Tx =
⋃

y∈W(x)

{
x̂ ∈ X;∃ŷ ∈ Sx̂,∀(α, i) ∈ � × I,

ϕαi(ŷ) + ε max
{

cαδα(x̂, x), cipi(ŷ – y)
} ≤ ϕαi(y)

}
.

Obviously, T satisfies inequality () of Theorem . with φαi = 
ε
ϕαi so that T has a fixed

point, that is, there exists (x̄, ȳ) ∈ W such that x̄ ∈ Tx̄ with

(x̄, ȳ) ∈ W �⇒ ϕαi(ȳ) ≤ ϕαi(y),

and if (x̂, ŷ) ∈ GS with (x̂, ŷ) � (x̄, ȳ), then x̂ = x̄, which is equivalent to the assertion that,
for each (x, y) ∈ GS with x �= x̄, there exist (α, i) ∈ � × I and two constants cα , ci >  such
that

ϕαi(ȳ) < ϕαi(y) + ε max
{

cαδα(x, x̄), cipi(y – ȳ)
}

.

The proof is complete. �

Remark . We claim that Theorem . implies Theorem .. Indeed, let (x, y) ∈ GS be
given and take ε = . By Theorem . there exists (x̄, ȳ) ∈ GS such that assertions (i) and
(ii) hold. Since (i), we have (x̄, ȳ) ∈ W. We claim that x̄ is a fixed point of T . Assuming the
contrary, by inequality () we get the existence of some (x, y) ∈ GS such that x ∈ Tx̄, x �= x̄,
and

max
{

cαδα(x, x̄), cipi(y – ȳ)
} ≤ ϕαi(ȳ) – ϕαi(y) for every (α, i) ∈ � × I.

This contradicts (ii). Hence, x̄ is a fixed point.
The above considerations show that Theorem . and Theorem . are equivalent.

Since the Caristi theorem (Corollary .) is a particular case of our main result and the
Ekeland variational principle is equivalent to Caristi’s theorem, Theorem . is a general-
ization of the variational principle of Ekeland:

Corollary . (Ekeland []) Let (X, d) be a complete metric space, and ϕ : X −→ [,∞) be a
lower semicontinuous function. Let ε > , and let a point u ∈ X be such that ϕ(u) ≤ infϕ +ε.
Then there exists a point v ∈X such that:

(i) ϕ(v) ≤ ϕ(u);
(ii) ϕ(v) < ϕ(w) + εd(w; v) for any w ∈X; w �= v.
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5 Applications
In this section, we propose two applications.

5.1 General nonlinear complementarity problem
In a Hilbert space (X, 〈·, ·〉), the dual cone K′ of a convex cone K with respect to the duality
〈X′,X〉 is defined by

K
′ =

{
y ∈X : 〈y, x〉 ≥ ,∀x ∈K

}
,

and the polar of K is K = –K′.
Next, we suppose that K is a closed convex cone in X. It is shown in [] that the pro-

jection operator onto K, denoted by PK, is well defined and satisfies, for all x ∈X,

∥∥x – PK(x)
∥∥ = min

y∈K
‖x – y‖.

The next two results can be found in [].

Theorem . For every x ∈X, PK has the following properties:
. 〈PK(x) – x, y〉 ≥  for every y ∈K;
. 〈PK(x) – x, PK(x)〉 = .

Theorem . For all x, y, z ∈X, the following statements are equivalent:
. z = x + y, x ∈K, y ∈K

, and 〈x, y〉 = ;
. x = PK(z) and y = PK (z).

Following Isac [, ], we give a new application of our main result to the so called
general nonlinear complementarity problem (GNCP).

Let S : K → X be a set-valued mapping. As is known [], the GNCP with S and K,
denoted by GNCP(S,K), is

GNCP(S,K):

⎧
⎨

⎩
find (x̂, ŷ) ∈ K×X

s.t. ŷ ∈ S(x̂) ∩K
′ and 〈x̂, ŷ〉 = .

Before we obtain some existence results for GNCP(S,K) by using existence results ob-
tained in the previous sections, we give a useful theorem, which improves Theorem 
in [].

Theorem . The problem GNCP(S,K) has a solution if and only if the set-valued map
defined, for all x ∈X, by

Tx =
{

z ∈ X, z ∈ PK(x) – S
(
PK(x)

)}

has a fixed point in X. Moreover, if x is a fixed point of T , then x̂ = PK(x) is a solution of
the problem GNCP(S,K).



Lazaiz et al. Fixed Point Theory and Applications  (2017) 2017:3 Page 13 of 18

Proof Suppose that T has a fixed point x, that is,

x ∈ PK(x) – S
(
PK(x)

)
.

Then there exists ŷ ∈ S(PK(x)) such that

x = PK(x) – ŷ.

Then if we denote by x̂ = PK(x), then it is clear that x̂ ∈ K, and by item  of Theorem .
we get for all x ∈K,

〈ŷ, x〉 = 〈x̂ – x, x〉 ≥ ,

then ŷ ∈K
′. Therefore, by item  of Theorem . 〈ŷ, x̂〉 = 〈x̂ – x, x̂〉 = , which implies that

(x̂, ŷ) is a solution of GNCP(S,K).
Conversely, if (x̂, ŷ) is a solution of GNCP(S,K), then denoting

x = x̂ – ŷ,

by Theorem . we get x̂ = PK(x), and since ŷ ∈ S(x̂) ∩ K
′, we get ŷ ∈ S(PK(x)). Hence,

x ∈ PK(x) – S(PK(x)), and thus x ∈ Tx. This completes the proof. �

Now we formulate an existence result for the GNCP(S,K) problem.

Theorem . Let (X, 〈·, ·〉) be a Hilbert space, and K be a closed convex cone in X. Let
{ϕi}i∈I be a family of lower semicontinuous functions from X to R+, and ai >  and bi > 
be two families of positive real numbers. Suppose that the set-valued maps T and S defined
before satisfy the supplementary condition:

For all i ∈ I and (x, y) ∈ GS , there exist z ∈ Tx ∩K and t ∈ S(z) such that

max
{

ai‖x – z‖X, bi‖y – t‖X
} ≤ ϕi(y) – ϕi(t).

Then GNCP(S,K) has a solution.

Proof It suffices to replace T by T ′ defined from K into K as T ′(x) = T(x) ∩K and apply
Theorem . and Proposition .. �

Example . Let X = R, K = R+, and, for all i ∈ I , ai = bi = , ϕi(x) = |x| for x ∈ X, and
S(x) = [, x] for all x ∈K. Then the GNCP problem becomes:

GNCP(S,R+):

⎧
⎨

⎩
find (x̂, ŷ) ∈R+ ×R

s.t. ŷ ∈ [, x̂] and x̂ŷ = .

It is obvious that T(x) = [, x] for each (x, y) ∈ GS . It is clear that, for all x ≥  and y ∈ [, x],
we get

|x – y| + |y| ≤ |x| ⇔ |x – y| ≤ ϕi(x) – ϕi(y),

and choosing z ∈ T(x) and t ∈ S(z), we have:
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. for x = y, we choose z =  and t = , and then we have

max
{|x|, |y|} ≤ ϕi(y);

. for y < x, we choose z = x – y + t and t ≤ min{x – y, y}, so that |x – z| = |y – t|, and then
we get

|y – t| ≤ ϕi(y) – ϕi(t).

Finally, by  and  we get

max
{

ai|x – z|, bi|y – t|} ≤ ϕi(y) – ϕi(t).

Then all assumptions of Theorem . hold, and hence problem GNCP(S,R+) has a so-
lution, and the set of solutions is

Sol
(
GNCP(S,R+)

)
=

{
(x, ); x ≥ 

}
.

5.2 Differential inclusion in a nuclear space
Let Rd (with fixed d ∈ N

∗), set D(Rd) to be the space of all complex-valued infinitely dif-
ferentiable functions on R

d with compact support, and define the differential operator for
each multiindex α ∈N

d with α = (α,α, . . . ,αd) by

Dα =
∂ |α|

∂xα
 ∂xα

 · · · ∂xαd
d

,

where |α| = α + · · ·+αd . The space D(Rd) is endowed by a locally convex topology defined
by the family of separated seminorms

‖ϕ‖N = sup
{∣∣Dαϕ(x)

∣∣; x ∈R
d and |α| ≤ N

}
.

Recall that a subset B ⊂ D(Rd) is bounded if for some compact K ⊂ R
d , we have B ⊂

D(K) and there are numbers MN < ∞ such that every ϕ ∈ B satisfies the inequalities

‖ϕ‖N ≤ MN , N = , , , . . . .

It is worth noting that D(Rd) endowed with the limit inductive topology of {D(Kn)}n is a
complete nonmetric space, where (Kn)n∈N is an exhaustive sequence of compact subsets,
that is, for every n ∈N, Kn included in the interior of Kn+, andR

d = ∪nKn; for more details,
see [].

Now, letD′(Rd) be the strong dual ofD(Rd), also endowed with the locally convex topol-
ogy generated by an uncountable separated family of seminorms over the bounded subset
of D(Rd) denoted by τ , that is,

pB(f ) = sup
ϕ∈B

∣∣〈f ,ϕ〉∣∣, B ⊂D
(
R

d) bounded.
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Definition . In a Hausdorff locally convex space (X, {pi}i∈�), a convex cone K ⊂ X is
supernormal [] if for each i ∈ �, there exists a continuous linear form fi ∈ K

′ (dual cone)
such that, for each x ∈K, we have

pi(x) ≤ fi(x).

D′(Rd) endowed with τ -topology is a nuclear space [], and we have the following:

Proposition . In a nuclear space X, a convex cone K ⊂ X is τ -supernormal if and only
if it is τ -normal.

It is shown in [] that the cone K defined by

K =
{
� ∈D′(

R
d); 〈�,ϕ〉 ≥ ,∀ϕ ∈ C

}

is τ -normal cone, where C = {ϕ ∈ D(Rd);ϕ(x) ≥ ,∀x ∈ R
d}, and hence K is τ -super-

normal.
Next, we propose to solve the partial differential inclusion problem;

(P):

⎧
⎨

⎩
find a locally integrable function u ∈ L

loc(Rd) such that

Dαu ∈ F(u) a.e. on R
d,

where α ∈ N
d a multiindex, and F : L

loc(Rd) −→ L
loc(Rd).

Given u ∈ L
loc(Rd), it is shown in [] that u defines a regular distribution, denoted

�u ∈D′(Rd), as follows:

�u(ϕ) =
∫

Rd
u(x)ϕ(x) dx

for all ϕ ∈D(Rd).
Also, if u ∈ L

loc(Rd), we know that �Dαu = Dα�u, and hence we propose to solve problem
(P) in regular distributions setting and consider the differentiability in the weak sense.
Problem (P) is transformed by the canonical isomorphism

G : L
loc

(
R

d) −→ G
(
D′(

R
d))

to

(
P ′):

⎧
⎨

⎩
find a regular distribution �u ∈D′(Rd) such that

Dα�u ∈F (�u) a.e. on R
d,

where F is the set-valued map defined from D′(Rd) into D′(Rd) by

�v ∈F (�u) ⇔ v ∈ F(u).

Now, passing to the second part of our developments, there is no chance that problem
(P ′) has a solution, so we will give a sufficient condition on the set-valued map F in order
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that the problem has at least one solution. For this, we define two subsets I and J of
D′(Rd) by

I =
{
�f ; f ∈ L

loc
(
R

d),�f (ϕ) =
∫

Rd
f (x)Dαϕ(x) dx for each ϕ ∈D

(
R

d)
}

;

∀�u ∈D′(
R

d): J (�u) =
{
�f ∈ I ; u(x) ≥ (–)|α|f (x),∀x ∈R

d},

and for each regular distribution �u ∈D′(Rd), we define the set-valued maps R and T as
follows:

R(�u) =
{
�v ∈D′(

R
d);∀ϕ ∈ C, 〈�u – �v,ϕ〉 ≥ 

}
;

T (�u) =
{
�v ∈R(�u); Dαv ∈ F(u) a.e. on R

d}.

It is obvious that R(�u) is nonempty since �u ∈R(�u), and for T (�u), we need the next
lemma.

Lemma . If for each �u ∈D′(Rd), F (�u)∩J (�u) �= ∅, then T (�u) is a nonempty subset
of D′(Rd).

Proof Let f be a locally integrable function, and let �u ∈D′(Rd). Then the function

ϕ �→
∫

Rd
f (x)Dαϕ(x) dx is an element of F (�u),

and a simple calculation leads to

∫

Rd
f (x)Dαϕ(x) dx = (–)|α|

∫

Rd
Dαf (x)ϕ(x) dx

=
∫

Rd
Dα

[
(–)|α|f (x)

]
ϕ(x) dx.

Put v(x) = (–)|α|f (x) for x ∈R
d . Then v ∈ L

loc(Rd), and

∫

Rd
Dαv(x)ϕ(x) dx = �Dαv(ϕ),

which leads to �Dαv ∈F (�u). Thus, Dαv ∈ F(u).
For each ϕ ∈ C , we have

�u(ϕ) – �v(ϕ) = �u(ϕ) – (–)|α|�f (ϕ)

=
∫

Rd

[
u(x) – (–)|α|f (x)

] ≥ .

Hence, �v ∈ T (�u). �

As an interesting application of the main result, we can state and prove the following
existence theorem.
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Theorem . If K and R are as before and T satisfies the assumption in the previous
lemma, then problem (P ′) has a solution.

Proof By assumption, for each �u ∈D′(Rd), there exists �v ∈ T (�u) such that:
(i) Dα�v ∈F (�u), and

(ii) �v ∈R(�u).
Then, for every ϕ ∈D(Rd), we have

〈�u – �v,ϕ〉 ≥  ⇐⇒ (�u – �v)(ϕ) ≥ ,

which implies that (�u –�v) ∈K; since K is a supernormal cone, for each bounded subset
B of D(Rd), there exists fB ∈K

′ such that

pB(�u – �v) ≤ fB(�u – �v) ⇐⇒ pB(�u – �v) ≤ fB(�u) – fB(�v).

All assumptions of our former result in Proposition . hold. Therefore, T has a fixed
point �u� ∈D′(Rd), that is,

�u� ∈ T (�u� ) ⇔ Dαu� ∈ F
(
u�

)
. �
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23. Göpfert, A, Tammer, C, Riahi, H, Zălinescu, C: Variational Methods in Partially Ordered Spaces. Springer, New York

(2003)
24. Du, W-S: A note on cone metric fixed point theory and its equivalence. Nonlinear Anal., Theory Methods Appl. 72(5),

2259-2261 (2010)
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