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Abstract
We consider a new type of monotone nonexpansive mappings in an ordered Banach
space X with partial order �. This new class of nonlinear mappings properly contains
nonexpansive, firmly-nonexpansive and Suzuki-type generalized nonexpansive
mappings and partially extends α-nonexpansive mappings. We obtain some
existence theorems and weak and strong convergence theorems for the Mann
iteration. Some useful examples are presented to illustrate the facts.
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1 Introduction
Throughout this paper, (X,‖ · ‖) denotes a real Banach space, N the set of natural numbers
and R the set of real numbers. Let K be a subset of X and T : K → K be a self-mapping.
A point z ∈ X is said to be a fixed point of T if T(z) = z. The mapping T : K → K is said
to be nonexpansive if ‖T(x) – T(y)‖ ≤ ‖x – y‖ for all x, y ∈ K and quasinonexpansive [] if
‖T(x) – y‖ ≤ ‖x – y‖ for all x ∈ K and y ∈ F(T), where F(T) is the set of fixed points of T .

The study of the existence of fixed points of nonexpansive mappings was initiated in
 by Browder [], Göhde [] and Kirk [] independently. Indeed, Browder [] and
Göhde [] obtained an existence theorem for a nonexpansive mapping on a uniformly
convex Banach space, while Kirk [] obtained the same result in a reflexive Banach space
using the normal structure property (see also [–]).

A number of extensions and generalizations of nonexpansive mappings have been con-
sidered by many mathematicians in recent years. In , Suzuki [] introduced an inter-
esting generalization of nonexpansive mappings and obtained some existence and conver-
gence results.

Definition . ([]) A mapping T : K → K is said to satisfy condition (C) if for all x, y ∈ K



∥
∥x – T(x)

∥
∥ ≤ ‖x – y‖ implies

∥
∥T(x) – T(y)

∥
∥ ≤ ‖x – y‖.

The mapping satisfying condition (C) is also known as a Suzuki-type generalized non-
expansive mapping.
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Theorem . ([]) Let K be a nonempty convex subset of a Banach space X and T : K → K
be a mapping satisfying condition (C). Assume also that either of the following holds:

• K is compact;
• K is weakly compact, and X has the Opial property.

Then T has a fixed point.

Recently, Aoyama and Kohsaka [] introduced a new class of nonexpansive mappings,
namely α-nonexpansive mappings, and obtained a fixed point theorem for such mappings.

Definition . ([]) Let K be a nonempty subset of a Banach space X. A mapping T : K →
K is said to be α-nonexpansive if for all x, y ∈ K and α < 

∥
∥T(x) – T(y)

∥
∥

 ≤ α
∥
∥T(x) – y

∥
∥

 + α
∥
∥x – T(y)

∥
∥

 + ( – α)‖x – y‖.

Remark . In [], Ariza-Ruiz et al. showed that the concept of α-nonexpansive mapping
is trivial for α < .

Theorem . ([]) Let K be a nonempty closed convex subset of a uniformly convex Banach
space X and T : K → K be an α-nonexpansive mapping. Then F(T) is nonempty if and only
if there exists x ∈ K such that {Tn(x)} is bounded.

Remark . It is interesting to note that nonexpansive mappings are continuous on their
domains, but Suzuki-type generalized nonexpansive mappings and α-nonexpansive map-
pings need not be continuous (see [], Example , and Example . below).

On the other hand, fixed point theory in partially ordered metric spaces has been ini-
tiated by Ran and Reurings [] for finding applications to matrix equations. Nieto and
López [] extended their result for nondecreasing mappings and presented an application
to differential equations. Recently Song et al. [] extended the notion of α-nonexpansive
mapping to monotone α-nonexpansive mapping in ordered Banach spaces and obtained
some existence and convergence theorem for the Mann iteration (see also [, ] and the
references therein).

Motivated by the works of Suzuki [], Aoyama and Kohsaka [], Bin Dehaish and Khamsi
[], Song et al. [, ] and others, we obtain some existence and convergence results in
ordered Banach spaces for a wider class of nonexpansive mappings considered in [].
Particularly, in Section , some auxiliary results are presented. In Section , we obtain
some existence theorems in ordered Banach spaces. In Section , we establish some weak
and strong convergence theorems for the Mann iteration. Some illustrative examples are
also presented. Our results complement, extend and generalize a number of existence and
convergence theorems including Theorems ., . and certain results in [, ]. Proof
techniques used herein are slightly different from [, , , ].

2 Preliminaries
Let X be an ordered Banach space with the norm ‖ · ‖ and the partial order �.

Definition . A subset C of a real Banach space X is said to be a closed convex cone if
the following assumptions hold:
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• C is nonempty closed and C �= {};
• ax + by ∈ C for x, y ∈ C and a, b ∈R with a, b ≥ ;
• if x ∈ C and –x ∈ C implies x = .

A partial order � in X with respect the closed convex cone C is defined as follows:

x � y (x ≺ y) ⇔ y – x ∈ C (y – x ∈ Ċ)

for all x, y ∈X , where Ċ is an interior of C .
A Banach space X is said to be uniformly convex in every direction (in short, UCED) if

for each ε ∈ (, ] and z ∈X with ‖z‖ = , there exists δ(ε, z) >  such that
∥
∥
∥
∥

x + y


∥
∥
∥
∥

≤  – δ(ε, z)

for all x, y ∈X with ‖x‖ ≤ ,‖y‖ ≤  and ‖x – y‖ ∈ {tz : t ∈ [–, –ε] ∪ [ε, ]}. X is said to be
uniformly convex if X is UCED and

inf
{

δ(ε, z) : ‖z‖ = 
}

> .

The class of uniformly convex spaces is smaller than the class of UCED spaces.
A Banach space X is said to have the Opial property [] if for every weakly convergent

sequence {xn} in X with weak limit z,

lim inf
n→∞ ‖xn – z‖ < lim inf

n→∞ ‖xn – y‖

for all y ∈ X with y �= z. All Hilbert spaces, finite dimensional Banach spaces and �p ( <
p < ∞) have the Opial property. On the other hand, the uniformly convex spaces Lp[, π ]
(p �= ) do not have the Opial property [].

Definition . ([]) Let K be a subset of a normed space X . A mapping T : K → K is
said to satisfy condition (I) if there exists a nondecreasing function f : [,∞) → [,∞)
satisfying f () =  and f (r) >  for all r ∈ (,∞) such that ‖x – T(x)‖ ≥ f (d(x, F(T))) for all
x ∈K, where d(x, F(T)) denotes the distance of x from F(T).

Let K be a nonempty subset of a Banach space X and {xn} be a bounded sequence in X .
For each x ∈X , define:

(i) Asymptotic radius of {xn} at x by r(x, {xn}) := lim supn→∞ ‖xn – x‖.
(ii) Asymptotic radius of {xn} relative to K by r(K, {xn}) := inf{r(x, {xn}) : x ∈K}.

(iii) Asymptotic center of {xn} relative to K by
A(K, {xn}) := {x ∈K : r(x, {xn}) = r(K, {xn})}.

We note that A(K, {xn}) is nonempty. Further, if X is uniformly convex, then A(K, {xn})
has exactly one point [].

Throughout, we will assume that order intervals are closed and convex subsets of an
ordered Banach space (X ,�). We denote these as follows:

[a,→) := {x ∈X ; a � x} and (←, b] := {x ∈X ; x � b}

for any a, b ∈X (cf. []).
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Definition . ([]) Let (X �) be a partially ordered Banach space and T : X → X be a
mapping. The mapping T is said to be monotone if for all x, y ∈X ,

x � y implies T(x) � T(y).

The following iteration process is known as the Mann iteration process []:

⎧

⎨

⎩

x ∈K,

xn+ = ( – βn)xn + βnT(xn), n ∈N,
(.)

where {βn} is a sequence in [, ].

3 Monotone generalized α-nonexpansive mappings
Definition . Let K be a nonempty subset of an ordered Banach space (X ,�). A map-
ping T : K → K will be called a monotone generalized α-nonexpansive mapping if T is
monotone and there exists α ∈ [, ) such that



∥
∥x – T(x)

∥
∥ ≤ ‖x – y‖ implies

∥
∥T(x) – T(y)

∥
∥ ≤ α

∥
∥T(x) – y

∥
∥ + α

∥
∥T(y) – x

∥
∥ + ( – α)‖x – y‖ (.)

for all x, y ∈K with x � y (see [], Definition .).

Now we present some basic properties of generalized α-nonexpansive mappings.

Proposition . Every monotone mapping satisfying condition (C) is a monotone gener-
alized α-nonexpansive mapping but the converse is not true.

When α = , a generalized α-nonexpansive mapping reduces to a mapping satisfying
condition (C). The following example shows that the reverse implication does not hold.

Example . ([]) Let K = [, ] be a subset of R endowed with the usual norm and usual
order. Define T : K →K by

Tx =

⎧

⎨

⎩

, if x �= ,

, if x = .

Then, for x ∈ (, /] and y = ,



∥
∥x – T(x)

∥
∥ ≤ ‖x – y‖ and

∥
∥T(x) – T(y)

∥
∥ =  > ‖x – y‖,

and T does not satisfy condition (C). Again, for x ∈ (, ] and y = ,



∥
∥y – T(y)

∥
∥ ≤ ‖x – y‖ and

∥
∥T(x) – T(y)

∥
∥ > ‖x – y‖,

and T does not satisfy condition (C). However, T is α-nonexpansive with α ≥ 
 and a

generalized α-nonexpansive mapping with α ≥ 
 .
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Example . ([]) Let X = {(, ), (, ), (, ), (, ), (, ), (, )} be a subset of R with
dictionary order. Define a norm ‖ · ‖ on X by ‖(x, x)‖ = |x| + |x|. Then (X,‖ · ‖) is a
Banach space. Define a mapping T : X → X by

T :

(

(, ), (, ), (, ), (, ), (, ), (, )
(, ), (, ), (, ), (, ), (, ), (, )

)

.

We note that for α ≥ 
 ,

∥
∥T(x) – T(y)

∥
∥ ≤ α

∥
∥x – T(y)

∥
∥ + α

∥
∥T(x) – y

∥
∥ + ( – α)‖x – y‖

if (x, y) �= ((, ), (, )). In the case x = (, ) and y = (, ), we have



∥
∥x – T(x)

∥
∥ =



∥
∥y – T(y)

∥
∥ =




>  = ‖x – y‖.

Therefore T is a generalized α-nonexpansive mapping.
However, for x = (, ) and y = (, ),

∥
∥T(x) – T(y)

∥
∥

 =  > α + 

= α + α + ( – α) · 

= α
∥
∥x – T(y)

∥
∥

 + α
∥
∥T(x) – y

∥
∥

 + ( – α)‖x – y‖.

Therefore T is not an α-nonexpansive mapping for any α < . Further, for x = (, ) and
y = (, ),



∥
∥x – T(x)

∥
∥ =  <  = ‖x – y‖ but

∥
∥T(x) – T(y)

∥
∥ =  >  = ‖x – y‖.

Thus T is not a Suzuki-type generalized nonexpansive mapping as well.

Proposition . Let K be a nonempty subset of an ordered Banach space (X ,�) and T :
K →K be a monotone generalized α-nonexpansive mapping with a fixed point y ∈K with
x � y. Then T is monotone quasinonexpansive.

Proof It may be completed following the proof of Proposition  []. �

Lemma . LetK be a nonempty subset of an ordered Banach space (X ,�) and T : K →K
be a generalized α-nonexpansive mapping. Then F(T) is closed. Moreover, if E is strictly
convex and K is convex, then F(T) is also convex.

Proof It may be completed following the proof of Lemma  []. �

The following lemmas will be useful to prove our main results, which are modeled on
the pattern of [].

Lemma . LetK be a nonempty subset of an ordered Banach space (X ,�) and T : K →K
be a generalized α-nonexpansive mapping. Then, for each x, y ∈K with x � y:
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(i) ‖T(x) – T(x)‖ ≤ ‖x – T(x)‖;
(ii) Either 

‖x – T(x)‖ ≤ ‖x – y‖ or 
‖T(x) – T(x)‖ ≤ ‖T(x) – y‖;

(iii) Either ‖T(x) – T(y)‖ ≤ α‖T(x) – y‖ + α‖x – T(y)‖ + ( – α)‖x – y‖ or
‖T(x) – T(y)‖ ≤ α‖T(x) – T(y)‖ + α‖T(x) – y‖ + ( – α)‖T(x) – y‖.

Proof It may be completed following the proof of [], Lemma . �

Lemma . LetK be a nonempty subset of an ordered Banach space (X ,�) and T : K →K
be a generalized α-nonexpansive mapping. Then, for all x, y ∈K with x � y,

∥
∥x – T(y)

∥
∥ ≤ ( + α)

( – α)
∥
∥x – T(x)

∥
∥ + ‖x – y‖.

Proof From Lemma ., we have for all x, y ∈K either

∥
∥T(x) – T(y)

∥
∥ ≤ α

∥
∥T(x) – y

∥
∥ + α

∥
∥x – T(y)

∥
∥ + ( – α)‖x – y‖

or

∥
∥T(x) – T(y)

∥
∥ ≤ α

∥
∥T(x) – T(y)

∥
∥ + α

∥
∥T(x) – y

∥
∥ + ( – α)

∥
∥T(x) – y

∥
∥.

In the first case, we have

∥
∥x – T(y)

∥
∥ ≤ ∥

∥x – T(x)
∥
∥ +

∥
∥T(x) – T(y)

∥
∥

≤ ∥
∥x – T(x)

∥
∥ + α

∥
∥T(x) – y

∥
∥ + α

∥
∥T(y) – x

∥
∥ + ( – α)‖x – y‖

≤ ∥
∥x – T(x)

∥
∥ + α

∥
∥T(x) – x

∥
∥ + α‖x – y‖ + α

∥
∥T(y) – x

∥
∥

+ ( – α)‖x – y‖.

This implies that

∥
∥x – T(y)

∥
∥ ≤ ( + α)

( – α)
∥
∥T(x) – x

∥
∥ + ‖x – y‖.

In the other case, we have

∥
∥x – T(y)

∥
∥ ≤ ∥

∥x – T(x)
∥
∥ +

∥
∥T(x) – T(x)

∥
∥ +

∥
∥T(x) – T(y)

∥
∥

≤ 
∥
∥x – T(x)

∥
∥ + α

∥
∥T(x) – T(y)

∥
∥ + α

∥
∥T(x) – y

∥
∥

+ ( – α)
∥
∥T(x) – y

∥
∥

≤ 
∥
∥x – T(x)

∥
∥ + α

∥
∥T(x) – x

∥
∥ + α

∥
∥T(y) – x

∥
∥

+ α
∥
∥T(x) – T(x)

∥
∥ + α

∥
∥T(x) – y

∥
∥ + ( – α)

∥
∥T(x) – y

∥
∥

≤ ( + α)
∥
∥x – T(x)

∥
∥ + α

∥
∥T(y) – x

∥
∥ + α

∥
∥x – T(x)

∥
∥

+ ( – α)
∥
∥T(x) – y

∥
∥

≤ ( + α)
∥
∥x – T(x)

∥
∥ + α

∥
∥T(y) – x

∥
∥ + α

∥
∥x – T(x)

∥
∥

+ ( – α)
∥
∥T(x) – x

∥
∥ + ( – α)‖x – y‖.
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This implies

∥
∥x – T(y)

∥
∥ ≤ ( + α)

( – α)
∥
∥x – T(x)

∥
∥ + ‖x – y‖.

Therefore in both the cases we get the desired result. �

4 Existence results
In this section, we present some existence theorems for monotone generalized α-
nonexpansive mappings.

Theorem . Let K be a nonempty closed convex subset of a uniformly convex ordered
Banach spaces(X ,�). Let T : K → K be a monotone generalized α-nonexpansive map-
ping. Then F(T) �= ∅ if and only if {Tn(x)} is a bounded sequence for some x ∈ K, provided
Tn(x) � y for some y ∈K and x � T(x).

Proof Suppose that {Tn(x)} is a bounded sequence for some x ∈ K. Since T is monotone
and x � T(x), we get T(x) � T(x). Continuing in this way, we get

T(x) � T(x) � T(x) � T(x) · · · .

Define xn = Tn(x) for all n ∈ N. Then the asymptotic center of {xn} with respect to K is
A(K, {xn}) = {z} such that xn � z for all n ∈N, such z is unique. Now we claim that

‖xn+ – xn+‖ ≤ ‖xn – xn+‖.

Since 
‖xn – T(xn)‖ = 

‖xn – xn+‖ ≤ ‖xn – xn+‖, by (.)

‖xn+ – xn+‖ =
∥
∥T(xn) – T(xn+)

∥
∥

≤ α
∥
∥T(xn) – xn+

∥
∥ + α

∥
∥xn – T(xn+)

∥
∥ + ( – α)‖xn – xn+‖

≤ α‖xn – xn+‖ + ( – α)‖xn – xn+‖
≤ α‖xn – xn+‖ + α‖xn+ – xn+‖ + ( – α)‖xn – xn+‖.

This implies that

‖xn+ – xn+‖ ≤ ‖xn – xn+‖. (.)

Now, for all n ∈ N, we claim that either

‖xn – xn+‖ ≤ ‖xn – z‖ or ‖xn+ – xn+‖ ≤ ‖xn+ – z‖.

Arguing by contradiction, we suppose that for some n ∈N

‖xn – z‖ < ‖xn – xn+‖ and ‖xn+ – z‖ < ‖xn+ – xn+‖.
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By the triangle inequality and (.),

‖xn – xn+‖ ≤ ‖xn – z‖ + ‖xn+ – z‖
<



‖xn – xn+‖ +



‖xn+ – xn+‖

≤ 

{‖xn – xn+‖ + ‖xn – xn+‖

}

= ‖xn – xn+‖,

which is a contradiction. Thus, for all n ∈N, either



‖xn – xn+‖ ≤ ‖xn – z‖ or



‖xn+ – xn+‖ ≤ ‖xn+ – z‖.

In the first case, 
‖xn – xn+‖ = 

‖xn – T(xn)‖ ≤ ‖xn – z‖, and by (.) we have

∥
∥T(xn) – T(z)

∥
∥ ≤ α

∥
∥T(xn) – z

∥
∥ + α

∥
∥xn – T(z)

∥
∥ + ( – α)‖xn – z‖.

This implies that

lim sup
n→∞

∥
∥T(xn) – T(z)

∥
∥ ≤ α lim sup

n→∞

∥
∥T(xn) – z

∥
∥ + α lim sup

n→∞

∥
∥xn – T(z)

∥
∥

+ ( – α) lim sup
n→∞

‖xn – z‖.

Thus,

lim sup
n→∞

∥
∥xn – T(z)

∥
∥ ≤ lim sup

n→∞
‖xn – z‖.

Consequently, T(z) ∈ A(K, {xn}), ensuring that T(z) = z. Similarly, in the second case we
can deduce that T(z) = z. Conversely, suppose that F(T) �= ∅. So there exist some w ∈ F(T)
and Tn(w) = w for all n ∈ N. Therefore, {Tn(w)} is a constant sequence and {Tn(w)} is
bounded. This completes the proof. �

Now we present another existence theorem in a UCED ordered Banach space. The fol-
lowing lemma is quite useful in our result.

Lemma . ([]) Let K be a weakly compact nonempty convex subset of a UCED Banach
space X . Let τ : K → [,∞) be a type function. Then there exists a unique minimum point
z ∈K such that

τ (z) = inf
{

τ (x) : x ∈K
}

.

Theorem . Let K be a weakly compact nonempty convex subset of a UCED ordered
Banach space (X ,�). Let T : K →K be a monotone generalized α-nonexpansive mapping.
Then F(T) �= ∅, provided x � T(x).

Proof Since T is monotone and x � T(x), we get T(x) � T(x). Continuing in this way, we
get

T(x) � T(x) � T(x) � T(x) · · ·

Define xn = Tn(x) for all n ∈ N.
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Since K is weakly compact, and by the construction of {xn}, we have

K∞ =
∞
⋂

n=

[xn,→) ∩K =
∞
⋂

n=

{x ∈K; xn � x} �= ∅.

Let x ∈K∞. Then xn � x. Since T is monotone, we have

xn � T(xn) � T(x)

for all n ∈ N. This implies that T(K∞) ⊂ K∞. Let τ : K∞ → [,∞) be a type function
generated by {xn}, that is,

τ (x) = lim sup
n→∞

‖xn – x‖.

From Lemma . there exists a unique element z ∈K∞ such that

τ (z) = inf
{

τ (x); x ∈K∞
}

.

Now, for all n ∈ N, if xn = xn+, then ‖xn – xn+‖ ≤ ‖xn – z‖ for all n ∈ N again if xn ≺ xn+,
then xn ≺ xn+ � z. Thus in both cases we have

‖xn – xn+‖ ≤ ‖xn – z‖

for all n ∈N. Then we have 
‖xn – xn+‖ = 

‖xn – T(xn)‖ ≤ ‖xn – z‖, by (.), we have

∥
∥T(xn) – T(z)

∥
∥ ≤ α

∥
∥T(xn) – z

∥
∥ + α

∥
∥xn – T(z)

∥
∥ + ( – α)‖xn – z‖.

This implies that

lim sup
n→∞

∥
∥T(xn) – T(z)

∥
∥ ≤ α lim sup

n→∞

∥
∥T(xn) – z

∥
∥ + α lim sup

n→∞

∥
∥xn – T(z)

∥
∥

+ ( – α) lim sup
n→∞

‖xn – z‖.

Thus,

lim sup
n→∞

∥
∥xn – T(z)

∥
∥ ≤ lim sup

n→∞
‖xn – z‖.

Since τ (z) = inf{τ (x); x ∈ K∞}, by the uniqueness of a minimum point, it follows that
T(z) = z, that is, z is a fixed point of T . �

Corollary . (Compare Theorem  []) Let K be a weakly compact nonempty convex
subset of a UCED ordered Banach space (X ,�). Let T : K → K be a monotone mapping
satisfying condition (C). Then F(T) �= ∅, provided x � T(x).

Theorem . Let X be a uniformly convex Banach space with the partial order � with
respect to a closed convex cone C . Let T : C → C be a monotone generalized α-nonexpansive
mapping. Suppose that the sequence {Tn()} is bounded with Tn() � y for some y ∈ C .
Then F(T) �= ∅.
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Proof Since x =  � T() = T(x). Then from Theorem . conclusion follows. �

Now onwards Rm
+ := {(r, r, . . . , rm) : rj ≥ , j = , , . . . , m}, where R is the set of real num-

bers.

Theorem . Let T : Rm
+ → R

m
+ be a monotone generalized α-nonexpansive mapping. If

{Tn()} is bounded, then F(T) �= ∅.

Proof Let Tn() = {rn
 , rn

 , . . . , rn
m) ∈R

m
+ . By the boundedness of Tn() there exists r >  such

that rn
j ≤ r for all n ∈ N and j = , , . . . , m. By taking y = (r, r, . . . , r), conclusion follows from

Theorem .. �

Lemma . ([]) Let K be a nonempty closed convex subset of an ordered Banach
space (X ,�). Let T : K → K be a monotone mapping. Fix x ∈ K such that x � T(x)
(or T(x) � x). Consider the Mann iteration sequence {xn} defined by (.). Then we have

xn � xn+ � T(xn)
(

or T(xn) � xn+ � xn
)

(.)

for all n ∈ N. Moreover, {xn} has at most one weak limit point. Hence ifK is weakly compact,
then {xn} is weakly convergent.

Theorem . Let K be a nonempty closed convex subset of a uniformly convex ordered
Banach space (X ,�) and T : K → K be a monotone generalized α-nonexpansive map-
ping. Let {xn} be a sequence defined by (.) is bounded with xn � y for some y ∈ K and
limn→∞ inf‖T(xn) – xn‖ = . Then F(T) �= ∅.

Proof Suppose that {xn} is a bounded sequence and limn→∞ inf‖T(xn) – xn‖ = . Then
there exists a subsequence {xnk } of {xn} such that

lim
k→∞

∥
∥T(xnk ) – xnk

∥
∥ = .

The asymptotic center of {xnk } with respect to K is A(K, {xnk }) = {z} such that xnk � z for
all n ∈N, such z is unique. By the definition of asymptotic radius,

r
(

T(z)
)

= lim sup
k→∞

∥
∥xnk – T(z)

∥
∥.

Using Lemma ., we get

r
(

T(z)
)

= lim sup
k→∞

∥
∥xnk – T(z)

∥
∥

≤ ( + α)
( – α)

lim sup
k→∞

∥
∥T(xnk ) – xnk

∥
∥ + lim sup

k→∞
‖xnk – z‖

= r(z).

The uniqueness of point z implies that T(z) = z. �

Now we give an existence result for the Mann iteration in a UCED ordered Banach space.
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Theorem . Let K be a weakly compact nonempty convex subset of a UCED ordered
Banach space (X ,�) and T : K →K be a monotone generalized α-nonexpansive mapping.
Let {xn} be a sequence defined by (.) and limn→∞ inf‖T(xn) – xn‖ = . Then F(T) �= ∅.

Proof Suppose that {xn} is a bounded sequence and limn→∞ inf‖T(xn) – xn‖ = . Then
there exists a subsequence {xnk } of {xn} such that

lim
k→∞

∥
∥T(xnk ) – xnk

∥
∥ = .

Since K is weakly compact, and by the construction of {xnk }, we have

K∞ =
∞
⋂

k=

[xnk ,→) ∩K =
∞
⋂

k=

{x ∈K; xnk � x} �= ∅.

Let x ∈K∞. Then xnk � x for all k ∈N. Since T is monotone, we have

xnk � T(xnk ) � T(x)

for all k ∈ N. This implies that T(K∞) ⊂ K∞. Let τ : K∞ → [,∞) be a type function
generated by {xnk }, that is,

τ (x) = lim sup
k→∞

‖xnk – x‖.

From Lemma . there exists a unique element z ∈K∞ such that

τ (z) = inf
{

τ (x); x ∈K∞
}

.

By the definition of type function,

τ
(

T(z)
)

= lim sup
k→∞

∥
∥xnk – T(z)

∥
∥.

Using Lemma ., we get

τ
(

T(z)
)

= lim sup
k→∞

∥
∥xnk – T(z)

∥
∥

≤ ( + α)
( – α)

lim sup
k→∞

∥
∥T(xnk ) – xnk

∥
∥ + lim sup

k→∞
‖xnk – z‖

= τ (z).

The uniqueness of a minimum point implies that T(z) = z. �

Theorem . Let X be a uniformly convex Banach space with the partial order �
with respect to a closed convex cone C . Let T : C → C be a monotone generalized alpha-
nonexpansive mapping. Suppose that x =  and the sequence defined by (.) is bounded
with xn � y for some y ∈ C and limn→∞ inf‖T(xn) – xn‖ = . Then F(T) �= ∅.

Proof Since x =  � T() = T(x), and conclusion follows from Theorem .. �
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5 Convergence results
In this section, we present some convergence results for monotone generalized α-
nonexpansive mappings using the Mann iteration process. In the sequel we also need
the following lemma from [].

Lemma . Let r >  be a fixed real number. If X is a uniformly convex Banach space,
then there exists a continuous strictly increasing convex function g : [, +∞) → [, +∞)
with g() =  such that

∥
∥λx + ( – λ)y

∥
∥

 ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)g
(‖x – y‖)

for all x, y ∈ Br() = {u ∈ E : ‖u‖ ≤ r} and λ ∈ [, ].

Theorem . Let K be a nonempty closed convex subset of a uniformly convex ordered
Banach space (X ,�) and T : K →K be a monotone generalized α-nonexpansive mapping.
Assume that there exists x ∈ K such that x � T(x) (or T(x) � x). Suppose that F(T) is
nonempty and x � z for every z ∈ F(T). Let {xn} be defined by (.). Then the following
assertions hold:

() the sequence {xn} is bounded;
() limn→∞ ‖xn – z‖ and limn→∞ d(xn, F(T)) exist, where d(x, F(T)) denotes the distance

from x to F(T);
() lim infn→∞ ‖T(xn) – xn‖ = , when lim supn→∞ βn( – βn) > ;
() limn→∞ ‖T(xn) – xn‖ = , when lim infn→∞ βn( – βn) > .

Proof Suppose that F(T) �= ∅, and let z ∈ F(T). Since x � z, the monotonicity of T implies
T(x) � T(z) = z. By (.), x � T(x) � z. Continuing in this way, we get

xn � xn+ � T(xn) � z.

By (.) and Proposition ., we have

‖xn+ – z‖ =
∥
∥( – βn)xn + βnT(xn) – z

∥
∥

≤ ( – βn)‖xn – z‖ + βn
∥
∥T(xn) – z

∥
∥

≤ ( – βn)‖xn – z‖ + βn‖xn – z‖
= ‖xn – z‖.

Thus the sequence {‖xn – z‖} is nonincreasing and bounded. Thus, limn→∞ ‖xn – z‖ exists.
Hence limn→∞ d(xn, F(T)) exists. By (.), Proposition . and Lemma ., we have

‖xn+ – z‖ =
∥
∥( – βn)xn + βnT(xn) – z

∥
∥



=
∥
∥( – βn)(xn – z) + βn

(

T(xn) – z
)∥
∥



≤ ( – βn)‖xn – z‖ + βn
∥
∥T(xn) – z

∥
∥

 – βn( – βn)g
(∥
∥xn – T(xn)

∥
∥
)

≤ ( – βn)‖xn – z‖ + βn‖xn – z‖ – βn( – βn)g
(∥
∥xn – T(xn)

∥
∥
)

= ‖xn – z‖ – βn( – βn)g
(∥
∥xn – T(xn)

∥
∥
)

.
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Thus we have

βn( – βn)g
(∥
∥xn – T(xn)

∥
∥
) ≤ ‖xn – z‖ – ‖xn+ – z‖.

Letting n → ∞, we get

lim sup
n→∞

βn( – βn)g
(∥
∥xn – T(xn)

∥
∥
)

= . (.)

By assumption in (), we have

lim sup
n→∞

βn( – βn) > 

since

(

lim sup
n→∞

βn( – βn)
)(

lim inf
n→∞ g

(∥
∥xn – T(xn)

∥
∥
)) ≤

(

lim sup
n→∞

βn( – βn)g
(∥
∥xn – T(xn)

∥
∥
))

.

By (.), we get

lim inf
n→∞ g

(∥
∥xn – T(xn)

∥
∥
)

= ,

and by the property of function g

lim inf
n→∞

∥
∥xn – T(xn)

∥
∥ = .

Further, by assumption in (), we have

lim inf
n→∞ βn( – βn) > 

since

(

lim inf
n→∞ βn( – βn)

)(

lim sup
n→∞

g
(∥
∥xn – T(xn)

∥
∥
)) ≤ lim sup

n→∞
βn( – βn)g

(∥
∥xn – T(xn)

∥
∥
)

.

By (.), we get

lim sup
n→∞

g
(∥
∥xn – T(xn)

∥
∥
)

= .

Therefore

lim
n→∞ g

(∥
∥xn – T(xn)

∥
∥
)

= . �

Theorem . Let (X ,�) be a uniformly convex ordered Banach space with the Opial prop-
erty, and K, T and {xn} are the same as in Theorem .. If F(T) �= ∅ and lim infn→∞ βn( –
βn) > , then {xn} converges weakly to a fixed point of T , provided F(T) is a totally ordered
set.
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Proof By Theorem ., the sequence {xn} is bounded and limn→∞ ‖T(xn) – xn‖ = . Since
X is uniformly convex, X is reflexive. By the reflexiveness of X , there exists a subsequence
{xnj} of {xn} such that {xnj} converges weakly to some p ∈ K. By using Lemma ., we
have

x � xnj � p (or p � xnj � x) for all j ∈N.

By Lemma ., we have

∥
∥xnj – T(p)

∥
∥ ≤ ( + α)

( – α)
∥
∥xnj – T(xnj )

∥
∥ + ‖xnj – p‖.

This implies

lim inf
j→∞

∥
∥xnj – T(p)

∥
∥ ≤ lim inf

n→∞ ‖xnj – p‖.

By the Opial property, we get T(p) = p. Then p ∈ F(T). Now we show that {xn} con-
verges weakly to the point p. Arguing by contradiction, suppose that {xn} has two sub-
sequences {xnj} and {xnk } converging weakly to p and q, respectively. By a similar argu-
ment as for p ∈ F(T), we have q ∈ F(T). By Theorem . limn→∞ ‖xn – z‖ exists for all
z ∈ F(T).

Now, by the Opial property, we have

lim
n→∞‖xn – p‖ = lim

j→∞‖xnj – p‖ < lim
j→∞‖xnj – q‖

= lim
n→∞‖xn – q‖ = lim

k→∞
‖xnk – q‖

< lim
k→∞

‖xnk – p‖ = lim
n→∞‖xn – p‖,

which is a contradiction. Thus {xn} converges weakly to p ∈ F(T). �

Theorem . LetK be a nonempty closed convex subset of an ordered Banach space (X ,�)
and T : K → K be a monotone generalized α-nonexpansive mapping with F(T) �= ∅. Let
{xn} be a sequence defined by (.) with x � z for all z ∈ F(T). Then the sequence {xn} con-
verges strongly to a fixed point of T if and only if lim infn→∞ d(xn, F(T)) = , where d(x, F(T))
denotes the distance from x to F(T), provided F(T) is a totally ordered set.

Proof Necessity is obvious. Suppose that lim infn→∞ d(xn, F(T)) = . From Theorem .,
limn→∞ d(xn, F(T)) exists, so

lim
n→∞ d

(

xn, F(T)
)

= . (.)

In view of (.), let {xnj} be a subsequence of the sequence {xn} such that ‖xnj – zj‖ ≤ 
j

for all j ≥ , where {zj} is a sequence in F(T). By Lemma ., we have

‖xnj+ – zj‖ ≤ ‖xnj – zj‖ ≤ 
j . (.)
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By the triangle inequality and (.), we have

‖zj+ – zj‖ ≤ ‖zj+ – xnj+‖ + ‖xnj+ – zj‖

≤ 
j+ +


j

<


j– .

A standard argument shows that {zj} is a Cauchy sequence in F(T). By Lemma ., F(T)
is closed, so {zj} converges to some z ∈ F(T).

Now, by the triangle inequality, we have

‖xnj – z‖ ≤ ‖xnj – zj‖ + ‖zj – z‖.

Letting j → ∞ implies that {xnj} converges strongly to z. Since by Theorem .,
limn→∞ ‖xn – z‖ exists, the sequence {xn} converges strongly to z. �

Now we present a strong convergence theorem for a mapping satisfying condition (I).

Theorem . Let (X ,�) be a uniformly convex ordered Banach space, and K, T and {xn}
are the same as in Theorem .. Let T satisfy condition (I) with F(T) �= ∅, lim supn→∞ βn( –
βn) > , then {xn} converges strongly to a fixed point of T .

Proof From Theorem ., it follows that

lim inf
n→∞

∥
∥T(xn) – xn

∥
∥ = . (.)

Since T satisfies condition (I), we have

∥
∥xn – T(xn)

∥
∥ ≥ f

(

d
(

xn, F(T)
))

.

From (.) we get

lim inf
n→∞ f

(

d
(

xn, F(T)
))

= .

Since f : [,∞) → [,∞) is a nondecreasing function with f () =  and f (r) >  for all
r ∈ (,∞), we have

lim inf
n→∞ d

(

xn, F(T)
)

= .

Therefore all the assumptions of Theorem . are satisfied, and {xn} converges strongly to
a fixed point of T . �

The following result is a slightly different version of Theorem ..

Theorem . Let (X ,�) be a uniformly convex ordered Banach space, and K, T and {xn}
are the same as in Theorem .. Let T satisfy condition (I) with F(T) �= ∅, lim infn→∞ βn( –
βn) > , then {xn} converges strongly to a fixed point of T .
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