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Abstract
In this paper, we consider a type of split feasibility problem by focusing on the
solution sets of two important problems in the setting of Hilbert spaces that are the
sum of monotone operators and fixed point problems. By assuming the existence of
solutions, we provide a suitable algorithm for finding a solution point. Some
important applications and numerical experiments of the considered problem and
constructed algorithm are also discussed.
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1 Introduction
Many applications of the split feasibility problem (SFP), which was first introduced by
Censor and Elfving [], have appeared in various fields of science and technology, such
as in signal processing, medical image reconstruction and intensity-modulated radiation
therapy; for more information, see [, ] and the references therein. In fact, Censor and
Elfving [] studied SFP in a finite-dimensional space, by considering the problem of finding
a point

x∗ ∈ C such that Ax∗ ∈ Q, (.)

where C and Q are nonempty closed convex subsets of Rn, and A is an n × n matrix. They
proposed the following algorithm: for arbitrary x ∈R

n,

xn+ = A–PQ
(
PA(C)(Axn)

)
, ∀n ∈N,

where A(C) = {y ∈R
n|y = Ax, for some x ∈ C} and PQ, PA(C) denote the metric projections

onto Q and A(C), respectively. It was noticed that the algorithm involves the complicated
computations of matrix inverses, which may lead to an expensive computation. Conse-
quently, Byrne [] suggested a new algorithm, which generates a sequence {xn} by using
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the transpose of the matrix A, instead of the inverse of the matrix A: for arbitrary x ∈R
n,

xn+ = PC
(
xn + γ At(PQ – I)Axn

)
, ∀n ∈ N, (.)

where γ ∈ (, /‖A‖), A is a real m×n matrix, At is the transpose of the considered matrix
A, and PC and PQ denote the metric projections onto C and Q, respectively. Observe that it
is not only a less complicated computation, the algorithm (.) also can be used for solving
the problem (.) when C and Q are belong to different Euclidean spaces. Later on, inspired
by the algorithm (.), Xu [] considered SFP in infinite-dimensional Hilbert spaces: let
H and H be two real Hilbert spaces and L : H → H be a bounded linear operator. Let
C and Q be nonempty closed convex subsets of H and H, respectively. Xu [] proposed
the following algorithm: for a given x ∈ H,

xn+ = PC
(
xn + γ L∗(PQ – I)Lxn

)
, ∀n ∈N, (.)

where γ ∈ (, /‖L‖) and L∗ is the adjoint operator of L. The weak convergence of the
sequence {xn} to a solution of SFP was considered; see also [] for related work.

On the other hand, variational inclusion problems are being used as mathematical pro-
gramming models to study a large number of optimization problems arising in finance,
economics, network, transportation and engineering science. The formal form of a varia-
tional inclusion problem is the problem of finding x∗ ∈ H such that

 ∈ Bx∗, (.)

where B : H → H is a set-valued operator. If B is a maximal monotone operator, the ele-
ments in the solution set of the problem (.) are called the zeros of maximal monotone
operator. This problem was introduced by Martinet [], and later it has been studied by
many authors. It is well known that the popular iteration method that was used for solving
the problem (.) is the following proximal point algorithm: for a given x ∈ H ,

xn+ = JB
λn xn, ∀n ∈N,

where {λn} ⊂ (,∞) and JB
λn = (I +λnB)– is the resolvent of the considered maximal mono-

tone operator B corresponding to λn; see also [–] for more details. Subsequently, in-
spired by the concept of SFP, Byrne et al. [] introduced and studied the following split
null point problem (SNPP): given set-valued mappings B : H → H and B : H → H ,
respectively, and bounded linear operators L : H → H, SNPP is the problem of finding a
point x∗ ∈ H such that

 ∈ B
(
x∗) and  ∈ B

(
Lx∗). (.)

They considered the following iterative algorithm: for λ >  and an arbitrary x ∈ H,

xn+ = JB
λ

(
xn – γ L∗(I – JB

λ

)
Lxn

)
, ∀n ∈N,

where L∗ is the adjoint of L, γ ∈ (, /‖L‖), and JB
λ and JB

λ are the resolvent of maximal
monotone operators corresponding to B and B, respectively. They proved, under some
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suitable control conditions, that {xn} converges weakly to a point x∗ in the solution set of
problem (.).

A related topic to the above variational inclusion problem: it is well known that fixed
point theory has been a very powerful and important tool in the study of mathematical
models. Of course, many authors were interested in and studied the approximating of a
fixed point of nonlinear mappings by using iterative methods, and applied the obtained
results to many important problems, such as the equilibrium problem, the null point prob-
lem, the variational inequality problem, optimization problems, etc.; see [–] for ex-
ample and the references therein. In view of SFP and the fixed point problem, Takahashi
et al. [] considered the problem of finding a point x∗ ∈ H such that

 ∈ Bx∗ and Lx∗ ∈ F(T), (.)

where B : H → H is a maximal monotone operator, L : H → H is a bounded linear
operator and T : H → H is a nonexpansive mapping. They considered the following
iterative algorithm: for any x ∈ H,

xn+ = JB
λn

(
I – γnL∗(I – T)L

)
xn, ∀n ∈N, (.)

where {λn} and {γn} satisfy some suitable control conditions, and JB
λn is the resolvent of

a maximal monotone operator B associated to λn, and provided the weak convergence
theorems of algorithm (.) to a point x∗ ∈ B– ∩ L–F(T).

One may note that finding the zeros of maximal monotone operator can be solved via a
fixed point of its resolvent operator. This is because  ∈ Bx∗ if and only if JB

λ x∗ = x∗, when
B : H → H is a maximal monotone operator and λ > . Thus the problem of type (.)
contains problem SCNPP as a special case in some sense.

Now, let us back to consider the variational inclusion problem (.). A type of general-
ization of the problem (.) is to find a point x∗ ∈ H such that

 ∈ Ax∗ + Bx∗, (.)

where A : H → H is a single-valued mapping and B : H → H is a set-valued operator. It is
well known that there are many kinds of applications of the problem (.), such as evolu-
tion equations, complementarity problems, mini-max problems, variational inequalities
and optimization problems etc.; see [–] for example and the references therein. We
will discuss some of them in Section . In the case that B : H → H is a set-valued mono-
tone operator, and A : H → H is a single-valued monotone operator, the elements in the
solution set of the problem (.) are called the zeros of the sum of monotone operators.

In this paper, motivated and inspired by the above literature, we are going to consider
the problem of finding a point x∗ ∈ H such that

 ∈ (A + B)x∗ and Lx∗ ∈ F(T), (.)

when A : H → H is a monotone operator, B : H → H is a maximal monotone operator,
L : H → H is a bounded linear operator and T : H → H is a nonexpansive mapping.
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We will write �A+B
L,T for the solution set of the problem (.), and show that the algorithm

xn+ = JB
λn

(
(I – λnA) – γnL∗(I – T)L

)
xn, ∀n ∈N, (.)

converges weakly to an element in �A+B
L,T . We would like to point out that, in fact, the prob-

lem (.) can be written in the form of the problem (.). Moreover, as in our considera-
tion, B is a maximal monotone operator and A is a continuous and monotone operator, we
know that the operator A + B is a maximal monotone operator (see []), and hence one
may try to find a solution of the problem (.) by using the algorithm (.). However, it was
suggested and discussed that the inverse of I + λ(A + B) may be hard to compute; see []
for example. Consequently, because of this reason, a popular iterative method used for
solving the problem of type (.) is the forward-backward splitting method, which defines
a sequence {xn} by the following algorithm: for any x ∈ H ,

xn+ = JB
λn (I – λnA)xn, ∀n ∈N, (.)

where {λn} is a sequence of positive real numbers, A : H → H and B : H → H are maxi-
mal monotone operators, see Passty []. Of course, our proposed algorithm (.) is also
motivated by (.).

2 Preliminaries
Throughout this paper, we denote by N the set of positive integers, and by R the set of real
numbers. Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖,
respectively. When {xn} is a sequence in H , we denote the weak convergence of {xn} to x
in H by xn ⇀ x.

Let T : H → H be a mapping. We say that T is a Lipschitz mapping if there exists L ≥ 
such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H .

The number L, associated with T , is called a Lipschitz constant. If L = , we say that T is
a nonexpansive mapping, that is,

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H .

We will say that T is firmly nonexpansive if

〈Tx – Ty, x – y〉 ≥ ‖Tx – Ty‖, ∀x, y ∈ H .

Note that T is firmly nonexpansive if and only if T = (I + V )/ for some nonexpansive
mapping V ; see [], Proposition ..

The set of fixed points of T will be denoted by F(T), that is, F(T) = {x ∈ H : Tx = x}. It is
well known that, if T is nonexpansive, then F(T) is closed and convex. Moreover, if T is a
firmly nonexpansive mapping on H into itself with F(T) �= ∅, then we have

〈x – Tx, y – Tx〉 ≤  for all x ∈ H and y ∈ F(T); (.)

see [].



Suwannaprapa et al. Fixed Point Theory and Applications  (2017) 2017:6 Page 5 of 17

A mapping T : H → H is said to be an averaged mapping if it can be written as the
average of the identity I and a nonexpansive mapping, that is,

T = ( – α)I + αS, (.)

where α ∈ (, ) and S : H → H is a nonexpansive mapping; see []. More precisely, when
(.) holds, we say that T is α-averaged. It should be observed that firmly nonexpansive
mappings are 

 -averaged mappings.
Let A : H → H be a single-valued mapping. For a positive real number β , we will say

that A is β-inverse strongly monotone (β-ism) if

〈Ax – Ay, x – y〉 ≥ β‖Ax – Ay‖, ∀x, y ∈ H .

The classes of inverse strongly monotone mapping have been studied by many authors;
see [, , ].

We now collect some important properties, which are needed in this work.

Lemma . ([, ]) We have
(i) The composite of finitely many averaged mappings is averaged. In particular, if Ti is

αi-averaged, where αi ∈ (, ) for i = , , then the composite TT is α-averaged,
where α = α + α – αα.

(ii) If A is β-ism and r ∈ (,β], then T := I – rA is firmly nonexpansive.
(iii) A mapping T : H → H is nonexpansive if and only if I – T is 

 -ism.
(iv) If A is β-ism, then, for γ > , γ A is β

γ
-ism.

(v) T is averaged if and only if the complement I – T is β-ism for some β > 
 . Indeed, for

α ∈ (, ), T is α-averaged if and only if I – T is 
α

-ism.

The following result can be found in [], but here we modify the presentation for show-
ing a finer conclusion of the considered mapping T .

Lemma . ([]) Let T = ( – α)A + αN for some α ∈ (, ). If A is β-averaged and N is
nonexpansive then T is α + ( – α)β-averaged.

Proof Since A is a β-averaged mapping, there is a nonexpansive mapping S such that A =
( – β)I + βS. We see that

T = ( – α)A + αN

= ( – α)
[
( – β)I + βS

]
+ αN

= ( – α)( – β)I + ( – α)βS + αN

= ( – δ)I + δ
[
( – α)βδ–S + αδ–N

]
,

where δ := α + ( – α)β . Note that ( – α)βδ– + αδ– = , then it follows that ( – α)βδ–S +
αδ–N is a nonexpansive mapping. This means that T is a δ-averaged mapping. �
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Let B : H → H be a set-valued mapping. The effective domain of B is denoted by D(B),
that is, D(B) = {x ∈ H : Bx �= ∅}. Recall that B is said to be monotone if

〈x – y, u – v〉 ≥ , ∀x, y ∈ D(B), u ∈ Bx, v ∈ By.

A monotone mapping B is said to be maximal if its graph is not properly contained in the
graph of any other monotone operator. To a maximal monotone operator B : H → H and
r > , its resolvent JB

r is defined by

JB
r := (I + rB)– : H → D(B).

It is well known that, if B is a maximal monotone operator and r is a positive number, then
the resolvent JB

r is single-valued and firmly nonexpansive, and F(JB
r ) = B– ≡ {x ∈ H :

 ∈ Bx}, ∀r > ; see [, , ].
We use the following lemmas for proving the main result.

Lemma . ([]) Let H and H be Hilbert spaces. Let L : H → H be a nonzero bounded
linear operator and T : H → H be a nonexpansive mapping. If B : H → H is a maximal
monotone operator, then

(i) L∗(I – T)L is 
‖L‖ -ism,

(ii) for  < r < 
‖L‖ ,

(iia) I – rL∗(I – T)L is r‖L‖-averaged,
(iib) JB

λ (I – rL∗(I – T)L) is +r‖L‖

 -averaged, for λ > ,
(iii) if r = ‖L‖–, then I – rL∗(I – T)L is nonexpansive.

Lemma . ([]) Let B : H → H be a maximal monotone operator with the resovent
JB
λ = (I + λB)– for λ > . Then we have the following resolvent identity:

JB
λ x = JB

μ

(
μ

λ
x +

(
 –

μ

λ

)
JB
λ x
)

,

for all μ >  and x ∈ H .

Lemma . ([]) Let C be a closed convex subset of a Hilbert space H and let T be a
nonexpansive mapping of C into itself. Then U := I – T is demiclosed, i.e., xn ⇀ x and
Uxn → y imply Ux = y.

Lemma . ([]) Let H be a Hilbert space and let {xn} be a sequence in H such that there
exists a nonempty closed convex subset C ⊂ H satisfying the properties:

(i) for every x∗ ∈ C, limn→∞ ‖xn – x∗‖ exists;
(ii) if a subsequence {xnj} ⊂ {xn} converges weakly to x∗, then x∗ ∈ C.

Then there exists x ∈ C such that xn ⇀ x.

The following fundamental identity is also used in our proof:

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖, (.)

for all x, y ∈ H and λ ∈R; see [].
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3 Main results
We start by considering an equivalence theorem.

Theorem . Let H and H be Hilbert spaces. Let A : H → H be a β-ism, B : H → H

a maximal monotone operator, T : H → H a nonexpansive mapping and L : H → H a
bounded linear operator. If �A+B

L,T �= ∅ then the following are equivalent:
(i) z ∈ �A+B

L,T ,
(ii) z = JB

λ ((I – λA) – γ L∗(I – T)L)z,
(iii)  ∈ L∗(I – T)Lz + (A + B)z,

where λ, γ >  and z ∈ H.

Proof Since �A+B
L,T �= ∅, there exists z ∈ D(B) such that  ∈ (A + B)z and Lz ∈ F(T). Let

us put S = 
 (I + T). It follows that S is a firmly nonexpansive mapping and F(T) = F(S).

Moreover, we have L∗(I – T)L = L∗(I – S)L.
(i) ⇒ (ii) Assume that z ∈ �A+B

L,T . It follows that Lz ∈ F(T) and z ∈ (A + B)–. These
findings imply that L∗(I – T)Lz =  and JB

λ (I – λA)z = z. Thus we have

JB
λ

(
(I – λA) – γ L∗(I – T)L

)
z = JB

λ (I – λA)z = z.

(ii) ⇒ (iii) By (ii) and the above statement, we have z = JB
λ ((I – λA) – γ L∗(I – S)L)z. This

means (I + λB)z � ((I – λA) – γ L∗(I – S)L)z, which implies

–
γ

λ
L∗(I – S)Lz ∈ (A + B)z.

Since A + B is monotone and  ∈ (A + B)z, we obtain

〈
–

γ

λ
L∗(I – S)Lz, z – z

〉
≥ .

Subsequently, we have

〈Lz – SLz, Lz – Lz〉 ≤ . (.)

On the other hand, since S is a firmly nonexpansive mapping and Lz ∈ F(S), in view of
(.) we see that

〈Lz – SLz, Lz – SLz〉 ≤ . (.)

Adding up (.) and (.), we have

‖Lz – SLz‖ = 〈Lz – SLz, Lz – SLz〉 ≤ .

That is, Lz ∈ F(S), and it follows that (I – T)Lz = , which implies L∗(I – T)Lz = . Using
this one, we also see that: (i) reduces to z = JB

λ (I – λA)z, which is equivalent to  ∈ (A + B)z.
Thus we conclude that  ∈ L∗(I – T)Lz + (A + B)z.
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(iii) ⇒ (i) By (iii), we have –L∗(I – T)Lz ∈ (A + B)z, equivalently, –L∗(I – S)Lz ∈ (A + B)z.
By the monotonicity of A + B, we get

〈
–L∗(I – S)Lz, z – z

〉≥ ,

since  ∈ (A + B)z. This implies

〈Lz – SLz, Lz – Lz〉 ≤ . (.)

Adding (.) and (.), we get

‖Lz – SLz‖ = 〈Lz – SLz, Lz – SLz〉 ≤ .

This shows Lz ∈ F(S). Then it follows that z ∈ L–F(T) and L∗(I – T)Lz = . Hence the
assumption  ∈ L∗(I – T)Lz + (A + B)z is reduced to the relation  ∈ (A + B)z, that is,
z ∈ (A + B)–. Consequently, we have z ∈ �A+B

L,T . These results complete the proof. �

Now, in view of Theorem ., we are in a position to present our main algorithm and
show its convergence theorem.

Theorem . Let H and H be Hilbert spaces. Let A : H → H be a β-ism, B : H → H

a maximal monotone operator, T : H → H a nonexpansive mapping and L : H → H a
bounded linear operator. For any x ∈ H, define

xn+ = JB
λn

(
(I – λnA) – γnL∗(I – T)L

)
xn, ∀n ∈N, (.)

where the sequences {λn} and {γn} satisfy the following control conditions:
(i)  < a ≤ λn ≤ b < β

 ,
(ii)  < a ≤ γn ≤ b < 

‖L‖ ,
for some a, b, b ∈R. If �A+B

L,T �= ∅ then {xn} converges weakly to an element in �A+B
L,T .

Proof Set

Tn := JB
λn

(
(I – λnA) – γnL∗(I – T)L

)
, (.)

for each n ∈ N. By Theorem ., we have �A+B
L,T = F(Tn), for all n ∈N.

Note that, for each n ∈N, we have

(I – λnA) – γnL∗(I – T)L =



(I – λnA) +


(
I – γnL∗(I – T)L

)
.

Also, by condition (i) and Lemma .(ii), we know that I – λnA is a firmly nonexpansive
mapping and this implies that I – λnA must be a nonexpansive mapping. On the other
hand, by Lemma .(iia), we know that I – γnL∗(I – T)L is γn‖L‖-averaged. Thus, by
Lemma ., we see that (I – λnA) – γnL∗(I – T)L is +γn‖L‖

 -averaged. Consequently, since
JB
λn is 

 -averaged, by Lemma .(i) we see that Tn is +γn‖L‖

 -averaged. Thus, for each
n ∈N, we can write

Tn = ( – αn)I + αnVn,

where αn := +γn‖L‖

 and Vn is a nonexpansive mapping.
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Subsequently, we also have �A+B
L,T = F(Tn) = F(Vn), for all n ∈ N. Using this fact, for each

x∗ ∈ �A+B
L,T , we see that

∥∥xn+ – x∗∥∥ =
∥∥Tnxn – x∗∥∥

=
∥∥( – αn)xn + αnVnxn – x∗∥∥

=
∥∥( – αn)

(
xn – x∗) + αn

(
Vnxn – x∗)∥∥

= ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥Vnxn – x∗∥∥ – αn( – αn)‖xn – Vnxn‖

≤ ∥∥xn – x∗∥∥ – αn( – αn)‖xn – Vnxn‖, (.)

for each n ∈ N. Since I – Tn = αn(I – Vn), in view of (.) we get

∥
∥xn+ – x∗∥∥ ≤ ∥

∥xn – x∗∥∥ –
 – αn

αn
‖xn – Tnxn‖,

for each n ∈ N. Thus

 – αn

αn
‖xn – Tnxn‖ ≤ ∥

∥xn – x∗∥∥ –
∥
∥xn+ – x∗∥∥, (.)

for each n ∈ N. Since αn = +γn‖L‖

 ∈ ( 
 , ), we see that (.) implies

 ≤ ∥
∥xn – x∗∥∥ –

∥
∥xn+ – x∗∥∥, (.)

for each n ∈ N. Thus, by (.) and (.), we obtain
(a) for each x∗ ∈ �A+B

L,T , limn→∞ ‖xn – x∗‖ exists;
(b)

∑∞
n=( – γn‖L‖)‖xn – Tnxn‖ < ∞.

Consequently, by condition (ii) and (b), we must have
∑∞

n= ‖xn – Tnxn‖ < ∞. It turns out
that

lim
n→∞‖xn – xn+‖ = lim

n→∞‖xn – Tnxn‖ = . (.)

Next, we will denote ωw(xn) for the set of all weak cluster points of {xn}. Let {xnj} be a
subsequence of {xn} and xnj ⇀ x̂, for some x̂ ∈ ωw(xn). Also, we assume that λnj → λ̂ ∈
(, β

 ) and γnj → γ̂ ∈ (, 
‖L‖ ).

Set

T̂ = JB
λ̂

(
(I – λ̂A) – γ̂ L∗(I – T)L

)
.

It follows that T̂ is +γ̂ ‖L‖

 -averaged and F(T̂) = �A+B
L,T .

Consider, for each j ∈N,

‖xnj – T̂xnj‖ ≤ ‖xnj – xnj+‖ + ‖Tnj xnj – T̂xnj‖
≤ ‖xnj – xnj+‖ +

∥∥JB
λnj

zj – JB
λ̂

zj
∥∥

+
∥∥JB

λ̂
zj – T̂xnj

∥∥, (.)
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where zj = ((I –λnj A)–γnj L∗(I –T)L)xnj . Now, the last term in (.) is estimated as follows:

∥∥JB
λ̂

zj – T̂xnj

∥∥ =
∥∥JB

λ̂

(
(I – λnj A) – γnj L

∗(I – T)L
)
xnj – JB

λ̂

(
(I – λ̂A) – γ̂ L∗(I – T)L

)
xnj

∥∥

≤ ∥∥((I – λnj A) – γnj L
∗(I – T)L

)
xnj –

(
(I – λ̂A) – γ̂ L∗(I – T)L

)
xnj

∥∥

≤ ∥
∥(λnj – λ̂)Axnj

∥
∥ +

∥
∥(γnj – γ̂ )L∗(I – T)Lxnj

∥
∥

≤ |λnj – λ̂|‖Axnj‖ + |γnj – γ̂ |∥∥L∗∥∥‖L‖∥∥xnj – x∗∥∥,

for each j ∈N. Thus, it follows that

lim
j→∞

∥∥JB
λ̂

zj – T̂xnj

∥∥ = . (.)

Next, by using Lemma ., we estimate

∥∥JB
λnj

zj – JB
λ̂

zj
∥∥ =

∥∥∥
∥JB

λ̂

(
λ̂

λ nj
zj +

(
 –

λ̂

λ nj

)
JB
λnj

zj

)
– JB

λ̂
zj

∥∥∥
∥

≤
∥∥
∥∥
λ̂

λ nj
zj +

(
 –

λ̂

λ nj

)
JB
λnj

zj – zj

∥∥
∥∥

=
∥∥
∥∥

(
 –

λ̂

λ nj

)
JB
λnj

zj –
(

 –
λ̂

λ nj

)
zj

∥∥
∥∥

=
∥
∥∥∥

(
 –

λ̂

λ nj

)
(
JB
λnj

zj – zj
)
∥
∥∥∥

=
∣
∣∣
∣ –

λ̂

λ nj

∣
∣∣
∣
∥∥JB

λnj
zj – zj

∥∥, (.)

for each j ∈N. This suggests to consider the following computation, for each j ∈ N:

∥∥JB
λnj

zj – zj
∥∥ = ‖Tnj xnj – zj‖

=
∥∥xnj+ – xnj + λnj Axnj + γnj L

∗(I – T)Lxnj

∥∥

≤ ‖xnj+ – xnj‖ + λnj‖Axnj‖ + γnj

∥
∥L∗(I – T)Lxnj

∥
∥

≤ ‖xnj+ – xnj‖ + λnj‖Axnj‖ + γnj

∥∥L∗∥∥‖L‖∥∥xnj – x∗∥∥.

This implies that {‖(JB
λnj

zj – zj)‖} is a bounded sequence. Consequently, in view of (.),
we have

lim
j→∞

∥
∥JB

λnj
zj – JB

λ̂
zj
∥
∥ = . (.)

Substituting (.), (.) and (.) into (.), we get

lim
j→∞‖xnj – T̂xnj‖ = . (.)

Thus, by Lemma ., it follows that x̂ ∈ F(T̂) = �A+B
L,T . This shows ωw(xn) ⊂ �A+B

L,T . Using
this one and (a) we can apply Lemma . to conclude that the sequence {xn} converges
weakly to an element in �A+B

L,T . This completes the proof. �
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Remark .
(i) If A := , the zero operator, then our presented algorithm (.) and algorithm (.)

coincide.
(ii) If H = H and L is the identity operator, then the problem (.) is reduced to the

problem of finding an element of the set (A + B)– ∩ F(T). This type of problem
was also studied and considered by many authors; see [–] for example.

We will discuss more applications of our main Theorem . in the next section.

4 Applications
In this section, we will show some applications of the problem (.) and Theorem ..

4.1 Variational inequality problem
Recall that the normal cone to C at u ∈ C is defined as

NC(u) =
{

z ∈ H : 〈z, y – u〉 ≤ ,∀y ∈ C
}

.

It is well known that NC is a maximal monotone operator. In the case B := NC : H → H

we can verify that the problem (.) is reduced to the problem of finding x∗ ∈ C such that

〈
Ax∗, x – x∗〉≥ , ∀x ∈ C. (.)

We will denote VIP(C, A) for the solution set of the problem (.). Also, in this case, we
also have JB

λ =: PC (the metric projection of H onto C). By the above setting, the problem
(.) is reduced to finding

x∗ ∈ VIP(C, A) such that Lx∗ ∈ F(T). (.)

Here, we should denote by �
A,C
L,T the solution set of the problem (.). Subsequently, by

applying Theorem ., we obtain the following convergence theorem.

Theorem . Let H and H be Hilbert spaces and let C be a nonempty closed convex
subset of H. Let A : H → H be a β-ism, T : H → H be a nonexpansive mapping and
L : H → H be a bounded linear operator. For any x ∈ H, define

xn+ = PC
(
(I – λnA) – γnL∗(I – T)L

)
xn, ∀n ∈N,

where the sequence {λn} and {γn} satisfy the following conditions:
(i)  < a ≤ λn ≤ b < β

 ,
(ii)  < a ≤ γn ≤ b < 

‖L‖ .
If �

A,C
L,T �= ∅ then {xn} converges weakly to an element in �

A,C
L,T .

Remark . If H = H and L is the identity operator, the problem (.) was also consid-
ered by Takahashi and Toyoda in [].
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4.2 Convex minimization problem
We will consider a convex function f : H → R, which is also Fréchet differentiable. Let C
be a given closed convex subset of H . In this case, by setting A := ∇f , the gradient of f , and
B := NC , the problem of finding x∗ ∈ (A + B)– is equivalent to find a point x∗ ∈ C such
that

〈∇f
(
x∗), x – x∗〉≥ , ∀x ∈ C. (.)

Note that (.) is equivalent to the following minimization problem: find x∗ ∈ C such that

x∗ ∈ arg min
x∈C

f (x).

Thus, in this situation, the problem (.) is reduced to the problem of finding

x∗ ∈ arg min
x∈C

f (x) such that Lx∗ ∈ F(T). (.)

We will denote by �
f ,C
L,T the solution set of the problem (.). Then, by applying Theo-

rem ., we obtain the following result.

Theorem . Let H and H be Hilbert spaces and let C be a nonempty closed convex
subset of H. Let f : H → R be convex and Fréchet differentiable, ∇f be α-Lipschitz, T :
H → H be a nonexpansive mapping and L : H → H be a bounded linear operator. For
any x ∈ H, define

xn+ = PC
(
(I – λn∇f ) – γnL∗(I – T)L

)
xn, ∀n ∈N,

where the sequences {λn} and {γn} satisfy the following conditions:
(i)  < a ≤ λn ≤ b < 

α
,

(ii)  < a ≤ γn ≤ b < 
‖L‖ .

If �
f ,C
L,T �= ∅ then {xn} converges weakly to an element in �

f ,C
L,T .

Proof Note that if f : H → R is convex and ∇f : H → H is α-Lipschitz continuous for
α >  then ∇f is 

α
-ism (see []). Thus, the required result can be obtained immediately

from Theorem .. �

Remark . The problem of finding an element in �
f ,C
L,T , as in Theorem ., was studied

by Iiduka [], when L is the identity operator on H.

4.3 Split common fixed point problem
Let V : H → H be a nonexpansive mapping. Then, by Lemma .(iii), we know that A :=
I – V is a 

 -ism. Furthermore, since Ax∗ =  if and only if x∗ ∈ F(V ), we may see that the
problem (.) can be reduced to the problem of finding

x∗ ∈ F(V ) such that Lx∗ ∈ F(T), (.)

where T : H → H and L : H → H. We will denote by �V
L,T the solution set of the prob-

lem (.). This problem is called the split common fixed point problem (SCFP), and was
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studied by many authors; see [–] for example. By applying Theorem ., we can obtain
the following result.

Theorem . Let H and H be Hilbert spaces. Let V : H → H and T : H → H be
nonexpansive mappings and L : H → H a bounded linear operator. For any x ∈ H, define

xn+ = ( – λn)xn + λnVxn – γnL∗(I – T)Lxn, ∀n ∈N, (.)

where the sequence {λn} and {γn} satisfy the following conditions:
(i)  < a ≤ λn ≤ b < 

 ,
(ii)  < a ≤ γn ≤ b < 

‖L‖ .
If �V

L,T �= ∅ then {xn} converges weakly to an element in �V
L,T .

Proof We consider B := , the zero operator. The required result follows from the fact that
the zero operator is monotone and continuous, hence it is a maximal monotone. Moreover,
in this case, we see that JB

λ is the identity operator on H, for each λ > . Thus the algorithm
(.) reduces to (.), by setting A := I – V and B := . �

Remark . The algorithm (.), by considering V := PC and T := PQ, respectively, can
be applied for solving the problem (.), which was considered by Xu []. In fact, by us-
ing Lemma . in [], we can show that {PCxn} converges strongly to an element of the
problem (.).

5 Numerical experiments
In this section, we will show some numerical results and discuss on the possible good
choices of step size parameters λn and γn, those satisfy the control conditions in Theo-
rem ..

Let H = R
 and H = R

 be equipped with the Euclidean norm. Let x̂ :=
( 



) ∈ H be
fixed. We consider an -ism operator PC , where C is the following convex subset of H:

C :=
{

y ∈ H : 〈x̂, y〉 ≤ –
}

.

Next, for each x :=
( x

x

) ∈ H, we will also concern ourselves with the following two
norms:

‖x‖ = |x| + |x| and ‖x‖∞ = max
{|x|, |x|

}
.

Consider a function f : H → R which is defined by

f (x) = ‖x‖, for all x ∈ H.

We know that f is a convex function and its subdifferential, ∂f , is

∂f (x) =
{

z ∈ H : 〈x, z〉 = ‖x‖,‖z‖∞ ≤ 
}

, for all x ∈ H.

Moreover, since f is a convex function, it is well known that ∂f (·) must be a maximal
monotone operator.
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On the other hand, let

x̃ =

⎛

⎜
⎝




–

⎞

⎟
⎠ and x̄ =

⎛

⎜
⎝




–

⎞

⎟
⎠

be two fixed vectors in H. We consider a nonempty convex subset Q ∩ Q of H, where
Q := {x ∈ H : ‖x̃ – x‖ ≤ } and Q := {x ∈ H : 〈x̄, x〉 ≤ }. We notice that PQ PQ is a
nonexpansive single value mapping on H. Furthermore, since Q ∩ Q is a nonempty set,
we also know that F(PQ PQ ) = Q ∩ Q.

Now, let us consider a  ×  matrix

L :=

⎡

⎢⎢
⎣

 














⎤

⎥⎥
⎦ .

We see that L is a bounded linear operator on H into H with ‖L‖ = ..
Based on the above settings, we will present some numerical experiments to show the

efficiency of the constructed algorithm (.). That is, we are going to show that the algo-
rithm (.) converges to a point x∗ ∈ H such that

 ∈ (PC + ∂f )
(
x∗) and Lx∗ ∈ Q ∩ Q. (.)

We will consider the following five cases of the step size parameters λn and γn, with the
initial vectors

( –


)
,
( 



)
and

( 
–

)
in H:

Case . λn = ., γn = ..
Case . λn = .e– + 

n , γn = .e– + 
n .

Case . λn = .e– + 
n , γn = . – 

n .
Case . λn = . – 

n , γn = .e– + 
n .

Case . λn = . – 
n , γn = . – 

n .

Note that the solution set of the problem (.) is
{( x

x–


) ∈ H : 
 ≤ x ≤ 


}

. From Ta-
bles ,  and , we may suggest that the larger step size of the parameters λn should provide

Table 1 Influence of the step size parameters λn and γn for the initial vector (–1, 1) with the 4
decimal places

Case → 1 2 3 4 5

#(Iters) ↓ xIter Errors xIter Errors xIter Errors xIter Errors xIter Errors

50
(
0.4924

0

)
0.0076

(
0.0343
0.5622

)
0.7300

(
0.0343
0.5622

)
0.7300

(
0.4999

0

)
1.0e–04

(
0.4999

0

)
1.0e–04

60
(
0.4966

0

)
0.0034

(
0.0420
0.5505

)
0.7161

(
0.0420
0.5505

)
0.7161

(
0.5000

0

)
0

(
0.5000

0

)
0

120
(
0.5000

0

)
0

(
0.0708
0.5073

)
0.6645

(
0.0708
0.5073

)
0.6645

(
0.5000

0

)
0

(
0.5000

0

)
0

250,000
(
0.5000

0

)
0

(
0.4999

0

)
1.0e–04

(
0.4999

0

)
1.0e–04

(
0.5000

0

)
0

(
0.5000

0

)
0

275,000
(
0.5000

0

)
0

(
0.5000

0

)
0

(
0.5000

0

)
0

(
0.5000

0

)
0

(
0.5000

0

)
0
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Table 2 Influence of the step size parameters λn and γn for the initial vector (0, 0) with the 4
decimal places

Case → 1 2 3 4 5

#(Iters) ↓ xIter Errors xIter Errors xIter Errors xIter Errors xIter Errors

50
(
0.4901

0

)
0.0099

(
0.0654

0

)
0.4346

(
0.0654

0

)
0.4346

(
0.4998

0

)
2.0e–04

(
0.4998

0

)
2.0e–04

60
(
0.4956

0

)
0.0044

(
0.0680

0

)
0.4320

(
0.0680

0

)
0.4320

(
0.5000

0

)
0

(
0.5000

0

)
0

120
(
0.5000

0

)
0

(
0.0779

0

)
0.4221

(
0.0779

0

)
0.4221

(
0.5000

0

)
0

(
0.5000

0

)
0

275,000
(
0.5000

0

)
0

(
0.4999

0

)
1.0e–04

(
0.4999

0

)
1.0e–04

(
0.5000

0

)
0

(
0.5000

0

)
0

300,000
(
0.5000

0

)
0

(
0.5000

0

)
0

(
0.5000

0

)
0

(
0.5000

0

)
0

(
0.5000

0

)
0

Table 3 Influence of the step size parameters λn and γn for the initial vector (1, –1) with the 4
decimal places

Case → 1 2 3 4 5

#(Iters) ↓ xIter Errors xIter Errors xIter Errors xIter Errors xIter Errors

50
(
0.6997
0.1331

)
0

(
0.8477
0.0097

)
0.1848

(
0.8477
0.0097

)
0.1848

(
0.6758
0.1172

)
0

(
0.6758
0.1172

)
0

60
(
0.6997
0.1331

)
0

(
0.8457
0.0126

)
0.1813

(
0.8457
0.0126

)
0.1813

(
0.6758
0.1172

)
0

(
0.6758
0.1172

)
0

120
(
0.6997
0.1331

)
0

(
0.8384
0.0236

)
0.1681

(
0.8384
0.0236

)
0.1681

(
0.6758
0.1172

)
0

(
0.6758
0.1172

)
0

50,000
(
0.6997
0.1331

)
0

(
0.7455
0.1629

)
6.3791e–04

(
0.7455
0.1629

)
6.3791e–04

(
0.6758
0.1172

)
0

(
0.6758
0.1172

)
0

75,000
(
0.6997
0.1331

)
0

(
0.7452
0.1634

)
0

(
0.7452
0.1634

)
0

(
0.6758
0.1172

)
0

(
0.6758
0.1172

)
0

a faster convergence, while the step size parameters γn seem to have less impact on the
speed of algorithm (.) to a solution of the problem (.).

Remark . Note that, for each x :=
( x

x

) ∈ H and λ > , we have

J∂f
λ (x) =

{(
u

u

)

∈ H : ui = xi –
(
min

{|xi|,λ
})

sgn(xi), for i = , 

}

,

where f is defined as above and sgn is for the signum function. On the other hand, one
can see that, trying to compute JPC +∂f

λ will be harder.

6 Concluding remarks
This paper can be considered as a refinement of work by Takahashi et al. [], by providing
an algorithm for finding a solution of the main problem (.), which is a generalization of
the problem that was considered in []. Some sufficient conditions for the weak conver-
gence of such introduced algorithm are given. Also, in order to show the significance of
the considered problem, some important applications are discussed. Since in this paper we
are considering and focusing on the weak convergent type of the constructive algorithm,
it should be a natural direction for the next research to study the algorithms and sufficient
conditions and focus on strong convergence type.



Suwannaprapa et al. Fixed Point Theory and Applications  (2017) 2017:6 Page 16 of 17

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand. 2Department of
Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.

Acknowledgements
The authors are thankful to the referees and the editor for their constructive comments and suggestions which have
been useful for the improvement of the paper. This research has been funded by Naresuan University and the Thailand
Research Fund under the project RTA5780007.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 December 2016 Accepted: 20 April 2017

References
1. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 8,

221-239 (1994)
2. Byrne, C: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441-453

(2002)
3. Censor, Y, Bortfeld, T, Martin, B, Trofimov, A: A unified approach for inversion problems in intensity-modulated

radiation therapy. Phys. Med. Biol. 51, 2353-2365 (2006)
4. Xu, HK: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26,

Article ID 105018 (2010)
5. Masad, E, Reich, S: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex

Anal. 8, 367-371 (2007)
6. Martinet, B: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Opér. 3,

154-158 (1970)
7. Bruck, RE, Reich, S: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math.

3, 459-470 (1977)
8. Eckstein, J, Bertsckas, DP: On the Douglas Rachford splitting method and the proximal point algorithm for maximal

monotone operators. Math. Program. 55, 293-318 (1992)
9. Marino, G, Xu, HK: Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 3, 791-808

(2004)
10. Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002)
11. Yao, Y, Noor, MA: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217,

46-55 (2008)
12. Byrne, C, Censor, Y, Gibali, A, Reich, S: Weak and strong convergence of algorithms for the split common null point

problem. J. Nonlinear Convex Anal. 13, 759-775 (2012)
13. Cegielski, A: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Math., vol. 2057. Springer,

Heidelberg (2012)
14. Rockafellar, RT: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877-898 (1976)
15. Zhang, L, Hao, Y: Fixed point methods for solving solutions of a generalized equilibrium problem. J. Nonlinear Sci.

Appl. 9, 149-159 (2016)
16. Takahashi, W, Xu, HK, Yao, JC: Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-Valued

Var. Anal. 23, 205-221 (2015)
17. Boikanyo, OA: The viscosity approximation forward-backward splitting method for zeros of the sum of monotone

operators. Abstr. Appl. Anal. 2016, Article ID 2371857 (2016)
18. Moudafi, A, Thera, M: Finding a zero of the sum of two maximal monotone operators. J. Optim. Theory Appl. 94(2),

425-448 (1997)
19. Qin, X, Cho, SY, Wang, L: A regularization method for treating zero points of the sum of two monotone operators.

Fixed Point Theory Appl. 2014, Article ID 75 (2014)
20. Tseng, P: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim.

38, 431-446 (2000)
21. Rockafellar, RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970)
22. Passty, GB: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72,

383-390 (1979)
23. Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984)
24. Baillon, JB, Bruck, RE, Reich, S: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach

spaces. Houst. J. Math. 4, 1-9 (1978)
25. Kassay, G, Reich, S, Sabach, S: Iterative methods for solving systems of variational inequalities in reflexive Banach

spaces. SIAM J. Optim. 21, 1319-1344 (2011)
26. Xu, HK: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 150, 360-378 (2011)
27. Byrne, C: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse

Probl. 20, 103-120 (2004)
28. Takahashi, W: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)



Suwannaprapa et al. Fixed Point Theory and Applications  (2017) 2017:6 Page 17 of 17

29. Barbu, V: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing,
Leiden (1976)

30. Takahashi, W: Nonlinear Functional Analysis: Fixed Point Theory and Its Applications. Yokohama Publishers,
Yokohama (2000)

31. Li, D, Zhao, J: Approximation of solutions of quasi-variational inclusion and fixed points of nonexpansive mappings.
J. Nonlinear Sci. Appl. 9, 152-159 (2016)

32. Takahashi, S, Takahashi, W, Toyoda, M: Strong convergence theorems for maximal monotone operators with
nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27-41 (2010)

33. Yao, Z, Cho, SY, Kang, SM, Zhu, LJ: Approximating iterations for nonexpansive and maximal monotone operators.
Abstr. Appl. Anal. 2015, Article ID 451320 (2015)

34. Zhang, S, Lee, JHW, Chan, CK: Algorithms of common solutions to quasi variational inclusion and fixed point
problems. Appl. Math. Mech. 29(5), 571-581 (2008)

35. Takahashi, W, Toyoda, M: Weak convergence theorems for nonexpansive mappings and monotone mappings.
J. Optim. Theory Appl. 118(2), 417-428 (2003)

36. Baillon, JB, Haddad, G: Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Isr. J. Math.
26(2), 137-150 (1977)

37. Iiduka, H: Fixed point optimization algorithm and its application to network bandwidth allocation. J. Comput. Appl.
Math. 236, 1733-1742 (2012)

38. Cui, H, Wang, F: Iterative methods for the split common fixed point problem in Hilbert spaces. Fixed Point Theory
Appl. 2014, Article ID 78 (2014)

39. Moudafi, A: A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal.,
Theory Methods Appl. 74, 4083-4087 (2011)

40. Shimizu, T, Takahashi, W: Strong convergence to common fixed points of families of nonexpansive mappings. J. Math.
Anal. Appl. 211, 71-83 (1997)

41. Zhao, J, He, S: Strong convergence of the viscosity approximation process for the split common fixed-point problem
of quasi-nonexpansive mappings. J. Appl. Math. 2012, Article ID 438023 (2012)


	Weak convergence theorems for split feasibility problems on zeros of the sum of monotone operators and ﬁxed point sets in Hilbert spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Applications
	Variational inequality problem
	Convex minimization problem
	Split common ﬁxed point problem

	Numerical experiments
	Concluding remarks
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	Publisher's Note
	References


