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Abstract
Recently, Wardowski (Fixed Point Theory Appl. 2012:94, 2012) introduced a new
concept of F-contraction and proved a fixed point theorem which generalizes the
Banach contraction principle. Following this direction of research, in this paper, we
present some new fixed point results for F-expanding mappings, especially on a
complete G-metric space.
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1 Introduction
Let (X, d) be a metric space. A mapping T : X → X is said to be expanding if

∀x,y∈X d(Tx, Ty) ≥ λd(x, y), where λ > . ()

The condition λ >  is important, the function T : R →R defined by Tx = x + ex satisfies
the condition |Tx – Ty| ≥ |x – y| for all x, y ∈R, and T has no fixed point.

For an expanding map, the following result is well known.

Theorem . Let (X, d) be a complete metric space, and let T : X → X be surjective and
expanding. Then T is bijective and has a unique fixed point.

It follows from the Banach contraction principle and the following very simple observa-
tion.

Lemma . If T : X → X is surjective, then there exists a mapping T∗ : X → X such that
T ◦ T∗ is the identity map on X.

Proof For any point x ∈ X, let yx ∈ X be any point such that Tyx = x. Let T∗x = yx for all
x ∈ X. Then (T ◦ T∗)(x) = T(T∗x) = Tyx = x for all x ∈ X. �

In the present paper, we introduce a new type of expanding mappings.

Definition . Let F be the family of all function F : (, +∞) →R such that

(F) F is strictly increasing, i.e., for all α,β ∈ (, +∞), if α < β , then F(α) < F(β);
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(F) for each sequence {αn} ⊂ (, +∞), the following holds:

lim
n→∞αn =  if and only if lim

n→∞ F(αn) = –∞;

(F) there exists k ∈ (, ) such that limα→+ αkF(α) = .

Definition . Let (X, d) be a metric space. A mapping T : X → X is called F-expanding
if there exist F ∈F and t >  such that for all x, y ∈ X,

d(x, y) >  ⇒ F
(
d(Tx, Ty)

) ≥ F
(
d(x, y)

)
+ t. ()

When we consider in () the different types of the mapping F ∈ F , then we obtain a
variety of expanding mappings.

Example . Let F(α) = lnα. It is clear that F satisfies (F), (F), (F) for any k ∈ (, ).
Each mapping T : X → X satisfying () is an F-expanding map such that

d(Tx, Ty) ≥ etd(x, y) for all x, y ∈ X, d(x, y) > .

It is clear that for x, y ∈ X such that x = y, the inequality d(Tx, Ty) ≥ etd(x, y) also holds.

Example . If F(α) = lnα + α, α > , then F satisfies (F), (F) and (F), and condition
() is of the form

d(Tx, Ty)ed(Tx,Ty)–d(x,y) ≥ etd(x, y) for all x, y ∈ X.

Example . Consider F(α) = ln(α + α), α > . F satisfies (F), (F) and (F), and for
F-expanding T , the following condition holds:

d(Tx, Ty) · d(Tx, Ty) + 
d(x, y) + 

≥ etd(x, y) for all x, y ∈ X.

Example . Consider F(α) = arctan(– 
α

), α > . F satisfies (F), (F) and (F), and for
F-expanding T , the following condition holds:

d(Tx, Ty) ≥
[  + tan t

d(x,y)

 – tan t · d(x, y)

]
d(x, y) for some  < t <

π


.

Here, we have obtained a special type of nonlinear expanding map d(Tx, Ty) ≥ ϕ(d(x,
y))d(x, y).

Other functions belonging to F are, for example, F(α) = ln(αn), n ∈ N, α > ; F(α) =
ln(arctanα), α > .

Now we recall the following.

Definition . Let (X, d) be a metric space. A mapping T : X → X is an F-contraction on
X if there exist F ∈F and t >  such that for all x, y ∈ X,

d(Tx, Ty) >  ⇒ t + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
. ()
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For such mappings, Wardowski [] proved the following theorem.

Theorem . Let (X, d) be a complete metric space and T : X → X be an F-contraction.
Then T has a unique fixed point u ∈ X and for every x ∈ X, a sequence {xn = Tnx} is con-
vergent to u.

2 The result
In this section, we give some fixed point theorem for F-expanding maps.

Theorem . Let (X, d) be a complete metric space and T : X → X be surjective and F-
expanding. Then T has a unique fixed point.

Proof From Lemma ., there exists a mapping T∗ : X → X such that T ◦T∗ is the identity
mapping on X. Let x, y ∈ X be arbitrary points such that x �= y, and let z = T∗x and w = T∗y
(obviously, z �= w). By using () applied to z and w, we have

F
(
d(Tz, Tw)

) ≥ F
(
d(z, w)

)
+ t.

Since Tz = T(T∗x) = x and Tw = T(T∗y) = y, then

F
(
d(x, y)

) ≥ F
(
d
(
T∗x, T∗y

))
+ t,

so T∗ : X → X is an F-contraction. By Theorem ., T∗ has a unique fixed point u ∈ X.
In particular, u is also a fixed point of T because T∗u = u implies that Tu = T(T∗u) = u.

Let us observe that T has at most one fixed point. If u, v ∈ X and Tu = u �= v = Tv, then
we would get the contradiction

F
(
d(Tu, Tv)

) ≥ F
(
d(u, v)

)
+ t,

 = F
(
d(Tu, Tv)

)
– F

(
d(u, v)

) ≥ t > ,

so the fixed point of T is unique. �

Remark . If T is not surjective, the previous result is false. For example, let X = [,∞)
endowed with the metric d(x, y) = |x – y| for all x, y ∈ X, and let T : X → X be defined by
Tx = x +  for all x ∈ X. Then T satisfies the condition d(Tx, Ty) ≥ d(x, y) for all x, y ∈ X
and T is fixed point free.

3 Applications to G-metric spaces
In  Mustafa and Sims (see [] and the references therein) introduced the notion of
a G-metric space and investigated the topology of such spaces. The G-metric space is as
follows.

Definition . Let X be a nonempty set. A function G : X × X × X → [,∞) satisfying
the following axioms:

(G) G(x, y, z) =  if x = y = z,
(G) G(x, x, y) >  for all x, y ∈ X with x �= y,
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(G) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z �= y,
(G) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),
(G) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X ,

is called a G-metric on X, and the pair (X, G) is called a G-metric space.

Recently, Samet et al. [] observed that some fixed point theorems in the context of
G-metric spaces can be concluded from existence results in the setting of quasi-metric
spaces. Especially, the following theorem is a simple consequence of Theorem ..

Theorem . Let (X, G) be a complete G-metric space, and let T : X → X satisfy one of
the following conditions:

(a) T is an F-contraction of type I on a G-metric space X , i.e., there exist F ∈F and
t >  such that for all x, y ∈ X ,

G(Tx, Ty, Ty) >  ⇒ t + F
(
G(Tx, Ty, Ty)

) ≤ F
(
G(x, y, y)

)
; ()

(b) T is an F-contraction of type II on a G-metric space X , i.e., there exist F ∈F and
t >  such that for all x, y, z ∈ X ,

G(Tx, Ty, Tz) >  ⇒ t + F
(
G(Tx, Ty, Tz)

) ≤ F
(
G(x, y, z)

)
. ()

Then T has a unique fixed point u ∈ X, and for any x ∈ X, a sequence {xn = Tnx} is G-
convergent to u.

The previous ideas lead also to analogous fixed point theorems for F-expanding map-
pings on G-metric spaces.

Definition . A mapping T : X → X from a G-metric space (X, G) into itself is said to
be

(a) F-expanding of type I on a G-metric space X if there exist F ∈F and t >  such that
for all x, y ∈ X ,

G(x, y, y) >  ⇒ F
(
G(Tx, Ty, Ty)

) ≥ F
(
G(x, y, y)

)
+ t; ()

(b) F-expanding of type II on a G-metric space X if there exist F ∈F and t >  such
that for all x, y, z ∈ X ,

G(x, y, z) >  ⇒ F
(
G(Tx, Ty, Tz)

) ≥ F
(
G(x, y, z)

)
+ t. ()

Theorem . Let (X, G) be a complete G-metric space and T : X → X be a surjective and
F-expanding mapping of type I (or type II). Then T has a unique fixed point.

Proof Let T be an F-expanding mapping of type I. From Lemma ., there exists a mapping
T∗ : X → X such that T ◦ T∗ is the identity mapping on X. Let x, y ∈ X be arbitrary points
such that x �= y, and let ξ = T∗x and η = T∗y. Obviously, ξ �= η and G(ξ ,η,η) > . By using
() applied to ξ and η, we have

F
(
G(Tξ , Tη, Tη)

) ≥ F
(
G(ξ ,η,η)

)
+ t.
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Since Tξ = T(T∗x) = x and Tη = T(T∗y) = y, then

F
(
G(x, y, y)

) ≥ F
(
G

(
T∗x, T∗y, T∗y

))
+ t,

so T∗ is an F-contraction of type I on a G-metric space (X, G). Theorem . guarantees
that T∗ has a unique fixed point u ∈ X. The point u is also a fixed point of T because
Tu = T(T∗u) = u.

Now, we prove the uniqueness of the fixed point. Assume that v is another fixed point
of T different from u: Tu = u �= v = Tv. This means G(u, v, v) > , so by ()

 < t ≤ F
(
G(Tu, Tv, Tv)

)
– F

(
G(u, v, v)

)
= ,

which is a contradiction, and hence u = v.
For F-expanding mappings of type II, it is necessary to take z = y and apply the proof for

F-expanding mappings of type I. �

As a corollary of Theorem ., taking F ∈F , see Examples ., we obtain the following.

Corollary . ([], Corollary ..) Let (X, G) be a complete G-metric space and T : X → X
be surjective, and let there exist λ >  such that

G(Tx, Ty, Ty) ≥ λG(x, y, y) for all x, y ∈ X,

or

G(Tx, Ty, Tz) ≥ λG(x, y, z) for all x, y, z ∈ X.

Then T has a unique fixed point.

Remark . If T is not surjective, the previous results are false. Consider X = (–∞, –] ∪
[,∞) endowed with the G-metric G(x, y, z) = |x – y| + |x – z| + |y – z| for all x, y, z ∈ X
and the mapping T : X → X defined by Tx = –x. Then G(Tx, Ty, Tz) ≥ G(x, y, z) for all
x, y, z ∈ X and T has no fixed point.

Now, we will improve some results contained in the book []. We will use the following
observation: if T : X → X is a surjective mapping, based on each x ∈ X, there exists a
sequence {xn} such that Txn+ = xn for all n ≥ . Generally, a sequence {xn} verifying the
above condition is not necessarily unique.

Theorem . Let (X, G) be a complete G-metric space, and let T : X → X be a surjective
mapping. Suppose that there exist F ∈F and t >  such that for all x, y ∈ X,

G(x, Tx, y) >  ⇒ F
(
G

(
Tx, Tx, Ty

)) ≥ F
(
G(x, Tx, y)

)
+ t. ()

Then T has a unique fixed point.
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Proof Let x ∈ X be arbitrary. Since T is surjective, there exists x ∈ X such that Tx = x.
By continuing this process, we can find a sequence {xn = Txn+} for all n = , , , . . . . If
there exists n ∈N∪ {} such that xn = xn+, then xn+ is a fixed point of T .

Now assume that xn �= xn+ for all n ≥ . Then G(xn+, xn, xn) >  for all n ≥ , and from
() with x = xn+ and y = xn, we have, for all n ≥ ,

F
(
G(xn, xn–, xn–)

)
= F

(
G

(
Txn+, Txn+, Txn

))

≥ F
(
G(xn+, Txn+, xn)

)
+ t = F

(
G(xn+, xn, xn)

)
+ t,

and hence

t + F
(
G(xn+, xn, xn)

) ≤ F
(
G(xn, xn–, xn–)

)
. ()

Using (), the following holds for every n ≥ :

F
(
G(xn+, xn, xn)

) ≤ F
(
G(xn, xn–, xn–)

)
– t

≤ F
(
G(xn–, xn–, xn–)

)
– t ≤ · · · ≤ F

(
G(x, x, x)

)
– nt. ()

From () we obtain

lim
n→∞ F

(
G(xn+, xn, xn)

)
= –∞,

which together with (F) gives

lim
n→∞ G(xn+, xn, xn) = . ()

From (F) there exists k ∈ (, ) such that

lim
n→∞

[
G(xn+, xn, xn)

]kF
(
G(xn+, xn, xn)

)
= . ()

By (), the following holds for all n ≥ :

[
G(xn+, xn, xn)

]kF
(
G(xn+, xn, xn)

)
–

[
G(xn+, xn, xn)

]kF
(
G(x, x, x)

)

≤ [
G(xn+, xn, xn)

]k(F
(
G(x, x, x)

)
– nt

)

–
[
G(xn+, xn, xn)

]kF
(
G(x, x, x)

)
= –

[
G(xn+, xn, xn)

]k · nt ≤ . ()

Letting n → ∞ in () and using (), (), we obtain

lim
n→∞

[
G(xn+, xn, xn)

]k · n = . ()

Now, let us observe that from () there exists n ≥  such that

[
G(xn+, xn, xn)

]k · n ≤  for all n ≥ n.
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Consequently, we have

G(xn+, xn, xn) ≤ 
n/k for all n ≥ n.

Since the series
∑∞

i=


i/k converges, for any ε > , there exists n ≥  such that
∑∞

i=n


i/k < ε. In order to show that {xn} is a Cauchy sequence, we consider m > n >
max{n, n}. From [], Lemma ..(), we get

G(xm, xn, xn) ≤
m–∑

j=n

G(xj+, xj, xj) ≤
∞∑

j=n

G(xj+, xj, xj)

≤
∞∑

j=n


j/k ≤

∞∑

j=n


j/k < ε.

Therefore by [], Lemma .. and axiom (G), {xn} is a Cauchy in a G-metric space (X, G).
From the completeness of (X, G), there exists u ∈ X such that {xn} → u. As T is surjective,
there exists w ∈ X such that u = Tw. From () with x = xn+ and y = w, we have, for all n ≥ ,

F
(
G(xn, xn–, u)

)
= F

(
G

(
Txn+, Txn+, Tw

))

≥ F
(
G(xn+, Txn+, w)

)
+ t = F

(
G(xn+, xn, w)

)
+ t,

and hence

F
(
G(xn, xn–, u)

)
> F

(
G(xn+, xn, w)

)
. ()

By (F) from (), we have

G(xn, xn–, u) > G(xn+, xn, w) for all n ≥ . ()

Using the fact that the function G is continuous on each variable ([], Theorem ..),
taking the limit as n → ∞ in the above inequality, we get

G(u, u, w) = lim
n→∞ G(xn, xn–, u) = ,

that is, u = w. Then u is a fixed point of T because u = Tw = Tu.
To prove uniqueness, suppose that u, v ∈ X are two fixed points. If Tu = u �= v = Tv, then

G(u, u, v) > . So, by (),

F
(
G(u, u, v)

)
= F

(
G

(
Tu, Tu, Tv

))

≥ F
(
G(u, Tu, v)

)
+ t = F

(
G(u, u, v)

)
+ t,

which is a contradiction, because t > . Hence, u = v. �

Taking F ∈F , see Example ., we obtain the following.
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Corollary . ([], Theorem ..) Let (X, G) be a complete G-metric space and T : X → X
be a surjective mapping. Suppose that there exists λ >  such that

G
(
Tx, Tx, Ty

) ≥ λG(x, Tx, y) for all x, y ∈ X.

Then T has a unique fixed point.

Next result does not guarantee the uniqueness of the fixed point.

Theorem . Let (X, G) be a complete G-metric space, and let T : X → X be a surjective
mapping. Suppose that there exist F ∈F and t >  such that for all x, y ∈ X,

G
(
x, Tx, Tx

)
>  ⇒ F

(
G

(
Tx, Ty, Ty

)) ≥ F
(
G

(
x, Tx, Tx

))
+ t. ()

Then T has a fixed point.

Proof Let x ∈ X be arbitrary. Since T is surjective, there exists x ∈ X such that x = Tx.
By continuing this process, we can find a sequence {xn = Txn+} for all n ≥ . If there exists
n ≥  such that xn = xn+, then xn+ is a fixed point of T .

Now, assume that xn �= xn+ for all n ≥ . From () with x = xn+ and y = xn, we have
G(xn+, Txn+, Txn+) = G(xn+, xn, xn–) >  and

F
(
G(xn, xn–, xn–)

)
= F

(
G

(
Txn+, Txn, Txn

))

≥ F
(
G

(
xn+, Txn+, Txn+

))
+ t = F

(
G(xn+, xn, xn–)

)
+ t,

and hence

F
(
G(xn+, xn, xn–)

) ≤ F
(
G(xn, xn–, xn–)

)
– t

≤ F
(
G(xn–, xn–, xn–)

)
– t

≤ · · · ≤ F
(
G(x, x, x)

)
– (n – )t. ()

From (), we obtain

lim
n→∞ F

(
G(xn+, xn, xn–)

)
= –∞,

which together with (F) gives

lim
n→∞ G(xn+, xn, xn–) = .

Mimicking the proof of Theorem ., we obtain

lim
n→∞

[
G(xn+, xn, xn–)

]k · (n – ) = ;

and consequently, there exists n ≥  such that

G(xn+, xn, xn–) ≤ 
(n – )/k for all n > n.
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Since the series
∑∞

i=


i/k converges, for any ε > , there exists n ≥  such that
∑∞

i=n


i/k < ε. In order to show that {xn} is a Cauchy sequence, we consider m > n >
max{n, n}. From [], Lemma ..() and axioms (G), (G), we get

G(xm, xn, xn) ≤
m–∑

j=n

G(xj+, xj, xj) ≤
∞∑

j=n

G(xj+, xj, xj)

≤
∞∑

j=n

G(xj+, xj, xj–) ≤
∞∑

j=n


j/k ≤

∞∑

j=n


j/k < ε.

Therefore, by [], Lemma .., {xn} is a Cauchy in a G-metric space (X, G). From the
completeness of (X, G), there exists u ∈ X such that {xn} → u. As T is surjective, there
exists w ∈ X such that u = Tw. From () with x = w and y = xn+, we have

F
(
G(u, xn, xn–)

)
= F

(
G

(
Tw, Txn+, Txn+

)) ≥ F
(
G

(
w, Tw, Tw

))
+ t,

so

F
(
G

(
w, Tw, Tw

)) ≤ F
(
G(u, xn, xn–)

)
– t < F

(
G(u, xn, xn–)

)
.

Using (F), we have

G
(
w, Tw, Tw

)
< G(u, xn, xn–) for all n ≥ .

Using the fact that the function G is continuous on each variable ([], Theorem ..),
taking the limit as n → ∞ in the above inequality, we get

G
(
w, Tw, Tw

)
= lim

n→∞ G(u, xn, xn–) = ,

that is, w = Tw = Tw. Hence, u = Tu. �

Taking F ∈F , see Examples ., we obtain the following.

Corollary . ([], Theorem ..) Let (X, G) be a complete G-metric space and T : X →
X be a surjective mapping. Suppose that there exists λ >  such that

G
(
Tx, Ty, Ty

) ≥ λG
(
x, Tx, Tx

)
for all x, y ∈ X.

Then T has, at least, a fixed point.
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