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Abstract
In this paper we give some applications to integral equations as well as homotopy
theory via fixed point theorems in partially ordered complete Sb-metric spaces by
using generalized contractive conditions. We also furnish an example which supports
our main result.
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1 Introduction
Banach contraction principle in metric spaces is one of the most important results in fixed
theory and nonlinear analysis in general. Since , when Stefan Banach [] formulated
the concept of contraction and posted a famous theorem, scientists around the world have
published new results related to the generalization of a metric space or with contractive
mappings (see [–]). Banach contraction principle is considered to be the initial result
of the study of fixed point theory in metric spaces.

In the year , Bakhtin introduced the concept of b-metric spaces as a generalization
of metric spaces []. Later several authors proved so many results on b-metric spaces (see
[–]). Mustafa and Sims defined the concept of a generalized metric space which is
called a G-metric space []. Sedghi, Shobe and Aliouche gave the notion of an S-metric
space and proved some fixed point theorems for a self-mapping on a complete S-metric
space []. Aghajani, Abbas and Roshan presented a new type of metric which is called
Gb-metric and studied some properties of this metric [].

Recently Sedghi et al. [] defined Sb-metric spaces using the concept of S-metric
spaces [].

The aim of this paper is to prove some unique fixed point theorems for generalized
contractive conditions in complete Sb-metric spaces. Also, we give applications to integral
equations as well as homotopy theory. Throughout this paper R, R+ and N denote the sets
of all real numbers, non-negative real numbers and positive integers, respectively.

First we recall some definitions, lemmas and examples.

2 Preliminaries
Definition . ([]) Let X be a non-empty set. An S-metric on X is a function S : X →
[, +∞) that satisfies the following conditions for each x, y, z, a ∈ X:

(S):  < S(x, y, z) for all x, y, z ∈ X with x �= y �= z �= x,
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(S): S(x, y, z) =  if and only if x = y = z,
(S): S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X .

Then the pair (X, S) is called an S-metric space.

Definition . ([]) Let X be a non-empty set and b ≥  be a given real number. Suppose
that a mapping Sb : X → [,∞) is a function satisfying the following properties:

(Sb)  < Sb(x, y, z) for all x, y, z ∈ X with x �= y �= z �= x,
(Sb) Sb(x, y, z) =  if and only if x = y = z,
(Sb) Sb(x, y, z) ≤ b(Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)) for all x, y, z, a ∈ X .

Then the function Sb is called an Sb-metric on X and the pair (X, Sb) is called an Sb-metric
space.

Remark . ([]) It should be noted that the class of Sb-metric spaces is effectively larger
than that of S-metric spaces. Indeed each S-metric space is an Sb-metric space with b = .

The following example shows that an Sb-metric on X need not be an S-metric on X.

Example . ([]) Let (X, S) be an S-metric space and S∗(x, y, z) = S(x, y, z)p, where p > 
is a real number. Note that S∗ is an Sb-metric with b = (p–). Also, (X, S∗) is not necessarily
an S-metric space.

Definition . ([]) Let (X, Sb) be an Sb-metric space. Then, for x ∈ X, r > , we define
the open ball BSb (x, r) and the closed ball BSb [x, r] with center x and radius r as follows,
respectively:

BSb (x, r) =
{

y ∈ X : Sb(y, y, x) < r
}

,

BSb [x, r] =
{

y ∈ X : Sb(y, y, x) ≤ r
}

.

Lemma . ([]) In an Sb-metric space, we have

Sb(x, x, y) ≤ bSb(y, y, x)

and

Sb(y, y, x) ≤ bSb(x, x, y).

Lemma . ([]) In an Sb-metric space, we have

Sb(x, x, z) ≤ bSb(x, x, y) + bSb(y, y, z).

Definition . ([]) If (X, Sb) is an Sb-metric space, a sequence {xn} in X is said to be:
() Sb-Cauchy sequence if, for each ε > , there exists n ∈N such that

Sb(xn, xn, xm) < ε for each m, n ≥ n.
() Sb-convergent to a point x ∈ X if, for each ε > , there exists a positive integer n

such that Sb(xn, xn, x) < ε or Sb(x, x, xn) < ε for all n ≥ n, and we denote
limn→∞ xn = x.
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Definition . ([]) An Sb-metric space (X, Sb) is called complete if every Sb-Cauchy
sequence is Sb-convergent in X.

Lemma . ([]) If (X, Sb) is an Sb-metric space with b ≥ , and suppose that {xn} is
Sb-convergent to x, then we have

(i)


b
Sb(y, x, x) ≤ lim

n→∞ inf Sb(y, y, xn) ≤ lim
n→∞ sup Sb(y, y, xn) ≤ bSb(y, y, x)

and

(ii)


b Sb(x, x, y) ≤ lim
n→∞ inf Sb(xn, xn, y) ≤ lim

n→∞ sup Sb(xn, xn, y) ≤ bSb(x, x, y)

for all y ∈ X.
In particular, if x = y, then we have limn→∞ Sb(xn, xn, y) = .

Now we prove our main results.

3 Results and discussions
Definition . Let (X, Sb,	) be a partially ordered complete Sb-metric space which is said
to be regular if every two elements of X are comparable,

i.e., if x, y ∈ X ⇒ either x 	 y or y 	 x.

Definition . Let (X, Sb,	) be a partially ordered complete Sb-metric space which is also
regular; let f : X → X be a mapping. We say that f satisfies (ψ ,φ)-contraction if there exist
ψ ,φ : [,∞) → [,∞) such that

(..) f is non-decreasing,
(..) ψ is continuous, monotonically non-decreasing and φ is lower semi-continuous,
(..) ψ(t) =  = φ(t) if and only if t = ,
(..) ψ(bSb(fx, fx, fy)) ≤ ψ(Mi

f (x, y)) – φ(Mi
f (x, y)), ∀x, y ∈ X , x 	 y, i = , ,  and

M
f (x, y) = max

{
Sb(x, x, y), Sb(x, x, fx), Sb(y, y, fy), Sb(x, x, fy), Sb(y, y, fx)

}
,

M
f (x, y) = max

{
Sb(x, x, y), Sb(x, x, fx), Sb(y, y, fy),


b

[
Sb(x, x, fy) + Sb(y, y, fx)

]}
,

M
f (x, y) = max

{
Sb(x, x, y),


b

[
Sb(x, x, fx) + Sb(y, y, fy)

]
,


b

[
Sb(x, x, fy) + Sb(y, y, fx)

]}
.

Definition . Suppose that (X,	) is a partially ordered set and f is a mapping of X into
itself. We say that f is non-decreasing if for every x, y ∈ X,

x 	 y implies that fx 	 fy. ()

Theorem . Let (X, Sb,	) be an ordered complete Sb metric space, which is also regular,
and let f : X → X satisfy (ψ ,φ)-contraction with i = . If there exists x ∈ X with x 	 fx,
then f has a unique fixed point in X.
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Proof Since f is a mapping from X into X, there exists a sequence {xn} in X such that

xn+ = fxn, n = , , , , . . . .

Case (i): If xn = xn+, then xn is a fixed point of f .
Case (ii): Suppose xn �= xn+ ∀n.
Since x 	 fx = x and f is non-decreasing, it follows that

x 	 fx 	 f x 	 f x 	 · · · 	 f nx 	 f n+x 	 · · · .

Now

ψ
(
bSb

(
fx, fx, f x

))
= ψ

(
bSb(fx, fx, fx)

)

≤ ψ
(
M

f (x, x)
)

– φ
(
M

f (x, x)
)
,

where

M
f (x, x) = max

{
Sb(x, x, x), Sb(x, x, fx), Sb(x, x, fx)

Sb(x, x, f x), Sb(fx, fx, fx)

}

= max
{

Sb(x, x, fx), Sb
(
fx, fx, f x

)
, Sb

(
x, x, f x

)}
.

Therefore

ψ
(
bSb

(
fx, fx, f x

))

≤ ψ
(
max

{
Sb(x, x, fx), Sb

(
fx, fx, f x

)
, Sb

(
x, x, f x

)})

– φ
(
max

{
Sb(x, x, fx), Sb

(
fx, fx, f x

)
, Sb

(
x, x, f x

)})

≤ ψ
(
max

{
Sb(x, x, fx), Sb

(
fx, fx, f x

)
, Sb

(
x, x, f x

)})
.

By the definition of ψ , we have that

Sb
(
fx, fx, f x

) ≤ max

⎧
⎪⎨

⎪⎩


b Sb(x, x, fx)


b Sb(fx, fx, f x)


b Sb(x, x, f x)

⎫
⎪⎬

⎪⎭
. ()

But


b Sb

(
x, x, f x

) ≤ 
b

[
bSb(x, x, fx) + bSb

(
fx, fx, f x

)]

≤ max

{


b Sb(x, x, fx),


b Sb
(
fx, fx, f x

)}
.

From () we have that

Sb
(
fx, fx, f x

) ≤ max

{


b Sb(x, x, fx),


b Sb
(
fx, fx, f x

)}
.
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If 
b Sb(fx, fx, f x) is maximum, we get a contradiction. Hence

Sb
(
fx, fx, f x

) ≤ 
b Sb(x, x, fx). ()

Also

ψ
(
bSb

(
f x, f x, f x

))
= ψ

(
bSb(fx, fx, fx)

)

≤ ψ
(
M

f (x, x)
)

– φ
(
M

f (x, x)
)
,

where

M
f (x, x) = max

{
Sb(fx, fx, f x), Sb(fx, fx, f x), Sb(f x, f x, f x)

Sb(fx, fx, f x), Sb(f x, f x, f x)

}

= max
{

Sb
(
fx, fx, f x

)
, Sb

(
f x, f x, f x

)
, Sb

(
fx, fx, f x

)}
.

Therefore

ψ
(
bSb

(
f x, f x, f x

))

≤ ψ

(

max

{
Sb(fx, fx, f x), Sb(f x, f x, f x)

Sb(fx, fx, f x)

})

– φ

(

max

{
Sb(fx, fx, f x), Sb(f x, f x, f x)

Sb(fx, fx, f x)

})

≤ ψ

(

max

{
Sb(fx, fx, f x), Sb(f x, f x, f x)

Sb(fx, fx, f x)

})

.

By the definition of ψ , we have that

Sb
(
f x, f x, f x

) ≤ max

⎧
⎪⎨

⎪⎩


b Sb(fx, fx, f x)


b Sb(f x, f x, f x)


b Sb(fx, fx, f x)

⎫
⎪⎬

⎪⎭
. ()

But


b Sb

(
fx, fx, f x

)

≤ 
b

[
bSb

(
fx, fx, f x

)
+ bSb

(
f x, f x, f x

)]

≤ max

{


b Sb
(
fx, fx, f x

)
,


b Sb

(
f x, f x, f x

)}
.

From () we have that

Sb
(
f x, f x, f x

) ≤ max

{


b Sb
(
fx, fx, f x

)
,


b Sb

(
f x, f x, f x

)}
.
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If 
b Sb(f x, f x, f x) is maximum, we get a contradiction. Hence

Sb
(
f x, f x, f x

) ≤ 
b Sb

(
fx, fx, f x

)

≤ 
(b) Sb(x, x, fx).

Continuing this process, we can conclude that

Sb
(
f nx, f nx, f n+x

) ≤ 
(b)n Sb(x, x, fx)

→  as n → ∞.

That is,

lim
n→∞ Sb

(
f nx, f nx, f n+x

)
= . ()

Now we prove that {f nx} is an Sb-Cauchy sequence in (X, Sb). On the contrary, we sup-
pose that {f nx} is not Sb-Cauchy. Then there exist ε >  and monotonically increasing
sequences of natural numbers {mk} and {nk} such that nk > mk .

Sb
(
f mk x, f mk x, f nk x

) ≥ ε ()

and

Sb
(
f mk x, f mk x, f nk –x

)
< ε. ()

From () and (), we have

ε ≤ Sb
(
f mk x, f mk x, f nk x

)

≤ bSb
(
f mk x, f mk x, f mk +x

)

+ bSb
(
f mk +x, f mk +x, f nk x

)
.

So that

bε ≤ bSb
(
f mk x, f mk x, f mk +x

)

+ bSb
(
f mk +x, f mk +x, f nk x

)
.

Letting k → ∞ and applying ψ on both sides, we have that

ψ
(
bε

) ≤ lim
k→∞

ψ
(
bSb

(
f mk +x, f mk +x, f nk x

))

= lim
k→∞

ψ
(
bSb(fxmk , fxmk , fxnk –)

)

≤ lim
k→∞

ψ
(
M

f (xmk , xnk –)
)

– lim
k→∞

φ
(
M

f (xmk , xnk –)
)
, ()
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where

lim
k→∞

M
f (xmk , xnk –)

= lim
k→∞

max

⎧
⎪⎨

⎪⎩

Sb(f mk x, f mk x, f nk –x), Sb(f mk x, f mk x, f mk +x)
Sb(f nk –x, f nk –x, f nk x), Sb(f mk x, f mk x, f nk x)

Sb(f nk –x, f nk –x, f mk +x)

⎫
⎪⎬

⎪⎭

< lim
k→∞

max
{
ε, , ,Sb

(
f mk x, f mk x, f nk x

)
, Sb

(
f nk –x, f nk –x, f mk +x

)}
.

But

lim
k→∞

Sb
(
f mk x, f mk x, f nk x

) ≤ lim
k→∞

[
bSb(f mk x, f mk x, f nk –x)

+ bSb(f nk –x, f nk –x, f nk x)

]

< bε.

Also

lim
k→∞

Sb
(
f nk –x, f nk –x, f mk +x

) ≤ lim
k→∞

[
bSb(f nk –x, f nk –x, f mk x)
+ bSb(f mk x, f mk x, f mk +x)

]

< bε.

Therefore

lim
k→∞

M
f (xmk , xnk –) ≤ max

{
ε, bε, bε

}

= bε.

From (), by the definition of ψ , we have that

bε ≤ bε,

which is a contradiction. Hence {f nx} is an Sb-Cauchy sequence in complete regular Sb-
metric spaces (X, Sb,	). By the completeness of (X, Sb), it follows that the sequence {f nx}
converges to α in (X, Sb). Thus

lim
k→∞

f nx = α = lim
k→∞

f n+x.

Since xn,α ∈ X and X is regular, it follows that either xn 	 α or α 	 xn.
Now we have to prove that α is a fixed point of f .
Suppose f α �= α, by Lemma (.), we have that


b

Sb(f α, f α,α) ≤ lim
n→∞ inf Sb(f α, f α, f n+x).

Now from (..) and applying ψ on both sides, we have that

ψ
(
bSb(f α, f α,α)

) ≤ lim
n→∞ infψ

(
bSb

(
f α, f α, f n+x

))

≤ lim
n→∞ infψ

(
M

f (α, xn)
)

– lim
n→∞ infφ

(
M

f (α, xn)
)
. ()
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Here

lim
n→∞ inf M

f (α, xn) = lim
n→∞ inf max

{
Sb(α,α, xn), Sb(α,α, f α), Sb(xn, xn, fxn)

Sb(α,α, fxn), Sb(xn, xn, f α)

}

≤ lim
n→∞ sup max

{
, Sb(α,α, f α), , , Sb(xn, xn, f α)

}

≤ max
{

Sb(α,α, f α), bSb(α,α, f α)
}

≤ bSb(f α, f α,α).

Hence from () we have that

ψ
(
bSb(f α, f α,α)

) ≤ ψ
(
bSb(α,α, f α)

)
– lim

n→∞ infφ
(
M

f (α, xn)
)

≤ ψ
(
bSb(f α, f α,α)

)
,

which is a contradiction. So that α is a fixed point of f .
Suppose that α∗ is another fixed point of f such that α �= α∗.
Consider

ψ
(
bSb

(
α,α,α∗)) ≤ ψ

(
M

f
(
α,α∗)) – φ

(
M

f
(
α,α∗))

= ψ
(
max

{
Sb

(
α,α,α∗), Sb

(
α∗,α∗,α

)})

– φ
(
max

{
Sb

(
α,α,α∗), Sb

(
α∗,α∗,α

)})

≤ ψ
(
bSb

(
α,α,α∗)),

which is a contradiction.
Hence α is a unique fixed point of f in (X, Sb). �

Example . Let X = [, ] and S : X ×X ×X →R
+ by Sb(x, y, z) = (|y+z–x|+ |y–z|) and

	 by a 	 b ⇐⇒ a ≤ b, then (X, Sb,	) is a complete ordered Sb-metric space with b = .
Define f : X → X by f (x) = x


√

 . Also define ψ ,φ : R+ →R
+ by ψ(t) = t and φ(t) = t

 .

ψ
(
bSb(fx, fx, fy)

)
= b(|fx + fy – fx| + |fx – fy|)

= b
(


∣∣∣∣

x


√


–
y


√



∣∣∣∣

)

=
b

b Sb(x, x, y)

≤ 


M
f (x, y)

≤ ψ
(
M

f (x, y)
)

– φ
(
M

f (x, y)
)
,

where

M
f (x, y) = max

{
Sb(x, x, y), Sb(x, x, fx), Sb(y, y, fy), Sb(x, x, fy), Sb(y, y, fx)

}
.

Hence, all the conditions of Theorem . are satisfied and  is a unique fixed point of f .
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Theorem . Let (X, Sb,	) be an ordered complete Sb metric space, and let f : X → X
satisfy (ψ ,φ)-contraction with i =  or . If there exists x ∈ X with x 	 fx, then f has a
unique fixed point in X.

Proof Follows along similar lines of Theorem . if we take M
f (x, y) or M

f (x, y) in place
of M

f (x, y) in Theorem .. �

Theorem . Let (X, Sb,	) be an ordered complete Sb metric space, and let f : X → X
satisfy

bSb(fx, fx, fy) ≤ Mi
f (x, y) – ϕ

(
Mi

f (x, y)
)
,

where ϕ : [,∞) → [,∞) and i =  or  or . If there exists x ∈ X with x 	 fx, then f
has a unique fixed point in X.

Proof The proof follows from Theorems . and . by taking ψ(t) = t and φ(t) = ϕ(t). �

Theorem . Let (X, Sb,	) be an ordered complete Sb metric space, and let f : X → X
satisfy

Sb(fx, fx, fy) ≤ λMi
f (x, y),

where λ ∈ [, 
b ) and i = , , . If there exists x ∈ X with x 	 fx, then f has a unique

fixed point in X.

3.1 Application to integral equations
In this section, we study the existence of a unique solution to an initial value problem as
an application to Theorem ..

Theorem . Consider the initial value problem

x(t) = T
(
t, x(t)

)
, t ∈ I = [, ], x() = x, ()

where T : I × [ x
 ,∞) → [ x

 ,∞) and x ∈ R. Then there exists a unique solution in
C(I, [ x

 ,∞)) for initial value problem ().

Proof The integral equation corresponding to initial value problem () is

x(t) = x + b
∫ t


T

(
s, x(s)

)
ds.

Let X = C(I, [ x
 ,∞)) and Sb(x, y, z) = (|y+z–x|+ |y–z|)forx, y ∈ X. Define ψ ,φ : [,∞) →

[,∞) by ψ(t) = t, φ(t) = t
 . Define f : X → X by

f (x)(t) =
x

b +
∫ t


T

(
s, x(s)

)
ds. ()
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Now

ψ
(
bSb

(
fx(t), fx(t), fy(t)

))

= b{∣∣fx(t) + fy(t) – fx(t)
∣∣ +

∣∣fx(t) – fy(t)
∣∣}

= b∣∣fx(t) – fy(t)
∣∣

=
b

b

∣∣∣∣x + b
∫ t


T

(
s, x(s)

)
ds – y – b

∫ t


T

(
s, y(s)

)
ds

∣∣∣∣



=



∣∣x(t) – y(t)
∣∣

=



S(x, x, y)

≤ 


M
f (x, y)

= ψ
(
M

f (x, y)
)

– φ
(
M

f (x, y)
)
,

where

M
f (x, y) = max

{
Sb(x, x, y), Sb(x, x, fx), Sb(y, y, fy), Sb(x, x, fy), Sb(y, y, fx)

}
.

It follows from Theorem . that f has a unique fixed point in X. �

3.2 Application to homotopy
In this section, we study the existence of a unique solution to homotopy theory.

Theorem . Let (X, Sb) be a complete Sb-metric space, U be an open subset of X and U
be a closed subset of X such that U ⊆ U . Suppose that H : U × [, ] → X is an operator
such that the following conditions are satisfied:

(i) x �= H(x,λ) for each x ∈ ∂U and λ ∈ [, ] (here ∂U denotes the boundary of U in X),
(ii) ψ(bSb(H(x,λ), H(x,λ), H(y,λ))) ≤ ψ(Sb(x, x, y)) – φ(Sb(x, x, y)) ∀x, y ∈ U and

λ ∈ [, ], where ψ : [,∞) → [,∞) is continuous, non-decreasing and
φ : [,∞) → [,∞) is lower semi-continuous with φ(t) >  for t > ,

(iii) there exists M ≥  such that

Sb
(
H(x,λ), H(x,λ), H(x,μ)

) ≤ M|λ – μ|

for every x ∈ U and λ,μ ∈ [, ].
Then H(·, ) has a fixed point if and only if H(·, ) has a fixed point.

Proof Consider the set

A =
{
λ ∈ [, ] : x = H(x,λ) for some x ∈ U

}
.

Since H(·, ) has a fixed point in U , we have that  ∈ A. So that A is a non-empty set.
We will show that A is both open and closed in [, ], and so, by the connectedness, we

have that A = [, ]. As a result, H(·, ) has a fixed point in U . First we show that A is closed
in [, ]. To see this, let {λn}∞n= ⊆ A with λn → λ ∈ [, ] as n → ∞.



Kishore et al. Fixed Point Theory and Applications  (2017) 2017:10 Page 11 of 14

We must show that λ ∈ A. Since λn ∈ A for n = , , , . . . , there exists xn ∈ U with xn =
H(xn,λn).

Consider

Sb(xn, xn, xn+) = Sb
(
H(xn,λn), H(xn,λn), H(xn+,λn+)

)

≤ bSb
(
H(xn,λn), H(xn,λn), H(xn+,λn)

)

+ bSb
(
H(xn+,λn), H(xn+,λn), H(xn+,λn+)

)

≤ Sb
(
H(xn,λn), H(xn,λn), H(xn+,λn)

)
+ M|λn – λn+|.

Letting n → ∞, we get

lim
n→∞ Sb(xn, xn, xn+) ≤ lim

n→∞ Sb
(
H(xn,λn), H(xn,λn), H(xn+,λn)

)
+ .

Since ψ is continuous and non-decreasing, we obtain

lim
n→∞ψ

(
bSb(xn, xn, xn+)

) ≤ lim
n→∞ψ

(
bSb

(
H(xn,λn), H(xn,λn), H(xn+,λn)

))

≤ lim
n→∞

[
ψ

(
Sb(xn, xn, xn+)

)
– φ

(
Sb(xn, xn, xn+)

)]
.

By the definition of ψ , it follows that

lim
n→∞

(
b – 

)
Sb(xn, xn, xn+) ≤ .

So that

lim
n→∞ Sb(xn, xn, xn+) = . ()

Now we prove that {xn} is an Sb-Cauchy sequence in (X, dp). On the contrary, suppose that
{xn} is not Sb-Cauchy.

There exists ε >  and monotone increasing sequences of natural numbers {mk} and
{nk} such that nk > mk ,

Sb(xmk , xmk , xnk ) ≥ ε ()

and

Sb(xmk , xmk , xnk –) < ε. ()

From () and (), we obtain

ε ≤ Sb(xmk , xmk , xnk )

≤ bSb(xmk , xmk , xmk +) + bSb(xmk +, xmk +, xnk ).

Letting k → ∞ and applying ψ on both sides, we have that

ψ
(
bε

) ≤ lim
n→∞ψ

(
bSb(xmk +, xmk +, xnk )

)
. ()
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But

lim
n→∞ψ

(
bSb(xmk+, xmk +, xnk )

)

= lim
n→∞ψ

(
Sb

(
bH(xmk +,λmk +), H(xmk+,λmk +), H(xnk ,λnk )

))

≤ lim
n→∞

[
ψ

(
Sb(xmk +, xmk +, xnk )

)
– φ

(
Sb(xmk +, xmk+, xnk )

)]
.

It follows that

lim
n→∞

(
b – 

)
Sb(xmk +, xmk +, xnk ) ≤ .

Thus

lim
n→∞ Sb(xmk +, xmk +, xnk ) = .

Hence from () and the definition of ψ , we have that

ε ≤ ,

which is a contradiction.
Hence {xn} is an Sb-Cauchy sequence in (X, Sb) and, by the completeness of (X, Sb), there

exists α ∈ U with

lim
n→∞ xn = α = lim

n→∞ xn+, ()

ψ
(
bSb

(
H(α,λ), H(α,λ),α

)) ≤ lim
n→∞ infψ

(
bSb

(
H(α,λ), H(α,λ), H(xn,λ)

))

≤ lim
n→∞ inf

[
ψ

(
Sb(α,α, xn)

)
– φ

(
Sb(α,α, xn)

)]

= .

It follows that α = H(α,λ).
Thus λ ∈ A. Hence A is closed in [, ].
Let λ ∈ A. Then there exists x ∈ U with x = H(x,λ).
Since U is open, there exists r >  such that BSb (x, r) ⊆ U .
Choose λ ∈ (λ – ε,λ + ε) such that |λ – λ| ≤ 

Mn < ε.
Then, for x ∈ Bp(x, r) = {x ∈ X/Sb(x, x, x) ≤ r + bSb(x, x, x)},

Sb
(
H(x,λ), H(x,λ), x

)

= Sb
(
H(x,λ), H(x,λ), H(x,λ)

)

≤ bSb
(
H(x,λ), H(x,λ), H(x,λ)

)
+ bSb

(
H(x,λ), H(x,λ), H(x,λ)

)

≤ bM|λ – λ| + bSb
(
H(x,λ), H(x,λ), H(x,λ)

)

≤ b
Mn– + bSb

(
H(x,λ), H(x,λ), H(x,λ)

)
.
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Letting n → ∞, we obtain

Sb
(
H(x,λ), H(x,λ), x

) ≤ bSb
(
H(x,λ), H(x,λ), H(x,λ)

)
.

Since ψ is continuous and non-decreasing, we have

ψ
(
Sb

(
H(x,λ), H(x,λ), x

)) ≤ ψ
(
bSb

(
H(x,λ), H(x,λ), x

))

≤ ψ
(
bSb

(
H(x,λ), H(x,λ), H(x,λ)

))

≤ ψ
(
Sb(x, x, x)

)
– φ

(
Sb(x, x, x)

)

≤ ψ
(
Sb(x, x, x)

)
.

Since ψ is non-decreasing, we have

Sb
(
H(x,λ), H(x,λ), x

) ≤ Sb(x, x, x)

≤ r + bSb(x, x, x).

Thus, for each fixed λ ∈ (λ – ε,λ + ε), H(·,λ) : Bp(x, r) → Bp(x, r).
Since also (ii) holds and ψ is continuous and non-decreasing and φ is continuous with

φ(t) >  for t > , then all the conditions of Theorem (.) are satisfied.
Thus we deduce that H(·,λ) has a fixed point in U . But this fixed point must be in U

since (i) holds.
Thus λ ∈ A for any λ ∈ (λ – ε,λ + ε).
Hence (λ – ε,λ + ε) ⊆ A and therefore A is open in [, ].
For the reverse implication, we use the same strategy. �

Corollary . Let (X, p) be a complete partial metric space, U be an open subset of X and
H : U × [, ] → X with the following properties:

() x �= H(x, t) for each x ∈ ∂U and each λ ∈ [, ] (here ∂U denotes the boundary of U in
X),

() there exist x, y ∈ U and λ ∈ [, ], L ∈ [, 
b ) such that

Sb
(
H(x,λ), H(x,λ), H(y,μ)

) ≤ LSb(x, x, y),

() there exists M ≥  such that

Sb
(
H(x,λ), H(x,λ), H(x,μ)

) ≤ M|λ – μ|

for all x ∈ U and λ,μ ∈ [, ].
If H(·, ) has a fixed point in U , then H(·, ) has a fixed point in U .

Proof Proof follows by taking ψ(x) = x,φ(x) = x–Lx with L ∈ [, 
b ) in Theorem (.). �

4 Conclusions
In this paper we conclude some applications to homotopy theory and integral equations
by using fixed point theorems in partially ordered Sb-metric spaces.
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