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Abstract
A dislocated cone metric space over Banach algebra is introduced as a generalisation
of a cone metric space over Banach algebra as well as a dislocated metric space. Fixed
point theorems for Perov-type α-quasi contraction mapping, Kannan-type
contraction as well as Chatterjee-type contraction mappings are proved in a
dislocated cone metric space over Banach algebra. Proper examples are provided to
establish the validity of our claims.
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1 Introduction
Generalising the concept of cone metric space, Liu and Xu in [] introduced a cone metric
space over Banach algebra (in short CMS-BA) and proved contraction principles in such a
space. They replaced the usual real contraction constant with a vector constant and scalar
multiplication with vector multiplication in their results and also furnished proper ex-
amples to show that their results were different from those in a cone metric space and a
metric space. While studying the applications of topology in logic programming seman-
tics, Hitzler and Seda [] introduced a dislocated metric space as a generalisation of a
metric space and discussed the associated topologies. Later George and Khan introduced
a dislocated fuzzy metric space [], and then various fixed point results were proved in
dislocated spaces. For some details, refer to []. On the other hand, Perov [] generalised
the Banach contraction principle by replacing the contractive factor with a matrix con-
vergent to zero. Cvetkovic and Rakocevic [] introduced a Perov-type quasi-contractive
mapping replacing contractive factor with bounded linear operator with spectral radius
less than one and obtained some interesting fixed point results in the setup of cone metric
spaces.

In this work we introduce the concept of dislocated cone metric space over Banach alge-
bra (in short dCMS-BA) as a generalisation of CMS-BA as well as a dislocated metric space
and prove fixed point theorems for a Perov-type α-quasi contraction mapping in dCMS-
BA and CMS-BA. Simple examples are given to illustrate the validity and superiority of
our results.
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2 Preliminaries
A linear space A over K ∈ {R,C} is an algebra if for each ordered pair of elements x, y ∈A,
a unique product xy ∈A is defined such that for all x, y, z ∈A and scalar α:

(i) (xy)z = x(yz);
(iia) x(y + z) = xy + xz;
(iib) (x + y)z = xz + yz;
(iii) α(xy) = (αx)y = x(αy).

A Banach algebra is a Banach space A over K ∈ {R,C} such that, for all x, y ∈A, ‖xy‖ ≤
‖x‖‖y‖.

For a given cone P ⊂A and x, y ∈A, we say that x � y if and only if y – x ∈ P. Note that �
is a partial order relation defined on A. For more details on the basic concepts of Banach
algebra, solid cone, unit element e, zero element θ , invertible elements in Banach algebra
etc., the reader may refer to [, ].

In what follows A will always denote a Banach algebra, P a solid cone in A and e the unit
element of A.

Definition . A sequence pn in a solid cone P of a Banach space is a c-sequence if, for
each c � θ , there exists n ∈N such that pn � c for all n ≥ n.

Lemma . ([]) For x ∈A, limn→∞ ‖xn‖ 
n exists and the spectral radius r(x) satisfies

r(x) = lim
n→∞

∥
∥xn∥∥


n = inf

∥
∥xn∥∥


n .

If r(x) < |λ|, then λe – x is invertible in A; moreover,

(λe – x)– =
∞

∑

n=

xn

λn+ ,

where λ is a complex constant.

Lemma . ([]) Let x ∈A. If the spectral radius r(x) of x is less than , i.e.

r(x) = lim
n→∞

∥
∥xn∥∥


n = inf

n≥

∥
∥xn∥∥


n < , (.)

then (e – x) is invertible. Actually,

(e – x)– =
∞

∑

i=

xi. (.)

Lemma . ([]) Let a, b ∈A. If a commutes with b, then

r(a + b) ≤ r(a) + r(b), r(ab) ≤ r(a)r(b).

Lemma . ([]) Let E be a Banach space.
(i) If a, b, c ∈ E and a � b � c, then a � c.

(ii) If θ � a � c for each c � θ , then a = θ .
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Lemma . ([]) Let {un} be a sequence in A with {un} → θ (n → ∞). Then {un} is a
c-sequence.

Lemma . ([]) Let {un} be a c-sequence in P. If β ∈ P is an arbitrarily given vector, then
{βun} is a c-sequence.

Lemma . ([]) Let α ∈A and r(α) < , then {αn} is a c-sequence.

Remark . For more on c-sequences, see [, ].

Definition . Let X be any nonempty set and T : X → X and α : X × X → [,∞) be
mappings. Then

(i) T is an α-admissible mapping iff α(x, y) ≥  implies α(Tx, Ty) ≥ , x, y ∈ X .
(ii) T is an α-dominated mapping iff α(x, y) ≥  implies α(x, Tx) ≥ , x, y ∈ X .

3 Main results
In this section first we introduce the definition of a dislocated cone metric space over
Banach algebra (in short dCMS-BA) and furnish examples to show that this concept is
more general than that of CMS-BA. We then define convergence and Cauchy sequence in
a dCMS-BA and then prove fixed point results in this space.

Definition . Let χ be a nonempty set and dlc : χ ×χ →A be such that for all x, y, z ∈ χ ,
(dCM) θ � dlc(x, y) and dlc(x, y) = θ imply x = y;
(dCM) dlc(x, y) = dlc(y, x);
(dCM) dlc(x, y) � dlc(x, z) + dlc(z, y).

Then dlc is called a dislocated cone metric on χ and (χ , dlc) is called a dislocated cone
metric space over Banach algebra (in short dCbMS-BA).

Note that every metric space and CMS-BA is a dCMS-BA, but the converse is not nec-
essarily true. Inspired by [, , ], we furnish the following examples which will establish
our claim.

Example . Let A = {a = (ai,j)× : ai,j ∈ R,  ≤ i, j ≤ }, ‖a‖ =
∑

≤i,j≤ |ai,j|, P = {a ∈ A :
ai,j ≥ ,  ≤ i, j ≤ } be a cone in A. Let χ = R+ ∪ {}. Let dlc : χ × χ →A be given by

dlc(x, y) =

⎛

⎜
⎝

x + y x + y x + y
x + y x + y x + y
x + y x + y x + y

⎞

⎟
⎠ .

Then (χ , dlc) is a dCMS-BA over A but not a CMS-BA over Banach algebra A.

Example . Let χ = R and let A = CR (χ ). For α = (f , g) and β = (u, v) in A, we define
α.β = (f .u, g.v) and ‖α‖ = max(‖f ‖,‖g‖), where ‖f ‖ = supx∈χ |f (x)|. Then A is a Banach
algebra with unit e = (, ), zero element θ = (, ) and P = {(f , g) ∈A : f (t) ≥ , g(t) ≥ , t ∈
χ} is a non-normal cone in A. Consider dlc : χ × χ →A given by

dlc(x, y)(t) =
(|x – y|( + t) + |x|(t) + |y|(t), |x – y|( + t)).

Clearly (χ , dlc) is a dCMS-BA over A but not a CMS-BA over Banach algebra A.
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For any a ∈ χ , the open sphere with centre a and radius λ > θ is given by

Bλ(a) =
{

b ∈ χ : dlc(a, b) < λ
}

.

Let U = {Y ⊆ χ : ∀x ∈ Y ,∃r > θ such that Br(x) ⊆ Z}. Then U defines the dislocated cone
metric topology for the dCMS-BA (χ , dlc).

Definition . Let (χ , dlc) be a dCMS-BA over A, p ∈ χ and {pn} be a sequence in χ .
(i) {pn} converges to p if, for each c ∈A with θ � c, there exists n ∈N such that

dlc(pn, p) � c for all n ≥ n. We write it as Limn→∞ pn = p.
(ii) {pn} is a Cauchy sequence if and only if for each c ∈A with θ � c, there exists

n ∈N such that dlc(pn, pm) � c for all n, m ≥ n.
(iii) (χ , dlc) is a complete dCMS if and only if every Cauchy sequence in (χ , dlc) is

convergent.

Proposition . Let (χ , dlc) be a dCMS-BA over A, P be a soloid cone and {pn} be a se-
quence in χ . If {pn} converges to p ∈ χ , then

(i) dlc(pn, p) is a c-sequence;
(ii) dlc(pn, pn+r) is a c-sequence.

Proof Follows from Definitions .,. and .(i). �

In [] Samet et al. introduced the concept of α-admissible mappings and proved fixed
point theorems for alpha-psi contractive-type mappings, which paved the way for proving
new and existing results in fixed point theory. As in [] and others, we give the following
definitions.

Definition . Let (χ , dlc) be a dCMS-BA, T : X → X and α : X × X → [,∞) be map-
pings. Then

(i) T is an α-admissible mapping iff α(x, y) ≥  implies α(Tx, Ty) ≥ , x, y ∈ X .
(ii) T is an α-dominated mapping iff α(x, y) ≥  implies α(x, Tx) ≥ , x, y ∈ X .

(iii) α is a triangular function iff α(x, y) ≥ , α(y, z) ≥  imply α(x, z) ≥ , x, y, z ∈ X .
(iv) (χ , dlc) is α-regular iff for any sequence {xp} in χ with α(xp, xp+) ≥  and xp → x∗

as p → ∞, then α(xp, x∗) ≥ 

However, for proving the uniqueness of the fixed point, different hypotheses were used
by different authors. In the sequel Popescu [] considered the following condition:

(K) For all x �= y ∈ χ , there exists w ∈ χ such that α(x, w) ≥ , α(y, w) ≥  and α(w, Tw) ≥ .

We now introduce the following definitions.

Definition . Let (χ , dlc) be a dCMS-BA, T : X → X and α : X × X → [,∞) be map-
pings. Then

(i) T is an α-identical function iff α(Tx, Tx) ≥  for all x ∈ χ .
(ii) T is weak semi α-admissible iff α(x, y) ≥  implies α(x, Ty) ≥  for any x, y ∈ χ .

(iii) T satisfies condition (G) iff α(x, Tx) ≥  and α(y, Ty) ≥  imply α(x, y) ≥  or
α(Tx, Ty) ≥  for any x, y ∈ χ .
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(iv) T satisfies condition (G′) iff for all x �= y ∈ χ with α(x, Tx) ≥  and α(y, Ty) ≥ , there
exists w ∈ χ such that α(x, w) ≥ , α(y, w) ≥ , α(w, w) ≥  and α(w, Tw) ≥ .

Example . Let χ = [,∞], Tx = x for all x ∈ X. Let

α(x, y) =

⎧

⎨

⎩

 if x, y ∈ [, ] or x = y,

 otherwise.

Then T is an α-identical function and T satisfies conditions (G) and (G′), but T does not
satisfy condition (K) and T is not α-dominated.

Example . Let χ = [–n, n] for some n ∈N, Tx = –x for all x ∈ χ . Let

α(x, y) =

⎧

⎨

⎩

 if x, y ∈ [–n, ] or x, y ∈ (, n],

 otherwise.

Then T is an α-identical function and T satisfies conditions (G) and (G′), but T is not
α-dominated and does not satisfy condition (K).

Example . Let A = [–n, ], B = [, n] and χ = A ∪ B for some n ∈N. Let Tx = –x for all
x ∈ χ and

α(x, y) =

⎧

⎨

⎩

 if (x, y) ∈ {A × B, B × A},
 otherwise.

Then α is not triangular and T is not α-identical, but T is weak semi α-admissible and
α-dominated. T does not satisfy condition (G) but satisfies condition (G′).

Example . Let A = [–n, ), B = (, n] and χ = A ∪ {} ∪ B for some n ∈ N. Let Tx = x

n
for all x ∈ χ and

α(x, y) =

⎧

⎨

⎩

 if (x, y) ∈ {A × A, B × B},
 otherwise.

Then α is triangular and T is α-identical, but T is not weak semi α-admissible and not
α-dominated. T satisfies conditions (G) and (G′) but does not satisfy condition (K).

Lemma . Let X be a nonempty set and T : X → X and α : X ×X → [,∞) be mappings.
Let {xn} be the Picard sequence starting with x. If α(x, x) ≥  and α(x, Tx) ≥ , and if
α is a triangular function and T is α-admissible, then for all n ≥  and  ≤ p ≤ q ≤ n,
α(xp, xq) ≥ .

Proof For the proof, we will make use of the principle of mathematical induction.
As α(x, x) ≥ , α(x, x) ≥  and T is α-admissible, α(x, x) = α(Tx, Tx) ≥ , and

so the result holds good for n = . Again, by α-admissibility of T , we get α(x, x) ≥ ,
α(x, x) ≥ , and then, since α is triangular, we get α(x, x) ≥ . Thus the result holds
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good for n = . Suppose the result is true for n = r, i.e. α(xp, xq) ≥  for all  ≤ p ≤ q ≤ r.
We will show that it is true for n = r + . It is enough to consider the case α(xp, xr+),
 ≤ p ≤ r + . By induction hypothesis and α admissibility of T , we have α(xp, xr+) ≥ 
for all  ≤ p ≤ r + . Since α(x, x) ≥ , by α admissibility of T and triangularity of func-
tion α, we get α(x, xr+) ≥ , and thus the result is true for n = r + . Hence, by the principle
of mathematical induction, the result is true for all n. �

Lemma . Let X be a nonempty set and T : X → X and α : X ×X → [,∞) be mappings.
Let {xn} be the Picard sequence starting with x such that α(x, x) ≥  and α(x, Tx) ≥ .
If T is α-admissible and weak semi α-admissible, then for all n ≥  and  ≤ p ≤ q ≤ n,
α(xp, xq) ≥ .

Proof As α(x, x) ≥ , α(x, x) ≥  and T is α-admissible, α(x, x) = α(Tx, Tx) ≥ , and
so the result holds good for n = . Again, by α-admissibility of T , we get α(x, x) ≥ ,
α(x, x) ≥ . Since T is weak semi α-admissible and α(x, x) ≥ , we get α(x, x) ≥ .
Thus the result holds good for n = . Suppose the result is true for n = r, i.e. α(xp, xq) ≥ 
for all  ≤ p ≤ q ≤ r. We will show that it is true for n = r + . It is enough to consider
the case α(xp, xr+),  ≤ p ≤ r + . By induction hypothesis and α admissibility of T , we
have α(xp, xr+) ≥  for all  ≤ p ≤ r + . If r is even, then using α(x, x) ≥  and repeatedly
using weak semi α admissibility of T , we get α, we get α(x, xr+) ≥ . If r is odd, then
using α(x, x) ≥  and repeatedly using weak semi α admissibility of T , we get α, we get
α(x, xr+) ≥ . Thus the result is true for n = r + . Hence, by the principle of mathematical
induction, the result is true for all n. �

Definition . Let (χ , dlc) be a dCMS-BA, T : χ → χ and α : X × X → [,∞) be map-
pings. Then T is a Perov-type α-quasi contraction mapping iff there exists μ ∈ P such that
 ≤ r(μ) < , and for all u, v ∈ χ with α(u, v) ≥ ,

dlc(Tu, Tv) � μ.ϕ(u, v), (.)

where ϕ(u, v) ∈ {dlc(u, v), dlc(u, Tu), dlc(v, Tv), dlc(u, Tv), dlc(v, Tu)}.

Lemma . Let T be an α-admissible Perov-type α-quasi contraction mapping in a
dCMS-BA (χ , dlc), where α : X × X → [,∞), let xp be the iterative sequence defined
by xp+ = Txp for some arbitrary x ∈ χ and all p ∈ N such that α(x, x) ≥  and
α(x, Tx) ≥ . If α is a triangular function or T is weak semi α-admissible, then for all
n ≥ , p, q ∈N, we have α(xp, xq) ≥  for  ≤ p ≤ q ≤ n and for all  ≤ p ≤ q ≤ n

dlc(xp, xq) � μ(e – μ)–(dlc(x, x) + dlc(x, x)
)

(.)

Proof Let dlc(xp, xp+) = dp and dlc(xp, xp) = dp,p. For the proof, we will make use of the
principle of mathematical induction. Note that by Lemma . or Lemma . the case
may be α(xp, xq) ≥  for all  ≤ p ≤ q. For n = , p = q = , since α(x, x) ≥ , α(x, x) ≥ 
and α(x, x) ≥ , from (.) we have

dlc(x, x) = dlc(Tx, Tx) � μ
{

dlc(x, x), dlc(x, x), dlc(x, x), dlc(x, x), dlc(x, x)
}

� μ(e – μ)–(dlc(x, x) + dlc(x, x)
)

,
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and thus the result holds good. Now suppose (.) is true for n = r, i.e.

dlc(xp, xq) � μ(e – μ)–(dlc(x, x) + dlc(x, x)
)

for  ≤ p, q ≤ r. (.)

We will show that (.) is true for n = r + . It is enough to consider the case  ≤ p ≤ r + 
and q = r + . Note that

μ(e – μ)– = μ

∞
∑

i=

μi �
∞

∑

i=

μi = (e – μ)– (.)

and

e + μ(e – μ)– = e +
∞

∑

i=

μi = (e – μ)–. (.)

Since α(xp–, xr) ≥ , from (.) we have

dlc(xp, xr+) = dlc(Txp–, Txr)

� μ
{

dlc(xp–, xr), dlc(xp–, xp), dlc(xr , xr+), dlc(xp–, xr+), dlc(xr , xp)
}

.

We will analyse each term on the right-hand side of the above inequality as follows.
(i) dlc(xp, xr+) � μdlc(xp–, xr).
Case i(a): p = .

dlc(x, xr+) � μdlc(x, xr)

� μ
(

dlc(x, x) + dlc(x, xr)
)

� μ(e – μ)–(dlc(x, x) + dlc(x, x)
) (

by (.) and (.)
)

.

Case i(b):  ≤ p ≤ r. By (.) and (.) we get

dlc(xp, xr+) � μ(e – μ)–(dlc(x, x) + dlc(x, x)
)

.

Case i(c): p = r + . In this case dlc(xp, xr+) � μdlc(xr , xr), and the result follows from
(.) and (.).

(ii) dlc(xp, xr+) � μdlc(xp–, xp).
Case ii(a): p = .

dlc(x, xr+) � μdlc(x, x)

� μ(e – μ)–(dlc(x, x) + dlc(x, x)
)

.

Case ii(b):  ≤ p ≤ r. The result follows from (.).
Case ii(c): p = r + .

dlc(xp, xr+) � μdlc(xr , xr+) = μdlc(Txr–, Txr)

� μ{dlc(xr–, xr), dlc(xr–, xr), dlc(xr , xr+), dlc(xr–, xr+), dlc(xr , xr)
}

.
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Case ii(c-): dlc(xp, xr+) � μdlc(xr , xr+) � μdlc(xr–, xr).
By (.) and (.), we get μdlc(xr–, xr) � μ(e – μ)–(dlc(x, x) + dlc(x, x)).
Case ii(c-): dlc(xp, xr+) � μdlc(xr , xr+) � μdlc(xr , xr+).
Now, μdlc(xr , xr+) � μdlc(xr , xr+) implies μ(e – μ)dlc(xr , xr+) � θ . Note that r(μ) <

, and so (e – μ) is invertible and (e – μ)– > e. Therefore we get dlc(xr , xr+) � θ , i.e.
dlc(xp, xr+) � θ � μ(e – μ)–(dlc(x, x) + dlc(x, x)).

Case ii(c-): dlc(xp, xr+) � μdlc(xr , xr+) � μdlc(xr–, xr+)
Again by (.)

dlc(xp, xr+) � μdlc(xr , xr+)

� μ{dlc(xr–, xr), dlc(xr–, xr–), dlc(xr , xr+), dlc(xr–, xr+), dlc(xr , xr–)
}

.

Continuing this process we will at most arrive at the following :
(i) dlc(xp, xr+) � μkdlc(xp, xq) for some  ≤ p, q ≤ r,  ≤ k ≤ r, and the result follows

from this by (.) and (.).
(ii) dlc(xp, xr+) � μkdlc(xr , xr+), and the result follows by proceeding as in Case ii(c-).

(iii) dlc(xp, xr+) � μrdlc(xp, xr+), which implies (e – μ)dlc(xp, xr+) � θ , and by the same
argument as in Case ii(c-) the result follows.

Case ii(c-): dlc(xp, xr+) � μdlc(xr , xr+) � μdlc(xr , xr). The result follows from (.) and
(.).

(iii) dlc(xp, xr+) � μdlc(xr , xr+) = μdlc(Txr–, Txr). The result follows proceeding as in
Case ii(c).

(iv) dlc(xp, xr+) � μdlc(xr , xp). The result follows from (.) and (.).
(v) dlc(xp, xr+) � μdlc(xp–, xr+).
Using (.) and continuing in a similar manner as above, either we will get the desired

result or we get dlc(xp, xr+) � μdlc(xp–, xr+) � μdlc(xp–, xr+) · · · � μp–dlc(x, xr+).
Now

dlc(x, xr+) � μ
{

dlc(x, xr), dlc(x, x), dlc(xr , xr+), dlc(x, xr+), dlc(xr , x)
}

.

If dlc(x, xr+) � μ{dlc(x, xr) or dlc(x, x) or dlc(xr , xr+) or dlc(xr , x)}, then the result fol-
lows by proceeding as in Case i(a) or ii(a) or ii(c) or by (.) and (.). If dlc(x, xr+) �
μdlc(x, xr+), then

dlc(x, xr+) � μdlc(x, xr+) � μ
(

dlc(x, x) + dlc(x, xr+)
)

� μ(e – μ)–dlc(x, x) � μ(e – μ)–(dlc(x, x) + dlc(x, x)
)

.

Thus (.) is true for n = r + , and hence by the principle of mathematical induction it is
true for all n. �

Theorem . Let (χ , dlc) be a complete dCMS-BA, T : χ → χ and α : X × X → [,∞)
be mappings such that

(i) T is a Perov-type α-quasi contraction mapping.
(ii) α is a triangular function or T is weak semi α-admissible.

(iii) T is α-admissible.
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(iv) There exists x ∈ χ such that α(x, x) ≥  and α(x, Tx) ≥ .
(v) (χ , dlc) is α-regular.

Then T has a fixed point.

Proof Consider the iterative sequence defined by xp+ = Txp for all p ∈N. Let dlc(xp, xp+) =
dp and dlc(xp, xp) = dp,p. Note that dp,p � dp– and dp,p � dp+. We will show that {xp} is
a Cauchy sequence. For  < p < q, let �p,q = {dlc(xi, xj) : p ≤ i ≤ j ≤ q}. Then, using (.) and
by the same argument as that in the proof of Lemma  in [], we can find u ∈ �p–,q, u ∈
�p–,q, . . . , up– ∈ �,q satisfying

dlc(xp, xq) � μu � μu � · · · � μp–up–.

By Lemma ., up– � μ(e – μ)–(dlc(x, x) + dlc(x, x)). Therefore dlc(xp, xq) � μp(e –
μ)–(dlc(x, x) + dlc(x, x)). Since r(μ) < , by Lemmas . and ., we see that μp(e –
μ)–(dlc(x, x) + dlc(x, x)) is a c-sequence. Now let θ � c be arbitrary in A. By Defini-
tion ., there exists a natural number p such that μp(e – μ)–(dlc(x, x) + dlc(x, x)) � c
for all p ≥ p. Thus we get dlc(xp, xq) � c for all p ≥ p. Therefore {xp} is a Cauchy se-
quence, and by the completeness of (χ , dlc) there exists x∗ ∈ χ such that limn→∞ xp = x∗.
By Proposition . and Lemma ., dlc(xp, x∗) → θ , dlc(xp–, xp) → θ and dlc(xp–, x∗) → θ .
Since (χ , dlc) is α-regular, α(xp–, x∗) ≥ , and so by (.)

dlc(x∗, Tx∗)

� dlc(x∗, xp) + dlc(xp, Tx∗) = dlc(x∗, xp) + dlc(Txp–, Tx∗)

� dlc(x∗, xp) + μ
{

dlc(xp–, x∗), dlc(xp–, xp), dlc(x∗, Tx∗), dlc(xp–, Tx∗), dlc(x∗, xp)
}

� dlc(x∗, xp) + μ
{

dlc(xp–, x∗), dlc(xp–, xp), dlc(x∗, Tx∗), dlc(xp–, xp) + dlc(xp, Tx∗),

dlc(x∗, xp)
}

� dlc(x∗, xp) + μ
{

dlc(xp–, x∗), dlc(xp–, xp), θ , (e – μ)–dlc(xp–, xp), dlc(x∗, xp)
}

.

By Proposition . and Lemma ., dlc(xp, x∗) → θ and dlc(xp–, xp) → θ . Thus dlc(x∗,
Tx∗) � θ and so Tx∗ = x∗. �

In Theorem . condition (v) can be replaced with another condition as in Popescu
[]. We have the following.

Theorem . Let (χ , dlc) be a complete dCMS-BA, T : χ → χ and α : X × X → [,∞)
be mappings such that

(i) T is a Perov-type α-quasi contraction mapping.
(ii) α is a triangular function or T is weak semi α-admissible.

(iii) T is α-admissible.
(iv) There exists x ∈ χ such that α(x, x) ≥  and α(x, Tx) ≥ .
(v) If {xp} is a sequence in χ such that α(xp, xp+) ≥  for all p and xp → u ∈ χ as

p → ∞, then there exists a subsequence {xp(k)} of {xp} such that α(xp(k), u) ≥  for
all k.

Then T has a fixed point.
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Proof Proceeding as in the proof of Theorem ., the Picard sequence {xp} starting
with x converges to x∗ ∈ χ . By (v) there exists a subsequence {xp(k)} of {xp} such that
α(xp(k), u) ≥  for all k. Thus we have

dlc(x∗, Tx∗) � dlc(x∗, xp(k)) + dlc(xp(k), Tx∗) = dlc(x∗, xp(k)) + dlc(Txp(k)–, Tx∗)

� dlc(x∗, xp(k)) + μ
{

dlc(xp(k)–, x∗), dlc(xp(k)–, xp(k)), dlc(x∗, Tx∗),

dlc(xp(k)–, Tx∗), dlc
(

x∗, xp(k)
)}

� dlc(x∗, xp(k)) + μ
{

dlc(xp(k)–, x∗), dlc(xp(k)–, xp), dlc(x∗, Tx∗),

dlc(xp(k)–, xp(k)) + dlc(xp(k), Tx∗), dlc(x∗, xp(k))
}

� dlc(x∗, xp(k)) + μ
{

dlc(xp(k)–, x∗), dlc(xp(k)–, xp(k)), θ ,

(e – μ)–dlc(xp(k)–, xp(k)), dlc(x∗, xp(k))
}

.

By Proposition . and Lemma ., dlc(xp(k), x∗) → θ and dlc(xp(k)–, xp(k)) → θ . Thus
dlc(x∗, Tx∗) � θ , and so Tx∗ = x∗. �

Theorem . Let (χ , dlc), T and α be as in Theorem .. Suppose that all conditions
of Theorem . or Theorem . are satisfied. If T is an α-identical function or if T is
α-dominated, then T has a fixed point x∗ ∈ χ and dlc(x∗, x∗) = θ . Further, if T satisfies
condition (G), then the fixed point is unique.

Proof As in the proof of Theorem . or Theorem ., we see that T has a fixed
point x∗ ∈ χ . If T is α-identical , then α(x∗, x∗) = α(Tx∗, Tx∗) ≥ . If T is α-dominated,
then α(x∗, x∗) = α(x∗, Tx∗) ≥ . Then from (.) we have dlc(x∗, x∗) = dlc(Tx∗, Tx∗) �
μ{dlc(x∗, x∗), dlc(x∗, x∗), dlc(x∗, x∗), dlc(x∗, x∗), dlc(x∗, x∗)} = μdlc(x∗, x∗). Hence dlc(x∗, x∗) = θ .

Now suppose y∗ is another fixed point of T . Then as above α(y∗, y∗) ≥  and dlc(y∗,
y∗) = θ . Since T satisfies condition (G), we have α(x∗, y∗) ≥ , and then by (.)

dlc(x∗, y∗) = dlc(Tx∗, Ty∗)

� μ
{

dlc(x∗, y∗), dlc(x∗, x∗), dlc(y∗, y∗), dlc(x∗, y∗), dlc(y∗, x∗)
}

.

Thus dlc(x∗, y∗) � θ and so x∗ = y∗. �

Theorem . Let (χ , dlc), T and α be as in Theorem .. Suppose that all conditions
of Theorem . or Theorem . are satisfied. If T is an α-identical function or if T is
α-dominated, then T has a fixed point x∗ ∈ χ and dlc(x∗, x∗) = θ . Further, if T satisfies
condition (G′), then the fixed point is unique.

Proof As in the proof of Theorem ., we see that T has a fixed point x∗ ∈ χ and
dlc(x∗, x∗) = θ , and if y∗ is another fixed point of T , then α(y∗, y∗) ≥  and dlc(y∗, y∗) = θ .
Since T satisfies condition (G′), there exists w ∈ χ such that α(x∗, w) ≥ , α(y∗, w) ≥ ,
α(w, w) ≥  and α(w, Tw) ≥ . By Theorem . the sequence {Tnw} will converge to a
fixed point say w∗ of T . Since T is α-admissible, we get α(x∗, Tnw) ≥  and α(y∗, Tnw) ≥ ,
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and then by (.) we have

dlc
(

x∗, Tn+w
)

= dlc
(

Tx∗, TTnw
)

� μ
{

dlc
(

x∗, Tnw
)

, dlc(x∗, x∗), dlc
(

Tnw, Tn+w
)

, dlc
(

x∗, Tnw
)

, dlc
(

Tnw, x∗
)}

.

Then, as n → ∞, using Proposition . and Lemma ., we get dlc(x∗, w∗) � θ and so
x∗ = w∗. Similarly, we can show that y∗ = w∗. Therefore x∗ = y∗. �

Remark . In Theorems . and . we can replace the requirement of condition (G)
or condition (G′) with that of condition (K). But as in Examples . and ., there exist
functions α and T such that T is α-identical and T satisfies condition (G) and condition
(G′) but does not satisfy condition (K). Hence our approach is new and justifiable.

Since every CMS-BA is a dCMS-BA and since in a cone metric space (χ , dc), dc(x, y) = θ

for all x, y ∈ χ , we give the following generalised results which are easily deduced from our
main results.

Theorem . Let (χ , dc) be a complete CMS-BA, T : χ → χ and α : X × X → [,∞) be
mappings such that

(i) T is a Perov-type α-quasi contraction mapping.
(ii) α is a triangular function.

(iii) T is α-admissible.
(iv) There exists x ∈ χ such that and α(x, Tx) ≥ .
(v) (χ , dlc) is α-regular.

Then T has a fixed point.

Theorem . Let (χ , dc) be a complete CMS-BA, T : χ → χ and α : X × X → [,∞) be
mappings such that

(i) T is a Perov-type α-quasi contraction mapping.
(ii) α is a triangular function.

(iii) T is α-admissible.
(iv) There exists x ∈ χ such that and α(x, Tx) ≥ .
(v) If {xp} is a sequence in χ such that α(xp, xp+) ≥  for all p and xp → u ∈ χ as

p → ∞, then there exists a subsequence {xp(k)} of {xp} such that α(xp(k), u) ≥  for
all k.

Then T has a fixed point.

Theorem . Let (χ , dc), T and α be as in Theorem .. Suppose that all conditions of
Theorem . or Theorem . are satisfied. If T is an α-identical or α-dominated function,
then T has a fixed point x∗ ∈ χ . Further, if T satisfies condition (G), then the fixed point is
unique.

Theorem . Let (χ , dc), T and α be as in Theorem .. Suppose that all conditions of
Theorem . or Theorem . are satisfied. If T is an α-identical or α-dominated function,
then T has a fixed point x∗ ∈ χ . Further, if T satisfies condition (G′), then the fixed point is
unique.
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Theorem . Let (χ , dc) be a complete CMS-BA, T : χ → χ , A and B be nonempty sub-
sets of χ such that χ = A ∪ B and T(A) ⊆ T(B) and T(B) ⊆ T(A). If there exists μ ∈ P such
that  ≤ r(μ) < , and

dlc(Tu, Tv) � μ.ϕ(u, v) (.)

for all u ∈ A, v ∈ B and ϕ(u, v) ∈ {dlc(u, v), dlc(u, Tu), dlc(v, Tv), dlc(u, Tv), dlc(v, Tu)}, then T
has a unique fixed point in A ∩ B.

Proof Let

α(x, y) =

⎧

⎨

⎩

 if (x, y) ∈ {A × B, B × A},
 otherwise.

Then T is an α-admissible, weak semi α-admissible and α-dominated function and satis-
fies condition (G′). Hence, by Theorem ., T has a unique fixed point x∗ in χ . Since T
is α-dominated, α(x∗, x∗) = α(x∗, Tx∗) ≥ . This is possible iff x∗ ∈ A ∩ B. �

Corollary . Let (χ , dlc) be a complete dCMS-BA and T : χ → χ be a mapping. If there
exists μ ∈ P such that  ≤ r(μ) < , and

dlc(Tu, Tv) � μ.ϕ(u, v) (.)

for all u, v ∈ χ and ϕ(u, v) ∈ {dlc(u, v), dlc(u, Tu), dlc(v, Tv), dlc(u, Tv), dlc(v, Tu)}, then T has
a unique fixed point.

Proof The proof easily follows from Theorems . and . or Theorems . and .
by taking α(x, y) =  for all x, y ∈ χ . �

Corollary . (Theorem , []) Let (χ , dc) be a complete CMS-BA and T : χ → χ be a
mapping. If there exists μ ∈ P such that  ≤ r(μ) < , and

dc(Tu, Tv) � μ.ϕ(u, v) (.)

for all u, v ∈ χ and ϕ(u, v) ∈ {dc(u, v), dc(u, Tu), dc(v, Tv), dc(u, Tv), dc(v, Tu)}, then T has a
unique fixed point.

Proof Since every CMS-BA is a dCMS-BA, the proof follows from Corollary .. �

Example . Let χ = [,∞) and A be as in Example . and dlc(x, y)(t) = (|x – y|( +
t), |x – y|( + t)). Let T : χ → χ be given by

Tx =

⎧

⎨

⎩

log( + x
 ) if x ∈ [, ],

log( + x) otherwise,
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and

α(x, y) =

⎧

⎨

⎩

 (x, y) ∈ [, ] or x = y,
 otherwise.

Then α is a triangular function, T is α-admissible, α-identical and satisfies condition (G).
Also, for all α(x, y) ≥ , we see that dlc(Tx, Ty) � q.dlc(x, y), where q = 

 . Thus T satisfies
all conditions of Theorems . and . but does not satisfy conditions of Corollary ..
Further  is a unique common fixed point of T .

Theorem . Let (χ , dlc) be a complete dCMS-BA and T : χ → χ be a mapping. Let
α : X × X → [,∞) be a mapping satisfying conditions (iii), (iv) and (v) of Theorem .
or .. If there exist λ,μ,ν ∈ P such that λ commutes with μ + ν , μ + ν commutes with
μ + ν , r(λ + μ + ν) + r(μ + ν) <  and for all x, y ∈ χ with α(x, y) ≥ 

dlc(Tx, Ty) � λdlc(x, y) + μ
(

dlc(x, Tx) + d(y, Ty)
)

+ ν
(

dlc(x, Ty) + d(y, Tx)
)

, (.)

then T has a fixed point. Further, if T is an α-identical function or if T is α-dominated,
then T has a fixed point x∗ ∈ χ and dlc(x∗, x∗) = θ . Moreover, if T satisfies condition (G) or
(G′), then the fixed point is unique.

Proof Consider the iterative sequence defined by xp+ = Txp for all p ∈N. Let dlc(xp, xp+) =
dp and dlc(xp, xp) = dp,p. Note that dp,p � dp– and dp,p � dp+. By Lemma . or .,
α(xp, xp+) ≥ , and therefore using (.) we have

dp+ = dlcb(xp+, xp+) = dlc(Txp, Txp+)

� λdlc(xp, xp+) + μ
(

dlc(xp, Txp) + dlc(xp+, Txp+)
)

+ ν
(

dlc(xp, Txp+) + dlc(xp+, Txp)
)

= λdp + μ(dp + dp+) + ν(dp + dp+ + dp),

i.e.

dp+ � β .dp where β = (λ + μ + ν)(e – μ – ν)–

or

dp+ � βp+dp.

Since λ commutes with μ+ ν , μ+ν commutes with μ+ ν , simple calculations show that
(λ + μ + ν)(e – μ – ν)– = (e – μ – ν)–(λ + μ + ν), and using Lemma . again by simple
calculations we have r(β) = r(λ + μ + ν)(e – μ – ν)– < . Therefore e – β is invertible and
(e – β)– =

∑∞
i=(β)i. Hence

dlc(xp, xp+n) � dp + dp+ + · · ·dp+n–

� βp{e + β + β + · · ·}d

= βp(e – β)–d.
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Also using Lemma . and Lemma ., βp(e – β)–d is a c-sequence. Thus by Defini-
tion . for any c ∈ A with θ � c, there is N ∈N satisfying n > N implies

dlcb(xp, xp+n) � βp(e – β)–d � c. (.)

Thus {xp} is a Cauchy sequence, and since (χ , dlc) is complete, we have u ∈ χ such that

lim
n→∞ xp = u. (.)

By Proposition . and Lemma ., dlc(xp, u) → θ , dlc(xp–, xp) → θ and dlc(xp–, u) → θ .
Since (χ , dlc) is α-regular, α(xp–, u) ≥  and so by (.). Since dp �= dq whenever p �= q, there
exists k ∈N such that dlc(u, Tu) �= {dk , dk+, . . .}. Then, for any p > k,

dlc(u, Tu) � (

dlc(u, xp) + dlc(xp, Tu)
)

=
(

dlc(u, xp) + dlc(Txp–, Tu)
)

� dlc(u, xp) + λdlc(xp–, u) + μ
(

dlc(xp–, xp) + dlc(u, Tu)
)

+ ν
(

dlc(xp–, Tu) + dlc(u, xp)
)

,

i.e.

dlc(u, Tu) � ν(e – μ – ν)–dlc(u, xp)

+ (e – μ – ν)–(λ + ν)dlc(xp–, u)

+ (e – μ – ν)–μ
(

dlc(xp–, xp) + dlcb(u, Tu)
)

.

By Lemma ., ν(e – μ – ν)–dlc(u, xp) → θ , (e – μ – ν)–(λ + ν)dlc(u, xp–) → θ and (e – μ –
ν)–μ(dlc(xp–, xp) + dlc(u, Tu)) → θ . Hence dlc(u, Tu) → θ . Thus Tu = u.

If T is an α-identical function or if T is α-dominated, then proceeding as in the proof
of Theorem . and using (.), we get dlc(u, u) = θ . Now suppose that there exists u∗

such that Tu∗ = u∗. Then, as above, dlc(u∗, u∗) = θ . If T satisfies condition (G), we have
α(u, u∗) ≥ , and then by (.)

dlc
(

u, u∗) = dlc
(

Tu, Tu∗) � (λ + ν)dlc
(

u, u∗)

� (λ + ν)dlc
(

u, u∗) · · · (λ + ν)ndlc
(

u, u∗).

As above, by Lemma . and Lemma ., (λ + ν)ndlc(u, u∗) is a c-sequence, and so by
Lemma . (λ + ν)ndlc(u, u∗) → θ as n → ∞. Thus u = u∗.

If T satisfies condition (G′), then there exists w ∈ χ such that α(u, w) ≥ , α(u∗, w) ≥ ,
α(w, w) ≥  and α(w, Tw) ≥ . Then, by replacing x with w in condition (iv) and proceeding
as above, the sequence {Tnw} will converge to a fixed point say w∗ of T and dlc(w∗, w∗) = θ .
Since T is α-admissible, we get α(u, Tnw) ≥  and α(u∗, Tnw) ≥ , and then by (.) we have

dlc
(

u, Tn+w
)

= dlc
(

Tu, TTnw
)

� λdlc
(

u, Tnw
)

+ μ
{

dlc(u, u) + dlc
(

Tnw, Tn+w
)}

+ ν
{

dlc
(

u, Tnw
)

+ dlc
(

Tnw, u
)}

.
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Then, as n → ∞, using Proposition . and Lemma ., we get dlc(u, w∗) � θ and so u = w∗.
Similarly, we can show that u∗ = w∗. Therefore u = u∗. �

Theorem . Let (χ , dlc) be a complete dCMS-BA and T : χ → χ be a mapping. If there
exists λ ∈ P such that  ≤ r(λ) < , and

dlc(Tx, Ty) � λ
[

dlc(x, Tx) + dlc(y, Ty)
]

(.)

for all x, y ∈ χ with α(x, y) ≥ , then T has a unique fixed point.

Proof Note that (.) implies (.). Hence the result follows from Theorem .. �

Theorem . Let (χ , dlc) be a complete dCMS-BA and T : χ → χ be a mapping. If there
exists λ ∈ P such that  ≤ r(λ) < , and

dlc(Tx, Ty) � λ
[

dlc(x, Ty) + dlc(y, Ts)
]

(.)

for all x, y ∈ χ with α(x, y) ≥ , then T has a unique fixed point.

Proof Note that (.) implies (.). Hence the result follows from Theorem .. �

4 Conclusion
In this paper we have introduced the concept of dislocated cone metric space over Ba-
nach algebra and proved some generalised fixed point theorems in such a space. Some
new properties of mappings such as α-identical mappings, semi α-admissible mappings,
mappings satisfying condition (G) and condition (G′) are also introduced. Our work is a
generalisation of some work already done on metric spaces and cone metric spaces over
Banach algebra. There is further scope for extending and generalising various fixed point
theorems in the setting of a dislocated cone metric space over Banach algebra.
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