Skip to main content

Table 8 Numerical results of Example 4.6 for the initial points \(x_{0} = (-1,2,1)^{T}\) and \(x_{1} = (2,-1,-2)^{T}\) using Algorithm 3 in Theorem 4.1

From: Split monotone variational inclusion with errors for image-feature extraction with multiple-image blends problem

Type

\(\lambda _{n}\) for \(L_{1}=1\)

n

CPU (s)

\(x^{*}\)

\(\|x_{n+1}-x_{n}\|_{2}\)

A1

\(\frac{L_{1}}{10}\)

142

0.546

\((1.00001,2.00000,2.99999)^{T}\)

8.78 × 10−7

A2

\(L_{1}-\frac{L_{1}}{10}\)

49

0.046

\((1.00001,2.00001,3.00001)^{T}\)

9.60 × 10−7

A3

\(L_{1}\)

48

0.047

\((1.00001,2.00001,3.00001)^{T}\)

9.38 × 10−7

A4

\(L_{1}+\frac{L_{1}}{10}\)

47

0.063

\((1.00001,2.00001,3.00001)^{T}\)

9.27 × 10−7

A5

\(2L_{1}-\frac{L_{1}}{10}\)

A6

\(2L_{1}\)

B1

\(\frac{L_{1} n}{n+1}\)

48

0.046

\((1.00001,2.00001,3.00001)^{T}\)

9.65 × 10−7

B2

\(\frac{L_{1} (n+2)}{n+1}\)

47

0.046

\((1.00001,2.00001,3.00001)^{T}\)

9.92 × 10−7

B3

\(\frac{2 L_{1} n}{n+1}\)

C1

\(L_{1}+\frac{(-1)^{n} L_{1}}{n+1}\)

37

0.031

\((1.00002,2.00002,3.00002)^{T}\)

8.75 × 10−7

C2

\(L_{1}+\frac{(-1)^{n+1}L_{1}}{n+1}\)

36

0.031

\((1.00002,2.00002,3.00002)^{T}\)

9.74 × 10−7