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Diametrically contractive mappings on a complete metric space are introduced by V. I.
Istratescu. We extend and generalize this idea to multivalued mappings. An easy example
shows that our fixed point theorem is more applicable than a former one obtained by
H. K. Xu. A convergence theorem of Picard iteratives is also provided for multivalued
mappings on hyperconvex spaces, thereby extending a Proinov’s result.
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1. Introduction

Let (X ,d) be a complete metric space. A mapping T : X → X is a contraction if for some
α∈ (0,1),

d(Tx,Ty)≤ αd(x, y) ∀x, y ∈ X. (1.1)

The mapping T is said to be contractive if

d(Tx,Ty) < d(x, y) ∀x, y ∈ X , x �= y. (1.2)

By the well-known Banach’s contraction principle, every contraction has a unique fixed
point x0 and the Picard iteration {Tnx} converges to x0 for every x ∈ X . Examples in [1, 2]
show that a contractive mapping may fail to have a fixed point. However, a question of
the existence of a fixed point is of interest. In fact, it has been left open the following
question.

Question 1.1 [3]. LetM be a weakly compact subset of a Banach space and let T :M→M
be contractive. Does T have a fixed point?
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Istratescu [4] introduced a proper subclass of the class of the contractive mappings,
whose elements are called the diametrically contractive mappings. Xu [2] proved, in the
framework of Banach spaces, the following theorem.

Theorem 1.2 [2, Theorem 2.3]. Let M be a weakly compact subset of a Banach space X
and let T :M→M be a diametrically contractive mapping. Then T has a fixed point.

The following problems raised in [2] had been answered in the negative way in [5].

Problem 1.3. Can we substitute “weakly compact” subset with “closed convex bounded”
one in Theorem 1.2?

Problem 1.4. If T is diametrically contractive and x∗ is the fixed point of T , do we have
Tnx→ x∗ for all (or at least for some) x ∈M?

In this paper, we weaken the condition in the definition of diametrically contractive
mappings and obtain a corresponding fixed point theorem for nonself multivalued map-
pings. Moreover, we also apply a Proinov’s fixed point theorem to a selection of a multi-
valued mapping with externally hyperconvex values and obtain its unique fixed point on
a hyperconvex metric space.

2. Diametrically contractive mappings

In [4], Istratescu introduced a new class of mappings strictly lying between contractions
and contractive mappings.

Definition 2.1. A mapping T on a complete metric space (X ,d) is said to be diametrically
contractive if δ(TA) < δ(A) for all closed subsets A with 0 < δ(A) <∞.

(Here δ(A) := sup{d(x, y) : x, y ∈A} is the diameter of A⊂ X .)

In the following, we consider a multivalued version of mappings in Theorem 1.2. We
also can weaken the condition required in Definition 2.1.

Let �(X) be the collection of nonempty closed subsets of X and let FixT denote the
set of fixed points of T . Recall that TA=⋃a∈ATa.

Theorem 2.2. Let M be a weakly compact subset of a Banach space X and let T :M →
�(X), Tx∩M �= ∅ for all x ∈M and δ(TA∩A) < δ(A) for all closed sets A with δ(A) > 0.
Then T has a unique fixed point.

Proof. The uniqueness of the fixed point is obvious. To prove the existence we consider
the family � := {A ⊂M : A is a nonempty weakly compact subset ofM, TA∩M ⊂ A}.
Clearly, � �= ∅. Partially order � by saying that A1 � A2 if A1 ⊃ A2 for A1,A2 ∈�. Every
chain � in � has a finite intersection property, thus it has a nonempty intersection, that
is, B :=⋂A∈�A �= ∅. Since TB∩M ⊂ TA∩M ⊂ A for all A ∈ �, TB∩M ⊂ B, that is,
B ∈�, and it is an upper bound of �. Thus � has a maximal element, say A. Fix x ∈ A.
As A∈� we see that Tx∩M ⊂ TA∩M ⊂A. That is to say Tx∩A �= ∅ for all x ∈A.
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Put A0 = TA∩A
w
. Therefore A0 = TA∩A

w ⊂ TA∩M
w ⊂ A

w = A and so A0 ⊂ A.
Moreover, we have TA0∩M ⊂ TA∩M ⊂A. Therefore TA0∩M ⊂ TA∩A⊂ TA∩A

w =
A0. Thus A0 ∈� and by maximality of A, we have A= A0 = TA∩A

w
. By lower semicon-

tinuity of the norm of X we see that δ(A)= δ(TA∩A
w
)= δ(TA∩A). Since T is diamet-

rically contractive we must have δ(A) = 0 and A consists of exactly one point, say ξ. By
the condition∅ �= TA∩M ⊂A we see that ξ ∈ Tξ, and we have a fixed point. �

The proof given above is a modification of the proof of Theorem 1.2. The following
example shows that Theorem 2.2 is strictly stronger than Theorem 1.2.

Example 2.3. M = [0,5], T :M → R defined by Tx = x + 1 if x ≤ 3, and Tx = 4 if x > 3.
Now, if A is a closed subset of M, then there will be a, b in M such that A ⊂ [a,b] and
δ(A) = b− a. If [a,b] ⊂ [0,3], then TA ⊂ [a + 1,b + 1] and TA∩A ⊂ [a + 1,b]. Thus
δ(TA∩A) ≤ b− a− 1 < δ(A). If a ≤ 3 ≤ b, then TA ⊂ [a+ 1,4] and therefore δ(TA∩
A) ≤ 3− a < b− a = δ(A). The case when [a,b] ⊂ [3,5], T clearly satisfies δ(TA∩A) =
0 < δ(A). Thus T has a fixed point by Theorem 2.2. Note that 4 is the unique fixed point of
T . We observe that T does not satisfy the condition in Theorem 1.2 because δ(T[0,1])=
1= δ([0,1]).

Example 2.4. Let Tx = [0,x− log(x + 1)] for x ∈ [0,100]. If A is a bounded closed sub-
set of [0,100], then for some a,b > 0 we have A⊂ [a,b], and δ(A)= b− a. Clearly TA⊂
⋃

x∈A[0,x− log(x + 1)] ⊂ [0,b− log(b+ 1)], and so TA∩A ⊂ [a,b− log(b+ 1)]. There-
fore δ(TA∩A) < δ(A). 0 is the unique fixed point of T .

Next we will replace the diameter δ(A) of a set A by α(A), where α is the Kuratowski
measure of noncompactness:

α(A)= inf{ε > 0 : A can be covered by finitely many sets with diameters ≤ ε}. (2.1)

Definition 2.5. LetM be a nonempty subset of a metric space (X ,d). A mapping T :M→
2X is said to be a k-set contraction if, for each A⊂M with A bounded, TA is bounded and
α(TA)≤ kα(A). If α(TA) < α(A) for all such A, then T is said to be α-condensing.

Suppose thatM is a bounded subset of a metric space (X ,d). Then:

(i) co(M)=⋂{B ⊂ X : B is a closed ball in X such thatM ⊂ B}, and
(ii) M is said to be subadmissible [6], if for each A ∈ 〈M〉, co(A) ⊂M, where 〈M〉

denotes the class of all nonempty finite subsets ofM.
For a nonempty subsetM of X and a topological space Y , if two set-valued mappings

T ,F :M → 2Y satisfy the condition T(co(A)∩M) ⊂ F(A), for any A ∈ 〈M〉, then F is
called a generalized KKMmapping with respect to T .

Let T :M → 2Y be a set-valued mapping such that the family {Fx : x ∈M} has the
finite intersection property (where Fx denotes the closure of Fx) for each generalized
KKM mapping F :M → 2Y with respect to T , then we say that T has the KKM property.
Denote

KKM(M,Y)= {T :M −→ 2Y : T has the KKM property
}
. (2.2)
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Theorem 2.6 [7, Theorem 1]. Let (X ,d) be a complete metric space and let M be a non-
empty bounded nearly subadmissible subset of X . If T ∈ KKM(M,M) is a k-set contraction,
0 < k < 1, and closed with TM ⊂M, then T has a fixed point inM.

The next result shows that we can replace k-set contractions in Theorem 2.6 by α-
condensing mappings.

Theorem 2.7. Let (X ,d) be a complete metric space and let M be a nonempty bounded
nearly subadmissible subset of X . If T ∈ KKM(M,M) is α-condensing, and closed with
TM ⊂M, then T has a fixed point inM.

In the course of the proof, we will apply the technique in the proof of the following
lemma.

Lemma 2.8 [8, Lemma 2.2]. Let F be a selfmapping of an arbitrary set Y and let f : Y →R+

be a nonnegative valued function defined on Y . Suppose that the following conditions hold:
(i) there exists a function ϕ∈Φ1 (i.e., ϕ :R+→R+ satisfying: for any ε > 0, there exists

δ > ε such that ε < t < δ implies ϕ(t)≤ ε) such that f (Fy)≤ ϕ( f (y)) for all y ∈ Y ;
(ii) f (y) > 0 implies f (Fy) < f (y) and f (y)= 0 implies f (Fy)= 0.
Then lim f (Fny)= 0 for each y ∈ Y .

Proof of Theorem 2.7. We follow the proof of Theorem 2.6. Let y ∈M be any point, and
let M0 =M. Define M1 = co(T(M0)∪{y})∩M, and Mn+1 = co(T(Mn)∪{y})∩M, for
each n. Then

α
(
Mn+1

)≤ α
(
T
(
Mn
))

< α
(
Mn
)≤ ··· < α(M), (2.3)

for each n (see [7]).
If we can prove that

limα
(
Mn
)= 0, (2.4)

then the rest of the proof will follow the same lines as of Theorem 2.6. To achieve (2.4),
we will apply the proof of Lemma 2.8. For each t ∈ R+, let At = {Mn : α(Mn) ≤ t} and
Bt = {α(Mn+1) :Mn ∈ At}. From (2.3), it is seen that Bt �= ∅ and bounded if At �= ∅.
Define ϕ(t)= supBt if At �= ∅. Otherwise, put ϕ(t)= 0. We claim that ϕ∈Φ1. Consider
the set Aε for ε > 0. If α(Mn)≤ ε for some n, let n0 be the smallest such n. If n0 = 0, then
by (2.3) it is seen that ϕ(t)≤ ε for all t > ε. Otherwise, let δ = α(Mn0−1). Thus δ > ε, and
if ε < t < δ, then by (2.3) we have ϕ(t) ≤ α(Mn0+1) < α(Mn0 ) ≤ ε. Therefore ϕ ∈Φ1. We
now prove (2.4).

Clearly, we have

α
(
Mn+1

)≤ ϕ
(
α
(
Mn
))
, α

(
Mn+1

)
< α
(
Mn
)

by (2.3) for each n. (2.5)

It follows from (2.3) that {α(Mn)} is strictly decreasing, hence it converges to some ε ≥ 0.
Suppose ε > 0. Since ϕ ∈Φ1, we have for some δ > ε, ϕ(t) ≤ ε for all t ∈ (ε,δ). Choose
n0 so that ε < α(Mn0 ) < δ. Thus ϕ(α(Mn0 ))≤ ε. But then (2.5) implies α(Mn)≤ ε for all
n > n0 which contradicts to (2.3). Hence (2.4) follows. �
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3. Picard iteratives for multivalued mappings on hyperconvex metric spaces

Ametric space (X ,d) is hyperconvex if for any family of points {xα} in X and any family of
positive numbers {rα} satisfying d(xα,xβ)≤rα+rβ, we have

⋂
α B(xα,rα) �= ∅where B(x,r)

is the closed ball with center at x and radius r. A subset E of X is said to be externally
hyperconvex if for any of those families {xα}, {rα}with d(xα,xβ)≤ rα + rβ and dist(xα,E)≤
rα, we have

⋂
α B(xα,rα)∩E �= ∅. The class of all externally hyperconvex subsets of X will

be denoted by �(X). Let H be the Hausdorff metric.
Let t be a single-valued selfmapping on a metric space (X ,d). A fixed point of t is

said to be contractive (cf. [9]) if all Picard iteratives of t converge to this fixed point.
A selfmapping t on a metric space (X ,d) is said to be asymptotically regular (cf. [10])
if limd(tn(x), tn+1(x)) = 0 for each x in X . Extend the concept naturally to multivalued
mappings with the Hausdorff metric taken into action.

Theorem 3.1 [8, Theorem 4.1]. Let t be a continuous and asymptotically regular selfmap-
ping on a complete metric space satisfying the following conditions:

(i) there exists ϕ∈Φ1 such that d(t(x), t(y))≤ ϕ(D(x, y)) for all x, y ∈ X ;
(ii) d(t(x), t(y)) < D(x, y) for all x, y ∈ X with x �= y.

Then t has a contractive fixed point. Here D(x, y) = d(x, y) + r[d(x, t(x)) + d(y, t(y))],
r ≥ 0.

ReplacingD by d, we present amultivalued version of Theorem 3.1 on a special setting,
namely, on the class of hyperconvex metric spaces.

Theorem 3.2. Let (X ,d) be a bounded hyperconvex metric space, and let T : X → �(X) be
asymptotically regular satisfying the following conditions:

(i) there exists ϕ∈Φ1 such that ϕ(x)≤ x, ϕ(x+ y)≤ ϕ(x) +ϕ(y), ϕ(x)= 0 if and only
if x = 0, and H(Tx,Ty)≤ ϕ(d(x, y)) for all x, y in X ;

(ii) H(Tx,Ty) < d(x, y) for all x, y ∈ X with x �= y.
Then, if δ(Tnx)→ 0 for each x ∈ X , T has a contractive fixed point. That is, there exists a
unique point ξ in X such that, for each x ∈ X , Tnx→ {ξ} = FixT .

Proof. The uniqueness of the fixed point is evident. We are going to find a selection t :
X → X so that t(x)∈ Tx for all x ∈ X and t satisfies the conditions in Theorem 3.1. Thus,
there is a point ξ in Fix t satisfying tn(x)→ ξ for all x ∈ X . To find a selection t, we apply
Zorn’s lemma to the family � = {(A, t) :∅ �= A ⊂ X , t : A→ A asymptotically regular,
t(a) ∈ Ta for all a ∈ A, and t satisfies (i) and (ii) in Theorem 3.1}. Partially order � by
(A1, t1)� (A2, t2) if A1 ⊂A2 and t2|A1 = t1.

Suppose A =∅ or (A, t) ∈� and x0 ∈ X \A. We will define a countable set {x0,x1,
x2, . . .}, possibly finite, and an extension function t∗ of t over A∪{x0,x1,x2, . . .} so that
(A∪ {x0,x1,x2, . . .}, t∗) ∈ �. Let x0,x1, . . . ,xn ∈ X \A have been defined for some n ≥
0 so that, for 1 ≤ k ≤ n, xk ∈ Txk−1, and when n ≥ 2, d(xi+1,xj+1) ≤ ϕ(d(xi,xj)) and
d(xi+1,xj+1) < d(xi,xj) for i < j in {1, . . . ,n− 1}. Moreover, d(t(x),xi+1)≤ ϕ(d(x,xi)) and
d(t(x),xi+1) < d(x,xi) for i∈ {1, . . . ,n− 1} and all x ∈ A.
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Put rk = ϕ(d(xk−1,xn)), and rt(x) = ϕ(d(x,xn)) for each 1 ≤ k ≤ n, and for all x ∈ A.
Thus, for 1≤ k ≤ n, x ∈ A, and for i < j in {1, . . . ,n− 1},

(i) dist(xk,Txn)≤H(Txk−1,Txn)≤ ϕ(d(xk−1,xn))= rk,
(ii) dist(t(x),Txn)≤H(Tx,Txn)≤ rt(x),
(iii) d(t(x),xk)≤ ϕ(d(x,xk−1))≤ ϕ(d(x,xn)) +ϕ(d(xk−1,xn))= rt(x) + rk, and
(iv) d(xi,xj)≤ ϕ(d(xi−1,xj−1))≤ ϕ(d(xi−1,xn)) +ϕ(d(xj−1,xn))= ri + r j .

Finally, for x, y ∈ A, d(t(x), t(y)) ≤ ϕ(d(x, y)) ≤ ϕ(d(x,xn)) + ϕ(d(y,xn)) = rt(x) + rt(y).
Therefore there exists a point xn+1 ∈

⋂
x∈AB(t(x),rt(x))

⋂n
k=1B(xk,rk)∩ Txn. The point

xn+1 has the following property: for k ≤ n, d(xk,xn+1)≤ rk = ϕ(d(xk−1,xn)), and for each
x∈A, d(t(x),xn+1)≤rt(x)=ϕ(d(x,xn)). Clearly, d(xk,xn+1)<d(xk−1,xn) and d(t(x),xn+1)<
d(x,xn).

If xn+1 ∈ A, the process terminates. Otherwise, we obtain a subset {x0,x1, . . . ,xn, . . .}
of X \A satisfying the conditions (i) and (ii) in Theorem 3.1 where we extend t to t∗ by
defining t∗(xn)= xn+1 for n≥ 0. Thus (A∪{x0,x1, . . .}, t∗)∈�.

In summary, the above argument shows that, if A=∅, then ({x0,x1, . . .}, t∗)∈�, that
is, � �= ∅. On the other hand if (A, t) is a maximal element in � (by Zorn’s lemma), we
must have A= X , that is, (X , t) belongs to � for some t. Apply Theorem 3.1, to conclude
that there exists a fixed point ξ of t such that tn(x)→ ξ for each x ∈ X . Consequently,
Tnx→ {ξ} for each x ∈ X and FixT = {ξ}. �
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