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1. Introduction

In this paper, the separation of convex sets in a real reflexive Banach space are investigated,
existence of a fixed-point theorem for a general mapping acting in a Banach space and the
obtained results are applied to study certain properties of continuous linear operators.
Furthermore, here is proved the solvability theorem for an inclusion with sufficiently
general mapping. Fixed-point theorems obtained here are some generalizations of results
obtained earlier in [1, 2] (see, also [3]).

It is known that (see [4–6]) sufficiently general results about the separation of convex
sets are available for the case when the space considered is a finite-dimensional Euclidean
space. But, if X is infinite-dimensional, it is not possible to prove such results since the
geometrical characteristics of an infinite-dimensional space essentially differ from those
of a finite-dimensional space. Here we prove results about the separation of convex sets in
an infinite-dimensional space which resemble the results in the finite-dimensional case,
provided that the space has a geometry satisfying some complementary conditions. These
results concern the separation of convex sets in a reflexive Banach space which, together
with its dual space, has a strictly convex norm (it is known that [7–10] in a reflexive
Banach space, such equivalent norm can be defined to consider that the space in this
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norm and his dual space in the respective norm are strictly convex spaces). Moreover,
the obtained results are used to prove some fixed-point theorems for sufficiently general
mappings. It should be noted that to investigated the existence of fixed-points, sufficiently
many works are dedicated (see, e.g., [1–3, 11–14], etc. and references therein).

Here we investigate certain properties of continuous linear operators acting in a reflex-
ive Banach space, and obtain conditions under which such operator has an eigenvector
(clearly this implies that the operator has an invariant subspace). It should be noted that
many works are devoted to the problem of type of the existence of an invariant subspace
of the linear operator (see, e.g., [15–18], etc.) and one of the essential results is obtained
in [16] (see, also [17]). In these papers, the connection of the considered linear operator
with a completely continuous operator played a basic role as in [16] (see, also [17, 18]).

In particular, here is obtained the following assertion. Let X and Y be Banach spaces,
let B(X ;Y) be the Banach space of linear bounded operators acting from X into Y (in
particular, if Y = X , then B(X ;Y)≡ B(X), as usual). Let BX

r (0)≡ {x ∈ X | ‖x‖X ≤ r} and
let X0 be a subspace of X , let x0 ∈ X0 be an element, then let BX0

r (x0)≡ BX
r (0)∩X0 + {x0}

be a closed ball of X0.

Theorem 1.1. Let X be a reflexive Banach space with strictly convex norm together with
its dual space. Then the operator A∈ B(X) possesses an eigenvector if and only if there exist
numbers r,μ �= 0, a subspace X0 of X and an element x0 ∈ X0 with ‖x0‖X > r > 0 such that

μA : BX0
r

(
x0
)−→ BX

r

(
x0
)
, μA

(
BX0
r

(
x0
))∩X0 �=∅ (1.1)

holds where BX0
r (x0) is a closed ball of X0.

Further, we conduct a result about existence of an invariant subspace of a linear bound-
ed operator without using a completely continuous operator.

2. Remarks on the separation of convex sets in a Banach space

We will cite the following known results (see [6, 12, 19, 20]) on the separation of convex
sets.

Theorem 2.1. Let	n (n≥ 2) be n-dimensional Euclidian space and K0, K1 are nonempty
convex sets in	n. In order that there exists a hyperplane separating K0 and K1 properly, it is
necessary and sufficient that the relative interiors riK0 and riK1 have no point in common,
that is, riK0 ∩ riK1 = ∅. In other words, K0 and K1 are properly separated if and only if
there exists a vector x0 ∈	n such that

inf
{〈
x,x0

〉 | x ∈ K0
}≥ sup

{〈
x,x0

〉 | x ∈ K1
}
,

sup
{〈
x,x0

〉 | x ∈ K0
}
> inf

{〈
x,x0

〉 | x ∈ K1
}
.

(2.1)

Further, in order that there exists a hyperplane separating these sets strongly, it is necessary
and sufficient that there exists a vector x0 ∈	n such that

inf
{〈
x,x0

〉 | x ∈ K0
}
> sup

{〈
x,x0

〉 | x ∈ K1
}

(2.2)
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or

inf
{∣∣x1− x2

∣
∣ | x1 ∈ K0, x2 ∈ K1

}
> 0. (2.3)

In other words, 0 /∈ cl(K0−K1) (i.e., 0 is not in the closure of the set K0−K1).

The general result on the separation of convex sets in an infinite-dimensional space X
has the following known formulation.

Theorem 2.2. Let K0 and K1 be disjoint convex subsets of a linear space X , and let K0 have
an internal point. Then there exists a nonzero linear functional f which separates K0 and
K1.

In a linear topological space, any two disjoint convex sets, one of which has an interior
point, can be separated by a nonzero continuous linear functional, that is, K0 ∩K1 = ∅,∫
K0 �=∅, and there exists an element x∗0 ∈ X∗ such that

inf
{〈
x,x∗0

〉 | x ∈ K0
}≥ sup

{〈
x,x∗0

〉 | x ∈ K1
}
. (2.4)

Moreover, if K0,K1 ⊂ X are open convex subsets in X , then they are strictly separated.
If K0 and K1 are disjoint closed convex subsets of a locally convex linear topological space

X , and if K0 is compact, then there exist constants c and ε, ε > 0, and a non-zero continuous
linear functional x∗0 ∈ X∗ on X , such that

inf
{〈
x,x∗0

〉 | x ∈ K0
}≥ c > c− ε ≥ sup

{〈
x,x∗0

〉 | x ∈ K1
}
,

({〈
x,x∗0

〉 | ∀x ∈ K0
}≥ c > c− ε ≥ {〈x,x∗0

〉 | ∀x ∈ K1
})
.

(2.5)

Now let X , Y be real Banach spaces and let X∗, Y∗ be their dual spaces. Here and
hereafter we will denote by X and Y reflexive Banach spaces with strictly convex norm
together with their dual spaces X∗, Y∗. A Banach space X is called strictly convex [12, 21]
if and only if ‖tx + (1− t)y‖X < 1 provided that ‖x‖X = ‖y‖X = 1, x �= y, and 0 < t < 1,
consequently any point from the unit sphere SX1 (0) is an extremal point.

We begin by proving a result on the dual space of a subspace of a reflexive Banach
space. We recall that a subset X0 of a Banach space X is called a subspace of X if it is a
linear closed subspace in X .

Proposition 2.3. Let X and its dual space X∗ be strictly convex reflexive Banach spaces,
and let X0 ⊂ X be a subspace of X . Then the dual space of a subspace X0 ⊂ X is equivalent
to a subspace of X∗ which is determined by the subspace X0, that is, X∗ has a subspace
X∗0 ⊂ X∗ defined by the unit sphere of the subspace X0 and X∗0 ≡ (X0)∗. Consequently, X0

and its dual space (X0)∗ are strictly convex reflexive Banach spaces under the norms induced
by the norms of X and X∗, respectively.

Proof. It is known from [5, 22, 23] that the dual space of the subspaceX0 ⊂ X is equivalent
to a factor (quotient) space of the form X∗/X⊥0 , where X⊥0 ⊂ X∗ is the annihilator of
X0 ⊂ X :

X⊥0 ≡
{
x∗ ∈ X∗ | 〈x,x∗〉= 0, ∀x ∈ X0

}
. (2.6)
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(Here the expression 〈·,·〉 denotes the dual form for the pair (X ,X∗), or an inner product
if X is a Hilbert space.) It is also known from [23] that the subspace X0 ⊂ X is a reflexive
Banach space under the norm induced from X and that its dual space (X0)∗ is also reflex-
ive. Moreover, if X is a strictly convex reflexive Banach space, then so is X0. In addition,
by [22], if X is a strictly convex reflexive Banach space, then an arbitrary element of the
unit sphere is an extremal point and the dual space (X0)∗ is equivalent to a subspace of
X∗. It remains, therefore, to identify this subspace.

In order to construct a dual subspace to X0, we will consider the duality mapping

� : X → X∗ for the pair (X ;X∗), that is,X �←→ X∗ (see, [8, 9, 20, 21, 24] and the references
therein). In the case under consideration, the duality mapping is bijective and together
with its inverse mapping is strictly monotone, surjective, odd, demicontinuous, bounded
and coercive. Hence we have 〈x,x∗〉 ≡ 〈x∗,x〉 for any x ∈ X , x∗ ∈ X∗, and in particular
for any x ∈ X we have x↔ x∗ = �(x), that is, it is an equivalence relation [5, 8, 22]. It
follows from this that it will be enough to consider these mappings on the unit spheres of
X and X∗.

We will denote the unit spheres of X and X∗ by SX1 and SX
∗

1 , respectively. Then we have
�(SX1 )≡ SX

∗
1 . In addition, the following relations hold:

(∀x)(x ∈ SX1 ⇐⇒�(x)= x∗ ∈ SX
∗

1

)
,

(∀x)(x ∈ SX1 ⇐⇒
〈
x,�(x)〉= 〈x,x∗〉= ‖x‖X ·

∥
∥x∗

∥
∥
X∗ = 1 · 1), (2.7)

and conversely

(∀x∗)(x∗ ∈ SX
∗

1 ⇐⇒ 〈x∗,�−1(x∗)〉= 〈x∗,x〉= ∥∥x∗∥∥X∗ · ‖x‖X = 1 · 1), (2.8)

since the duality mapping is a homeomorphism, by virtue of the conditions of the propo-
sition (see, [8, 21] and the references therein). Moreover, the following relation holds:

∀x ∈ X , ∃ x̃ ∈ SX1 so that x = x̃‖x‖X . (2.9)

Hence we have that the unit sphere SX1 defines the whole space X in the sense that X ≡
SX1 ×	+;	+ ≡ {τ ∈	 : τ ≥ 0}.

Hence, if X0 ⊂ X is a subspace of X , then X0 can be defined through a subset of the
unit sphere of the form SX0

1 ≡ SX1 ∩X0 ≡ SX1 (0)∩X0. Here, S
X0
1 denotes the unit sphere of

X0 with the norm induced from X . Thus, the space X0 is a strictly convex reflexive Banach
space. Consequently, there exists an equivalent norm such that X0, together with its dual
space, is a strictly convex reflexive Banach space. Under the induced topology—which
we obtain by virtue of the duality mapping � from X onto X∗—the sphere SX0

1 will be
transformed onto a subset which can be expressed in the form

S̃∗1 ≡
{
x∗ ∈ SX

∗
1 | 〈�−1(x∗),x∗〉= ‖x‖X ·

∥
∥x∗

∥
∥
X∗ = 1, �−1(x∗)= x ∈ SX0

1

}
, (2.10)

because we have

�−1(S̃∗1
)≡ SX0

1 , ∀x∗ ∈ S̃∗1 ⊂ SX
∗

1 ⇐⇒ x =�−1(x∗)∈ SX0
1 . (2.11)
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It is known that if X and X∗ are strictly convex reflexive spaces, then the duality mapping
� : X � X∗ : �−1 is the Gateaux-differential of a strictly convex functional � and �−1 is
the Gateaux-differential of a strictly convex functional �

∗, that is, the duality mapping

X
�←→ X∗ is a positively homogeneous potential operator with strictly convex potential.

In addition, there is a strongly monotone increasing continuous function Φ :	+ →	+,
Φ(0)= 0, Φ(τ) ↗ +∞ when τ ↗ +∞ such that �(τx)=Φ(τ)x∗ for any x ∈ SX1 and x∗ ∈
SX

∗
1 , where 〈x,x∗〉 ≡ 1 and τ ∈	+ [8]. Consequently, �(BX0

1 ) is a convex subset X∗ (see
also [5]). Thus we obtain that S̃∗1 defined by (2.10) is the unit sphere of the subspace
(X0)∗ from X∗, which we can denote by X∗0 (i.e., (X0)∗ ≡ X∗0 ) that also is equivalent to
X∗/X⊥0 .

In other words we have obtained thatX∗0 is equivalent to the dual space of the subspace
X0 of X , and so a subspace X0 of a reflexive Banach space X is a reflexive Banach space
under the induced topology under the conditions of the proposition. �

Note 2.4. It should be noted that the validity of results of this type also follows from
results obtained by Phelps in [25] concerning the uniqueness of the extension of a linear
functional to the whole of a Banach space.

Remark 2.5. We note that the annihilator of X∗0 , which is a subspace ⊥X
∗
0 of X , is orthog-

onal to X0, that is,

⊥X∗0 ≡
{
y ∈ X | ‖x+ λy‖ ≥ ‖x‖, ∀x ∈ X0, ∀λ∈ [−1,1]}. (2.12)

In other words, the subspace ⊥X∗0 of X is generated by a subset S
⊥X∗0
1 of the sphere SX1

which has the form

S
⊥X∗0
1 ≡ {y ∈ SX1 | ‖x+ λy‖ ≥ 1, ∀x ∈ SX0

1 , λ=±1}. (2.13)

We will now show that if X is a reflexive Banach space which, together with its dual
space X∗ has a strictly convex norm, we may prove (under certain general conditions)
certain generalizations of the results on separation of convex sets.

Theorem 2.6. Let K0 and K1 be disjoint bounded convex subsets of a reflexive Banach space
X which, together with its dual space X∗, has a strictly convex norm, and let K0 have an
internal point relative to the subspace X0 ⊂ X , codimX X0 ≥ 1. Then there exists a nonzero
linear continuous functional x∗0 ∈ X∗ which properly separates K0 and K1. That is,

inf
{〈
x,x∗0

〉 | x ∈ K0
}≥ sup

{〈
x,x∗0

〉 | x ∈ K1
}
,

sup
{〈
x,x∗0

〉 | x ∈ K0
}
> inf

{〈
x,x∗0

〉 | x ∈ K1
}
.

(2.14)

Proof. It is easy to see that K0 ⊂ X0, and that it has a nonempty interior relative to X0. We
will consider all possible cases with respect to the position of the sets K0 and K1, which
are as follows:

(1) K1∩X0 ≡ K10 �=∅ (particular case, K1 ⊂ X0, i.e., K1 ≡ K10);
(2) K1∩X0 ≡∅.

First we will consider the subcase of case 1 for which K1 ⊂ X0, that is, K1 ≡ K10. We
can study separation in this case with the help of Proposition 2.3 because we can see the
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subspace X0 as a space X0 by virtue of Proposition 2.3. Then, by using Theorem 2.2, we
obtain the existence of a linear functional x∗0 ∈ X∗0 which separates K0 and K10, and using
the Hahn-Banach theorem we obtain an extension of this functional x∗0 to X (X∗) which
is equal to x∗0 on X0 because X (X∗) is a strictly convex Banach space.

Now assume thatK1 �= K10. Then in a similar way, we obtain the existence of a continu-
ous linear functional x∗0 ∈ X∗0 which separates the sets K0 and K10 relative to the subspace
X0, that is,

inf
{〈
x,x∗0

〉 | x ∈ K0
}≥ sup

{〈
x,x∗0

〉 | x ∈ K10
}
,

sup
{〈
x,x∗0

〉 | x ∈ K0
}
> inf

{〈
x,x∗0

〉 | x ∈ K10
} (2.15)

hold. From this, we obtain that there exists x1 ∈ X0 such that

sup
{〈
x,x∗0

〉 | x ∈ K10
}= 〈x1,x∗0

〉= c0, (2.16)

since K1 is a convex bounded set. Clearly, such an assertion is valid for any functional
x∗0 ∈ X∗0 which separates the sets K0 and K10. Since the linear functional x∗0 is defined on
the subspace X0, by the Hahn-Banach theorem, we can extend it to a continuous linear
functional on the whole space X . Therefore, at least for the point x1 ∈ X determined
by (2.16), we have a corresponding support hyperplane on this point separating the sets
K0 and K1. In other words, if we will consider hyperplanes {L(x∗0 )} which contain the
hyperplane generated by the functional x∗0 relative to X0, then there exists L1 in {L(x∗0 )}
which separates the sets K0 and K1. If this is not so, then there would exist a point x̃ of
K10 such that the relation 〈x̃,x∗0 〉 ≤ c0 is not fulfilled, that is, x̃ is contained in the other
half-space relative to the hyperplane generated by the functional x∗0 . This contradiction
shows that the assertion of the theorem is valid in case 1.

Now we will consider case 2. Since the set K1 is convex, there exist a subspace X̂ ⊂ X ,
codimX X̂ = 1, such that K0 ⊂ X0 ⊂ X̂ and the half-spaces X±

X̂
generated by it are such

that either K1 ⊂ cl X+
X̂
or K1 ⊂ cl X−

X̂
. Indeed, if we assume that such a subspace does not

exist, then we will obtain a contradiction with the condition that K1 is a convex set [7].
We should note that the “induction” method (or applying Zorn’s lemma) can be used for
the proof of this proposition in the sense that we can choose a sequence of expanding
subspaces in X which contain the subspace X0 (as in [19, 2]). More exactly, if X1 ⊂ X is
a subspace such that X0 ⊂ X1, codimX1 X0 = 1, then it is not difficult to see that if K1 ∩
X1 = K11 �=∅ then at least either K11 ⊂ cl(X1)+X0

or K11 ⊂ cl(X1)−X0
(since K1 is a convex

set). �

A subset K of X is called open relative to a subspace X0 of X if for any element x ∈ K ,
there exists a neighborhoodU(x) from X such thatU(x)∩X0 ⊂ K , and a subset K of X is
called closed relative to the subspace X0 of X if the complement CX0K is open set relative
to X0. Consequently, if X0 is a subspace of a Banach space X , if a set is closed relative to
subspace X0, it is closed with respect to X .

Theorem 2.7. Let X be a space as in Theorem 2.6, and let K0 and K1 be disjoint bounded
open convex sets relative to subspaces X0 and X1 of X , respectively, that is, K0 ⊂ X0 and
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K1 ⊂ X1 (codimX X0 ≥ 1, codimX X1 ≥ 1). Then K0 and K1 are strictly separated, that is,
there exists an element x∗0 ∈ X∗ such that

{〈
x,x∗0

〉 | ∀x ∈ K1
}
>
{〈
x,x∗0

〉 | ∀x ∈ K0
}
. (2.17)

Proof. Wewill consider all possible cases separately, as in the proof of Theorem 2.6. These
cases have the following form:

(1) K0 ⊂ X0 and K1 ⊂ X0, that is, X0 ≡ X1 (the subspaces or hyperplanes X0, X1 are
the same);

(2) K0 ⊂ X0 and K1∩X0 =∅;
(3) K0 ⊂ X0 and K1∩X0 = K10 �=∅.

Case 1 follows from Proposition 2.3 and Theorem 2.2, therefore we will consider the
remaining cases.

Separation of the sets considered in the remaining cases follows from Theorem 2.6.
So, we must show that this separation is strict. Thus we assume that the sets K0 and K1

are open relative to the subspaces X0 and X1 of X , respectively, and we will consider case
2. For the proof in this case, we will use the theorem of Kakutani and Tukey [23]. We
obtain with the help of these results that there exist two convex sets K00 and K11 such that
K00∩ K11 = ∅, K0 ⊂ K00, K1 ⊂ K11, and K00,K11 ⊂ X . Then if we choose a set K00 such
that K00 is a bounded open convex set of X , for example as K11 = K1, then we can use a
well-known result (Theorem 2.2). From here the statement of the theorem follows.

For the proof of case 3, one may use the proof of Theorem 2.6 and cases 1, 2. Thus we
obtain the validity of Theorem 2.7. �

Note 2.8. The above theorems remain correct if we replace one of the subspaces X0 and
X1 with a closed hyperplane. In this case, for example if X1 ≡ L is a closed hyperplane and
K1 ⊂ L, then K1− x0 with X1− x0 satisfies the condition of the theorem.

3. Some fixed-point theorems

Let X , Y and their dual spaces X∗, Y∗ be strictly convex reflexive Banach spaces. We will
consider a general mapping f acting from X into Y and investigate when the image of a
certain set under this mapping contains zero. It is clear that this result is equivalent to the
existence theorem for inclusion y ∈ f (x). Moreover, if Y = X , we will investigate when
this mapping f has a fixed point in some set from X . Here we will consider variants of
the fixed-point theorems of the type proved earlier in [1]. Other results of this type may
be proved analogously as in the papers mentioned above.

Specifically, let f : D( f ) ⊆ X → Y be a bounded mapping (i.e., if G ⊆ D( f ) is the
bounded subset of X , then f (G) is a bounded subset of Y) which may be multivalued
or discontinuous, and let BY

1 and SY1 be the unit ball and unit sphere from Y , respectively.
We will consider the following conditions. Let G⊆D( f ) be a bounded subset and

(i) there exists a subspace Y0 of Y with codimYY0 ≥ 1 such that f (G)∩Y0 ≡ fY0 (G)
is an nonvoid open (or closed) convex set relative to the subspace Y0;
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(ii) for any y∗ ∈ S
Y∗0
1 ≡ SY

∗
1 ∩Y∗0 , there exists x ∈G satisfying the inequality

〈
fY0 (x), y

∗〉∩	+ �=∅, 	+ ≡ {τ : τ ≥ 0}, (3.1)

and also
(i1) there exists a subspace Y0 of Y with codimYY0 ≥ 1 such that fY0 (G) is a convex

set with nonvoid internal relative to the subspace Y0;

(ii1) for any y∗ ∈ S
Y∗0
1 , there exists x ∈G satisfying the inequality 〈 fY0 (x), y

∗〉∩ (	+\
{0}) �=∅, for a dual form of the pair (Y0,Y∗0 ).

Theorem 3.1. Let f :D( f )⊆ X → Y be a bounded mapping, and let Y and its dual space
Y∗ be reflexive Banach spaces with a strictly convex norm. Assume that on a bounded subset
G⊆D( f ), f satisfies conditions (i), (ii) or conditions (i1), (ii1).

Then there exists x0 ∈G such that 0∈ f (x0), that is, 0∈ f (G).

Proof. Let f (G) be an open (or closed) convex set relative to the subspace Y1. For the
proof, it is sufficient to note that here we can use the separation theorem from the pre-
vious section. For this, we will consider the sets fY0 (G) and {0}, and prove the result by
reductio ad absurdum. Then it is enough to note that all the conditions of Theorem 2.6
(or of Theorem 2.2) are fulfilled relative to the pair (Y0,Y∗0 ). Consequently, we obtain the
correctness of Theorem 3.1 with the aid of Theorem 2.7. �

The next corollary immediately follows from Theorem 3.1.

Corollary 3.2 (fixed-point theorem). Let the mapping f :D( f )⊆ X → X be a bounded
mapping and let the space X be such as the space Y in Theorem 3.1. Assume that on a subset
G⊆D( f ), the mapping f0 defined by f0(x)≡ x− f (x) for any x ∈G satisfies conditions (i),
(ii) or (i1), (ii1) in the case when Y ≡ X and Y0 ≡ X0, respectively.

Then there exists x0 ∈ G such that x0 ∈ f (x0), that is, the mapping f possesses a fixed
point in the subset G.

For the proof, it is sufficient to note that under the conditions of the corollary, the
mapping f0 satisfies the conditions of Theorem 3.1. Consequently 0∈ f0(G).

In particular, if the set G ⊆ D( f ) is a closed ball BX
r (x0) centered at a point x0 ∈ X0

and having radius r > 0 for a subspace X0 of X , then we can formulate this corollary in
the following form (other results of such type exist in [3]). This may be proved using the

duality mapping � : X
�←→ X∗. It is known from [8, 11, 23] that if a Banach space X is

as above, then there exists a duality mapping � : X
�←→ X∗ which is a demicontinuous

strictly monotone operator together with its inverse mapping.

Corollary 3.3. Let f : D( f ) ⊆ X → X and X be as in Corollary 3.2, and let BX1
r (x0) ⊆

D( f ) be some ball with a point x0 of X1. Assume that f (BX1
r (x0)) ⊆ BX

r (x0) and that the
mapping f0 is such that f0X1 (B

X1
r (x0)) is an open (or closed) convex set relative to the subspace

X1 from X , where f0(x) ≡ x− f (x) for any x ∈ BX1
r (x0), f0X1 (x) ≡ f0(x)∩X1, BX1

r (x0) ≡
BX
r (x0)∩X1 and codimX X1 ≥ 1. Then f possesses a fixed point in BX

r (x0), that is, there
exists x̃ ∈ BX

r (x0) such that x̃ ∈ f (x̃).
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For the proof, it is enough to show that the necessary inequality is true for any x ∈ SX1
1 ,

which has the form

〈
f0X0

(
x0 + rx

)
,�(x)〉≡ 〈x0 + rx− f

(
x0 + rx

)
,�(x)〉

= 〈rx,�(x)〉− 〈 f (x0 + rx
)− x0,�(x)

〉

≥ r−∥∥ f (x0 + rx
)− x0

∥
∥≥ 0.

(3.2)

Let X , Y be Banach spaces as above, and let f : D( f ) ⊆ X → Y be a mapping which
may be multivalued or discontinuous. Let BY

1 and SY1 be the unit ball and unit sphere
from Y , respectively. We will conduct results on the solvability of inclusion y ∈ f (x) and
a fixed-point theorem that is used in the following sections.

4. About completeness of the image of a set under a linear mapping

In beginning, we will prove the following result.

Lemma 4.1. Let X and Y satisfy the above conditions and A∈ B(X ,Y). Then the image of
each closed bounded convex subset of X under operator A will be a closed bounded convex
subset of Y .

Proof. It is known from [12, 19] that in the conditions of the lemma, the operator A is
weakly compact. Let K ⊂ X be a bounded closed convex set and A(K)=M ⊂ Y . It is easy
to see that M is a bounded convex set of Y . So it remains to show that M is a closed
set.

Let {ym} ⊂M be a fundamental sequence (if the space is not separable, then we will
consider a general sequence but here for simplicity we will not conduct this case). Then
there exists y0 ∈ Y such that limm→∞ ym = y0.

We will consider an inverse image of the sequence {ym} ⊂M from K and denote it by
{xm}. It is clear that, generally, the inverse image is a set of the form {xm + kerA} ⊂ X .
Therefore, we must consider the set {xm + kerA} ∩K . Then there exists a subsequence
{xmk} ⊂ {xm + kerA}∩K such that xmk ⇀ x0 weakly in X for some x0 ∈ X by virtue of
reflexivity of the spaceX and boundedness of the set {xm +kerA}∩K . From here, follows
that xmk ⇀ x0 ∈ K weakly in X by virtue of completeness and convexity of set K [23,
19].

Thus the sequence {A(xmk )} converges weakly in Y , furthermore A(xmk )⇀ A(x0)
weakly in Y because A is weakly compact. On the other hand, we have A(xmk )= ymk and
ymk → y0 ∈ Y in Y by assumption. From here, it follows that A(x0) = y0, consequently
y0 ∈M.

So we have shown that if K ⊂ X is a bounded closed convex subset, then so is A(K)=
M in Y . �

Corollary 4.2. Under the conditions of the previous lemma, an affine mapping with the
mentioned linear operator satisfies the statement of this lemma.

The proof is obvious.
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5. On existence of an eigenvector of a linear bounded operator

Let X be a Banach space such as above, and let A∈ B(X), X0 be a closed subspace of X .

Lemma 5.1. Let A ∈ B(X), A �= 0, and there exist a closed subspace X0 of X and a closed
ball BX0

r (x0)⊂ X0, 0 /∈ BX0
r (x0) with a radius r > 0 and a center x0 ∈ X0 such that for a μ �=

0, the expressions μA : BX0
r (x0)→ BX

r (x0) ⊂ X holds, also μA(BX0
r (x0))∩X0 �=∅. Then the

operator A has a nontrivial eigenvector in the ball BX
r (x0), that is, there exists x1 ∈ BX

r (x0)∩
X0 and λ1 ∈ σ(A) such that Ax1 = λ1x1.

Proof. We will consider a mapping f : X → X defined in the form

f (x)≡ x−μAx+ x0−μAx0 = x− [μA(x+ x0
)− x0

]≡ x−A1x. (5.1)

From the condition, it is easy to see that

μA : BX0
r

(
x0
)−→ BX

r

(
x0
)=⇒ A1 : BX0

r (0)−→ BX
r (0) (5.2)

holds and A1 is an affine mapping.
Further, f (K) is a convex subset of X for any convex subset K from X . We will show

that if x1,x2 ∈ K ⊆ X are arbitrary elements and α ∈ R1, 0 ≤ α ≤ 1, then α f (x1) + (1−
α) f (x2)∈ f (K). In fact,

y ≡ α f
(
x1
)
+ (1−α) f

(
x2
)= αx1−αA1x1 + (1−α)

(
x2−A1x2

)

= αx1 + (1−α)x2−
[
αA1x1 + (1−α)A1x2

]= αx1 + (1−α)x2 + x0

−μA
(
αx1 + (1−α)x2

)−μAx0 = x− [μA(x+ x0
)− x0

]= f (x),

(5.3)

here x = αx1 + (1− α)x2 ∈ K . Consequently, f (x) = y ∈ f (K) by virtue of convexity of
K . Thus we have that f (BX0

r (0)) is a convex subset of X .
From boundedness of the operator A, it follows that the image f (BX

r (0)) is a bounded
subset of X , that is, the inequality

∥
∥ f (x)

∥
∥
X ≤ ‖x‖X +

∥
∥x0
∥
∥
X +

∥
∥μA

(
x+ x0

)∥∥
X ≤ C

(|μ|,‖A‖)(r +∥∥x0
∥
∥
X

)
(5.4)

holds for any x ∈ BX
r (0) where C(|μ|,‖A‖) > 0 is a number. Thus, using Corollary 3.3, we

obtain that f (BX
r (0)) is a bounded closed convex set of X .

Hence, the mapping f on the ball BX0
r (0) satisfies all conditions of Theorem 3.1 (in

particular, A1 satisfies all conditions of Corollary 3.3) by virtue of the conditions of
Lemma 5.1 and
〈
f (x),�(x)〉= 〈x,�(x)〉− 〈A1x,�(x)

〉= 〈x,�(x)〉

− 〈μA(x0 + x
)− x0,�(x)

〉≥ ‖x‖X
(‖x‖X −

∥
∥μA

(
x0 + x

)− x0
∥
∥
X

)≥ 0
(5.5)

holds for any x ∈ SX0
r (0), where � : X � X∗ is a duality mapping which in this case is a

homeomorphism.
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Consequently, we obtain using Corollary 3.3 that there exists x̃ ∈ BX0
r (0) such that

A1x̃ = x̃, that is, μA(x0 + x̃) = x0 + x̃. The last equality shows that the obtained element
x0 + x̃ is an eigenvector of the operator A with respect to the eigenvalue λ= μ−1. (Obvi-
ously, μ−1 ≤ ‖A‖X→X .) �

We must note that when X0 ≡ X this lemma follows also from the Tychonov-
Schauder fixed-point theorem as the operator A is weakly compact.

The following statement immediately follows from Lemma 5.1.

Corollary 5.2. Let X be as in Lemma 5.1, A ∈ B(X), A �= 0, and x̃0 let be a nonzero
element of X0. Then there exist numbers μ �= 0 and r > 0 such that the mapping f0 : f0(x)≡
μ(Ax+ x̃0), for all x ∈ X , possesses a fixed point in the closed ball BX

r (0)⊂ X .

Proof. For the proof, we must show that there is a closed ball BX
r (0) ⊂ X with radius

r > 0 such that the mapping f0(x) satisfies the inequality ‖ f0(x)‖X ≤ r for any x ∈ BX0
r (0),

that is, we must find a number r(μ) > 0. Such number exists under the conditions of the
corollary. In fact, we have

∥
∥ f0(x)

∥
∥
X =

∥
∥μ
(
Ax+ x̃0

)∥∥
X ≤ |μ|

(‖A‖X0−→Xr +
∥
∥x̃0
∥
∥
X

)
(5.6)

for any x ∈ BX0
r (0). For fulfilment of the inequality, ‖ f0(x)‖X ≤ r is enough for

r‖A‖X0→X +
∥
∥x̃0
∥
∥
X ≤

r

|μ| (5.7)

to hold, and we have

r ≥ |μ|∥∥x̃0
∥
∥
X

(
1−|μ|‖A‖X0→X

)−1
or |μ|−1 > ‖A‖X0→X . (5.8)

Hence the necessary ball is found. Further, since the mapping f0 satisfies all condi-
tions of Corollary 3.3, we can apply this result to the considered case. Then we obtain
Corollary 5.2 using Corollary 3.3, in other words, there exists a point x1 ∈ BX

r (0) such
that f0(x1)= x1, that is, Ax1 + x̃0 = μ−1x1. �

Lemma 5.3. Let X and the operator A ∈ B(X) be such as in Lemma 5.1, furthermore A
possesses a nontrivial eigenvector xλ0 corresponding to the eigenvalue λ0 : |λ0| ≤ ‖A‖. Then
there exist a subspace X0 of X , a nonzero element x0 ∈ X0, and numbers μ, r such that μ �= 0,
0 < r < ‖x0‖X , and the following relation holds:

μA : BX0
r

(
x0
)−→ BX

r

(
x0
)
, μA

(
BX0
r

(
x0
))∩X0 �=∅. (5.9)

Proof. Let x0 = xλ0 . Then for the proof, it is sufficient to show that there exist a needed
subspace X0 of X and numbers μ �= 0, r > 0, which are found by the following way.

We assume the existence of a subspace X0 such that ‖A‖X0→X ≤ |λ0|. It is clear that
such subspace X0 exists (we can choose X0 as a subspace over the eigenvector x0, at least).
Let r > 0 be a number such that r < ‖x0‖, then we have

∥
∥μAx− x0

∥
∥
X =

∥
∥μAx− λ−10 Ax0

∥
∥
X

≤ ∥∥A(μx− λ−10 x0
)∥∥

X ≤
∣
∣λ0
∣
∣−1‖A‖X0→X

∥
∥μλ0x− x0

∥
∥
X

(5.10)
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for any x ∈ BX0
r (x0), where B

X0
r (x0)⊂ X is a closed ball. From (5.10), it follows that μmust

be such that

∣
∣λ0
∣
∣−1‖A‖X0→X

∥
∥μλ0x− x0

∥
∥
X ≤ r or

∥
∥μλ0x− x0

∥
∥
X ≤ r. (5.11)

Then it is sufficient to choose μ as μ= λ−10 , because in this case inequality (5.11) holds
for for all x ∈ BX0

r (x0). The assertion follows from here. �

We obtain the following theorem from Lemmas 5.1 and 5.3.

Theorem 5.4. Let X be a Banach space such as above. Then an operatorA∈ B(X) possesses
a nontrivial invariant subspace (an eigenvector, at least) if and only if there exist numbers
μ,r, a subspace X0 of X , and an element x0 ∈ X0 such that x0 �= 0, 0 < r < ‖x0‖X , μ �= 0 and

μA : BX0
r

(
x0
)−→ BX

r

(
x0
)
, μA

(
BX0
r

(
x0
))∩X0 �=∅ (5.12)

hold for the closed ball BX0
r (x0).

Remark 5.5. It is easy to see that Theorem 5.4 is correct for a linear compact operator in
the case of an arbitrary Banach space.

6. Some remarks on existence of the invariant subspace

Let X be a Banach space such as above and A∈ B(X), and let BA(X) be a subset of B(X)
of operators that are commuting with A. It is obvious that BA(X) �=∅.

Since BA(X) contains an operator satisfying the conditions of Theorem 5.4, then A
possesses an invariant subspace in X , we will consider the case when this is not known.

So let x0 �= 0 be an element of X , and let Br(x0)⊂ X be a closed ball such that 0 < r <
‖x0‖X . As known [16] (see, also [17]), there exist operators Aβ ∈ BA(X), β ∈ I ⊂ R1 such
that Aβ(Br(x0))∩Br(x0) �=∅, which can be shown by the same way. From Section 4, it
follows that Aβ(Br(x0))∩Br(x0) is closed for each β ∈ I . Let

B0 ≡
{
Aβ ∈ BA(X) |Aβ

(
Br
(
x0
))∩Br

(
x0
) �=∅, β ∈ I

}
,

VAβ ≡
{
x ∈ Br

(
x0
) |Aβ ∈ B0, Aβ(x)∈ Br

(
x0
)}
, β ∈ I.

(6.1)

It is clear that if Aβ ∈ B0, then μAβ ∈ B0 also for some numbers μ, moreover we can
choose these numbers such that

μAβ
(
Br
(
x0
))∩Br

(
x0
)⊇Aβ

(
Br
(
x0
))∩Br

(
x0
)
. (6.2)

So we will select μβ as

μβ : μβAβ
(
Br
(
x0
))∩Br

(
x0
)

= sup
{
μAβ

(
Br
(
x0
))∩Br

(
x0
) | μAβ

(
Br
(
x0
))∩Br

(
x0
)⊇Aβ

(
Br
(
x0
))∩Br

(
x0
)}
.

(6.3)

Thus we assume that x0 ∈ X , x0 �= 0. Further, we regard μβ selected such that the re-
lation (6.3) holds, therefore we choose only one of such operators and define it as Aβ.
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Under these assumptions, we have
⋃

Aβ∈B0
VAβ = Br(x0), because otherwise as known (see

[16, 17], etc.), operators from B0 have invariant subspace.
It is easy to see that if A1,A2 ∈ B0 then α1A1 + α2A2 ∈ B0 for some numbers α1 ≥ 0,

α2 ≥ 0, besides the operator α1A1 + α2A2 ≡ Ã such that there exists x̃ ∈ Br(x0)∩VÃ for
which x̃ /∈ VA1 ∪VA2 holds. For example, if VA1 ∩VA2 =∅ then some convex subset of
a convex hull on VA1 ∪VA2 will be contained in VÃ. This shows that with use of this
method, we can construct operators from B0 by using the operators from B0 for which
VÃ ⊆ Br(x0).

Let {Aβ | β ∈ I0 ⊂ I} be a minimal subset of B0 for which
⋃

β∈I0
VAβ = Br

(
x0
)

(6.4)

(the number I0 of such operators for which (6.4) takes place may be finite).
Now, we define the following mapping:

f (x)≡ {
⋃

Aβx | β ∈ I0
}
, x ∈

⋃
VAβ , (6.5)

where
⋃
Aβx is the union of an image of the operators Aβ for which x ∈ VAβ . Obviously,

f is a multivalued mapping (generally speaking) and f (Br(x0)) ⊆ Br(x0). Therefore, we
will consider the mapping f1 : f1(x) ≡ x− f (x) for any x ∈ Br(x0), that is, for any x ∈
⋃

β∈I0 VAβ .
So, we consider the following condition.
(1) Assume that the mapping f defined in (6.5) is such that there exist a subspace X0 of

X and a closed ball BX0
r (x0) on which f1(B

X0
r (x0))∩X0 is a convex closed (or open)

subset of X0.

Theorem 6.1. Let X be a Banach space as above and A∈ B(X) is such that there exist an
element x0 ∈ X , a number r : ‖x0‖X > r > 0, and a subset {Aβ ∈ B0 ⊂ BA(X) | β ∈ I0} for
which the mapping f defined in (6.5) satisfies condition 1. Then the operator A possesses an
invariant subspace.

The proof of the theorem follows from Corollary 3.3 as all conditions of Corollary 3.3
hold in this case. In fact with using Corollary 3.3, we obtain that in the class BA(X) there
exists an operator which possesses an eigenvector in the ball Br(x0). The theorem follows
from here.
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