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We answer into affirmative an open question raised by A. Razani in 2005. An essential
role in our proofs is played by the separation axiom in the definition of a fuzzy metric
space in the sense of George and Veeramani.
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1. Preliminaries

In this section, we recall some definitions and results that will be used in the sequel.

Definition 1.1 (see [1]). A triple (X ,M,∗), where X is an arbitrary set, ∗ is a continuous
t-norm, andM is a fuzzy set on X2× (0,∞), is said to be a fuzzy metric space (in the sense
of George and Veeramani) if the following conditions are satisfied for all x, y ∈ X and
s, t > 0:
(GV-1) M(x, y, t) > 0;
(GV-2) M(x, y, t)= 1 if and only if x = y;
(GV-3) M(x, y, t)=M(y,x, t);
(GV-4) M(x, y,·) is continuous;
(GV-5) M(x,z, t+ s)≥M(x, y, t)∗M(y,z,s).
Note (see [2]) that the “separation” condition (GV-2) means that

M(x,x, t)= 1 ∀x ∈ X , ∀t > 0,

x �= y =⇒M(x, y, t) < 1 ∀t > 0.
(1.1)

Definition 1.2 (see [1]). Let (X ,M,∗) be a fuzzy metric space. A sequence (xn)n∈N in X
is said to be convergent if there is x ∈ X such that limn→∞M(xn,x, t) = 1 for each t > 0



2 Fixed Point Theory and Applications

(the notation limn→∞ xn = x or xn → x will be used). A mapping f : X → X is said to be
continuous if f (xn)→ f (x) whenever (xn) is a sequence in X convergent to x.

Definition 1.3 (see [3]). Let (X ,M,∗) be a fuzzymetric space and 0 < ε < 1. Amapping f :
X → X is called fuzzy ε-contractive if M( f (x), f (y), t) >M(x, y, t) whenever 1− ε < M(x,
y, t) < 1.

The next continuity lemma can be found in [4] (also see [5, Theorem 12.2.3]).

Lemma 1.4. Let (X ,M,∗) be a fuzzy metric space. If limn→∞xn = x and limn→∞ yn = y,
then limn→∞M(xn, yn, t)=M(x, y, t) for all t > 0.

2. Main results

The following theorem has been proved by Razani in [3].

Theorem 2.1 (see [3, Theorem 3.3]). Let (X ,M,∗) be a fuzzy metric space, where the
continuous t-norm is defined as a∗ b =min{a,b}. Suppose f is a fuzzy ε-contractive self-
mapping ofX such that there exists a point x ∈ X whose sequence of iterates ( f n(x)) contains
a convergent subsequence ( f ni(x)). Then ξ = limi→∞ f ni(x) is a periodic point, that is, there
is a positive integer k such that f k(ξ)= ξ.

In [3, Question 3.7], it has been asked whether Theorem 2.1 would remain true if ∗ is
replaced by an arbitrary t-norm.

With Theorem 2.3, we answer into affirmative this question. In the proofs of our the-
orems, we need the following.

Lemma 2.2. Every fuzzy ε-contractive mapping in a fuzzy metric space is continuous.

Proof. The continuity of the fuzzy ε-contractive mapping f is an immediate consequence
of the implication

M(x, y, t) > 1− ε =⇒M
(
f (x), f (y), t

)≥M(x, y, t) (2.1)

which can be proved as follows: if M(x, y, t) < 1, then M(x, y, t) > 1− ε implies M( f (x),
f (y), t) > M(x, y, t), while if M(x, y, t) = 1 then, due to (GV-2), we have x = y, hence
M( f (x), f (y), t)=M(x, y, t). �

Theorem 2.3. Let (X ,M,∗) be a fuzzy metric space. Then for every fuzzy ε-contractive
mapping f on X with the property that there exists a point x ∈ X whose sequence of iterates
( f n(x))n∈N contains a convergent subsequence, the point ξ = limi→∞ f ni(x) is a periodic
point.

Proof. Since ∗ is continuous, there is δ ∈ (0,ε) such that (1− δ)∗ (1− δ) > 1− ε. Also,
there is a positive integerN1 such that i≥N1 impliesM( f ni(x),ξ, t/2) > 1− δ, for all t > 0.
Fix a k ≥N1 and denote nk+1−nk by s. As f is fuzzy ε-contractive andM( f nk (x),ξ, t/2) >
1− ε, we have

M
(
f nk+1(x), f (ξ),

t

2

)
≥M

(
f nk (x),ξ,

t

2

)
> 1− δ > 1− ε (2.2)
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and, after nk+1−nk iterations,M( f nk+1 (x), f s(ξ), t/2) > 1− δ. Therefore,

M
(
ξ, f s(ξ), t

)≥M
(
f nk+1 (x),ξ,

t

2

)
∗M

(
f nk+1 (x), f s(ξ),

t

2

)

≥ (1− δ)∗ (1− δ) > 1− ε ∀t > 0.
(2.3)

Since f is continuous, limi→∞ f ni(x)= ξ implies limi→∞ f ni+s(x)= f s(ξ), therefore, by
Lemma 1.4,

lim
i→∞

M
(
f ni(x), f ni+s(x), t

)=M
(
ξ, f s(ξ), t

) ∀t > 0. (2.4)

As the sequence of real numbers (zn)n≥nk , zn :=M( f n(x), f n+s(x), t)n≥nk is convergent
for every t > 0 (being nondecreasing and bounded), one has

lim
n→∞M

(
f n(x), f n+s(x), t

)=M
(
ξ, f s(ξ), t

) ∀t > 0. (2.5)

On the other hand, from f ni( f (x)) = f ( f ni(x))→i→∞ f (ξ) and f ni( f s+1(x)) =
f s+1( f ni(x))→ f s+1(ξ), it follows that

lim
i→∞

M
(
f ni+1(x), f ni+1+s(x), t

)=M
(
f (ξ), f s+1(ξ), t

) ∀t > 0, (2.6)

that is,

M
(
ξ, f s(ξ), t

)=M
(
f (ξ), f s+1(ξ), t

) ∀t > 0. (2.7)

We claim that f s(ξ) = ξ. Indeed, if f s(ξ) �= ξ then, due to (GV-2), M(ξ, f s(ξ), t) < 1,
for all t > 0 and since M(ξ, f s(ξ), t) > 1− ε for all t > 0, we have 1− ε < M(ξ, f s(ξ), t) <
1 for all t > 0. This implies M(ξ, f s(ξ), t) < M( f (ξ), f s+1(ξ), t) for all t > 0, which is a
contradiction. Therefore, f s(ξ)= ξ, concluding the proof. �

Example 2.4. Consider fuzzy metric space (N∗,M,∗), where N∗ = {1,2, . . .}, a∗ b =
min{a,b}, and

M(x, y, t)=
⎧
⎪⎨

⎪⎩

1
2
, x �= y,

1, x = y,
(2.8)

for all t > 0. The mapping f :N∗ →N∗,

f (x)=
⎧
⎨

⎩
1 if x is even,

2 if x is odd,
(2.9)

is fuzzy 1/2-contractive, in the absence of the condition 1− ε < M(x, y, t) < 1. The se-
quence of the successive approximations of 1 is 2,1,2,1,2,1, . . ., and its subsequence
1,1, . . . converges to 1, which is a periodic point for f .

In the following, we show that the assertion [3, Corollary 3.5] claiming that in the
conditions of Theorem 2.1 we cannot haveM(ξ, f (ξ), t) > 1− ε, is not correct. As amatter
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of fact, we will show in Theorem 2.7 thatM(ξ, f (ξ), t) > 1− ε is a sufficient condition for
the existence of a fixed point for a fuzzy ε-contractive mapping.

Example 2.5. Consider the standard fuzzy metric space (X ,M,∗), where X = (−∞,∞),
M(x, y, t) = t/(t + |x− y|), a∗ b =min{a,b}, and the mapping f : X → X , f (x) = x/2.
Since

M
(
f (x), f (y), t

)= 2t
2t+ |x− y| >

t

t+ |x− y| =M(x, y, t) (2.10)

for all x, y ∈ X , x �= y, and t > 0, f is fuzzy ε-contractive for every ε ∈ (0,1) and it is
immediate that the sequence of iterates of any point converges to 0. As 0 is a fixed point
of f , we haveM(0, f (0), t)= 1 > 1− ε for every ε ∈ (0,1).

The error in the proof of the corollary derives from the fact that the (strict) inequality
M( f 2(ξ), f (ξ), t) >M( f (ξ),ξ, t) (see [3]) takes place only ifM( f (ξ),ξ, t) �= 1, that is, (due
to (GV-2)) only if f (ξ) �= ξ. The next proposition is a correct version of [3, Corollary 3.5].

Proposition 2.6. Let (X ,M,∗) be a fuzzy metric space and let f : X → X be a fuzzy ε-
contractive mapping. Suppose that there is ζ ∈ X such that M(ξ, f (ξ), t) > 1− ε for some
t > 0 and f k(ξ)= ξ for some integer k ≥ 1. Then f (ξ)= ξ.

Proof. FromM(ξ, f (ξ), t) > 1− ε, it follows that

M
(
f l(ξ), f l+1(ξ), t

)≥M
(
f (ξ), f 2(ξ), t

)
(2.11)

for all l ≥ 1. Thus,

M
(
ξ, f (ξ), t

)=M
(
f k(ξ), f k+1(ξ), t

)≥M
(
f (ξ), f 2(ξ), t

)
. (2.12)

If we had f (ξ) �= ξ, then due to (GV-2),M(ξ, f (ξ), t) �= 1. AsM(ξ, f (ξ), t) > 1− ε, from
the definition of a ε-fuzzy contractive mapping, the strict inequality

M
(
f (ξ), f 2(ξ), t

)
>M

(
ξ, f (ξ), t

)
(2.13)

would follow, and thus we would obtain

M
(
ξ, f (ξ), t

)≥M
(
f (ξ), f 2(ξ), t

)
>M

(
ξ, f (ξ), t

)
. (2.14)

This contradiction completes the proof. �

A sufficient condition for the existence of a fixed point for a fuzzy ε-contraction is
given in the next theorem.

Theorem 2.7. Let (X ,M,∗) be a fuzzy metric space and let f : X → X be a fuzzy
ε-contractive mapping. Suppose that for some x ∈ X , the sequence ( f n(x))n∈N contains a
convergent subsequence and let ζ ∈ X be its limit. If there exists t0 > 0 such that M(x, f (x),
t0) > 1− ε andM(ζ , f (ζ), t0) > 1− ε, then ζ is a fixed point of f .

Proof. Let xn = f n(x) and let (xnk )k∈N be a convergent subsequence of (xn). As the se-
quence ( f (xnk ))k∈N converges to f (ζ) and the sequence ( f ( f (xnk )))k∈N converges to
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f ( f (ζ)) (see Lemma 2.2), we have (see Lemma 1.4)

M
(
xnk , f

(
xnk
)
, t
)−→M

(
ζ , f (ζ), t

) ∀t > 0,

M
(
f
(
xnk
)
, f 2
(
xnk
)
, t
)−→M

(
f (ζ), f 2(ζ), t

) ∀t > 0.
(2.15)

Since M(x, f (x), t0) > 1− ε, the sequence (zn)n∈N, zn :=M(xn, f (xn), t0) is a nonde-
creasing sequence of numbers in [0,1], therefore it is convergent. As its subsequence
(M(xnk , f (xnk ), t0)) converges to M(ζ , f (ζ), t0), it follows that zn converges to M(ζ , f (ζ),
t0). Also,

lim
n→∞zn+1 = lim

n→∞M
(
f
(
xn
)
, f 2
(
xn
)
, t0
)=M

(
f (ζ), f 2(ζ), t0

)
, (2.16)

therefore the equalityM(ζ , f (ζ), t0)=M( f (ζ), f 2(ζ), t0) holds.
Suppose ζ �= f (ζ). Then, due to (GV-2),M(ζ , f (ζ), t0) is not 1, hence 1− ε <M(ζ , f (ζ),

t0) < 1. This implies that M( f (ζ), f 2(ζ), t0) > M(ζ , f (ζ), t0), contradicting the above
equality. Therefore, ζ is a fixed point of f . �

Example 2.8. Let X = (0,∞), M(x, y, t) =min{x, y}/max{x, y} for all t > 0 and a∗ b =
ab. Then (see [6]), (X ,M,∗) is a fuzzymetric space. Since

√
t > t for all t ∈ (0,1), themap-

ping f : X → X , f (x) = √x, is fuzzy ε-contractive for every ε ∈ (0,1) and the sequence
( f n(1))n∈N is convergent to 1, the fixed point of f . Note that the conditionM(1, f (1), t) >
1− ε is not satisfied by the mapping in Example 2.4.

Remark 2.9. Theorem 2.3 is Theorem 2.4 in our archived manuscript 35106, submitted
in the 4th of August 2005 to FPTA. Recently, Ćirić et al. [7] solved a similar question of
Razani for mappings in intuitionistic fuzzy metric spaces.
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