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1. Introduction

Because of [1], it is well known that a map on the interval must have periodic points of each
least period if it has a periodic point of least period 3. This result was actually a special case of
Sharkovskii’s theorem [2]. Its various generalizations became a rich and active field in mathe-
matics (see [3]).

It is very natural to ask for an analogy of Sharkovskii’s theorem for maps on the circle.
Unfortunately, the answer is negative if the period of a periodic orbit is given merely. For
any positive integer n, the 360/n degree rotation admits all points as periodic points with
least period n, but has no periodic point with any other least periods. Thus, one needs more
information about the given periodic orbits in order to obtain other periodic points. In [4],
the existence of periodic points was obtained according to the homotopy classes, that is, the
degrees, of maps on the circle. More general, combinatorial structures of given period orbits of
maps on graphs (as opposed to merely their periods) were formulated as the “pattern” [5, 6].

In this note, by combining algebraic topology and dynamical system approaches, we
will classify relative maps (i.e., maps with invariant subsets) into some relative homotopy-
conjugacy classes. Such an idea is an extension of those in [5, 7]. Especially, consider the maps
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on the circle having periodic orbits with least period 3, we will show that except for the maps
in one relative homotopy-conjugacy class, all maps have periodic points with least period n for
all positive integer n/= 2, where the given periodic orbits are regarded as their finite invariant
subsets. Our main tool is the relative Nielsen fixed point theory. At the end, we present some
examples showing that our conclusion is not true if the least period of the given periodic orbit
is larger than 5.

This paper is organized as follows. In Section 2, we will review some results in relative
Nielsen fixed point theory, which will be used here. A new classification of relative maps,
namely, “relative homotopy-conjugacy classes” will be defined in Section 3. Our main result
will be given in Section 4. In Section 5, we illustrate some examples when the given period is
larger than 5.

2. Surplus fixed point classes

In this section, we will review some definitions and results in relative Nielsen fixed point the-
ory, especially those related to our purpose here; see [8] for more details and [9] for general
relative Nielsen fixed point theory.

Consider a map f : X→X on a compact connected polyhedron X. Let p : ˜X→X be the
universal covering of X. A map ˜f : ˜X→ ˜X is said to be a lifting of f if the following diagram
commutes:

X̃

p

f̃

X̃

p

X
f

X

(2.1)

Let U be a path-connected subset of X. Fix a component ˜U of p−1(U), we have

U ∩ Fix(f) =
⋃

˜f

p
(

˜U ∩ Fix( ˜f)
)

, (2.2)

where ˜f ranges over all liftings of f . According to [8, Definition 2.1], two pairs ( ˜f, ˜U) and
( ˜f ′, ˜U′) of f on U are said to be conjugate if there exists a covering translation γ such that
γ( ˜U) = ˜U′ and ˜f ′ = γ ◦ ˜f ◦ γ−1.

Proposition 2.1. For any two pairs ( ˜f, ˜U) and ( ˜f ′, ˜U′) of f on U, either p( ˜U ∩ Fix( ˜f)) ∩ p( ˜U′ ∩
Fix( ˜f ′)) = ∅, if ( ˜f, ˜U) and ( ˜f ′, ˜U′) are not conjugate, or p( ˜U ∩ Fix( ˜f)) = p( ˜U′ ∩ Fix( ˜f ′)), if ( ˜f, ˜U)
and ( ˜f ′, ˜U′) are conjugate.

The subset p( ˜U ∩ Fix( ˜f)) of the fixed point set of f on U is said to be the fixed point
class of f on U being determined by the pair ( ˜f, ˜U). By the above proposition, the fixed point
set U ∩ Fix(f) of f on U splits into a disjoint union of the fixed point classes of f on U. Let
f : (X,A)→(X,A) be a relative map on a pair of compact polyhedra. One can consider the
fixed point classes of f on the components of X − A in the sense above. Each of these fixed
point classes is said to be a fixed point class of f on X −A.
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Definition 2.2 (see [10, Definition 3.1] and [8, Definition 4.7]). Let F be a fixed point class of f
onX−Awhich is determined by ( ˜f, ˜C), where ˜C is a component of p−1(X−A). The fixed point
class F is said to be nonsurplus if there is a component ˜A of p−1(A)with ˜A ∩ cl( ˜C)/=∅ such that
˜f( ˜A) ⊂ ˜A is said to be surplus if it is not nonsurplus.

Of most importance is that any surplus fixed point class is a compact set, and hence has
a well-defined index. The so-called surplus Nielsen number SN(f ;X − A) of a relative map
f : (X,A)→(X,A) on X −A is defined as the number of essential surplus fixed point classes of
f on X −A.

3. Relative homotopy-conjugacy classes

Here, we define a new classification of relative self maps, which is just a combination of relative
homotopy classes and relative topological conjugacy classes.

Definition 3.1. Two relative maps f : (X,A)→(X,A) and f ′ : (X,A′)→(X,A′) are said to
be relatively homotopy-conjugate if there is a finite sequence of relative maps: fk : (X,Ak)
→(X,Ak), k = 0, 1, 2, . . . , n, with A0 = A, An = A′, f0 = f, and fn = f ′ such that for each k,
k = 1, 2, . . . , n.

Either (1) fk−1 and fk are relatively homotopic, that is, Ak−1 = Ak and there is a relative
homotopy H : (X × I,Ak × I)→(X,Ak) such that H(x, 0) = fk−1(x) and H(x, 1) = fk(x) for all
x ∈ X.

Or (2) fk−1 and fk are relatively conjugate, that is, there is a relative homeomorphism hk

such that the following diagram commutes:

(
X ,Ak−1

)

hk

fk−1 (
X ,Ak−1

)

hk

(
X ,Ak

) fk (
X ,Ak

)
(3.1)

Clearly, “relative homotopy-conjugacy” is an equivalent relation in the set of rela-
tive maps on homeomorphic space pairs. Each equivalent class is said to be a relative homo
topy conjugacy class. In the case of circle maps, a similar relation, a little restricted, was named
as “h-equivalent” (see [5, page179]).

Lemma 3.2. If two relative maps f : (X,A)→(X,A) and f ′ : (X,A′)→(X,A′) are relatively
homotopy-conjugate. Then SN(f ;X −A) = SN(f ′;X −A′).

Proof. It is sufficient to show that the surplus Nielsen number is invariant under relative ho-
motopy and relative conjugacy. The first part was proved in [10, Theorem 3.6], and the second
part was given in [11, Proposition 3.11].

Since any essential surplus fixed point class is always nonempty, we obtain the following
theorem.

Theorem 3.3. Any relative map f ′ : (X,A′)→(X,A′) which is relatively homotopyconjugate to a
relative map f : (X,A)→(X,A) has at least SN(f ;X −A) fixed points on X −A′.
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This lower-bound property enables us to prove simultaneously the existence of fixed
points for all maps in a given relative homotopy-conjugacy class, instead of proving their exis-
tence individually.

4. Circle maps with periodic points of least period 3

In this section, we will consider the maps on the circle which have periodic points with least
period 3. Let us fix some notations.

For a triple (n0, n1, n2) of integers, we define a relative map f(n0,n1,n2) : S
1→S1 by

f(n0,n1,n2)
(

eθi
)

= exp
(

2πλ(n0,n1,n2)

(

θ

2π

)

i

)

, 0 ≤ θ < 2π, (4.1)

where the map λ(n0,n1,n2) : [0, 1)→R1 is defined by

λ(n0,n1,n2)(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

6x +
1
3

if 0 ≤ x ≤ 1
9
,

9n0x − n0 + 1 if
1
9
≤ x ≤ 2

9
,

−3x + n0 + 1 +
2
3

if
2
9
≤ x ≤ 1

3
,

3x + n0 − 1
3

if
1
3
≤ x ≤ 4

9
,

9n1x + n0 + 1 − 4n1 if
4
9
≤ x ≤ 5

9
,

n0 + n1 + 1 if
5
9
≤ x ≤ 7

9
,

9n2x + n0 + n1 + 1 − 7n2 if
7
9
≤ x ≤ 8

9
,

3x + n0 + n1 + n2 − 5
3

if
8
9
≤ x < 1.

(4.2)

We may regard S1 as a graph with three vertices υ0, υ1, υ2 and three edges w0, w1, w2, where
wk = {eθi | 2kπ/3 ≤ θ ≤ (2k + 2)π/3} and υk = e(2kπ/3)i, k = 0, 1, 2. Thus, f(n0,n1,n2) is a relative
self-map on the pair (S1, V = {υ0, υ1, υ2}) satisfying

w0 	−→ w1w2
(

w0w1w2
)n0w−1

2 ,

w1 	−→ w2
(

w0w1w2
)n1 ,

w2 	−→
(

w0w1w2
)n2w0.

(4.3)

Consider the universal covering p : R1→S1, which is defined by p(x) = e2πxi. The set of all
liftings of f(n0,n1,n2) is

{

˜f(n0,n1,n2),m | m = 0,±1,±2, . . . }, (4.4)

where ˜f(n0,n1,n2),m : R1→R1 is defined by

˜f(n0,n1,n2),m(x) = λ(n0,n1,n2)
(

x − [x]
)

+
(

n0 + n1 + n2 + 1
)

[x] +m, (4.5)

in which [x] is the maximal integer less or equal to x.
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Lemma 4.1. Let f(n0,n1,n2) : (S1, V )→(S1, V ) be the map as above. Then SN(f(n0,n1,n2);S
1 − V ) =

|n0| + |n1| + |n2|.

Proof. Since f(n0,n1,n2) : (S1, V )→(S1, V ) does not send any component (point) of V into itself,
˜f(n0,n1,n2),m(x)/=x for any lifting ˜f(n0,n1,n2),m (see (4.5) for definition) of f(n0,n1,n2) and any x ∈
p−1(V ). By definition, any fixed point class of f on S1 − V is surplus.

Note that S1 − V has three components: ẇ0, ẇ1, and ẇ2, which are, respectively, the
interiors of w0, w1, and w2. By a computation, any fixed point of f(n0,n1,n2) on ẇ0 has the form
exp (((2n0 − 2 − 2m)/(9n0 − 1))πi) for some integer m. Thus,

Fix
(

f(n0,n1,n2)
) ∩ ẇ0 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{

exp
(

2n0 − 2 − 2m
9n0 − 1

πi

)

| m = −1,−2, . . . ,−n0

}

if n0 > 0,

∅ if n0 = 0,
{

exp
(

2n0 − 2 − 2m
9n0 − 1

πi

)

| m = 0, 1, 2, . . . ,−n0 − 1
}

if n0 < 0.

(4.6)

Note that the fixed point exp (((2n0 − 2 − 2m)/(9n0 − 1))πi) is the projection of the fixed point
of ˜f(n0,n1,n2),m on the component (0, 2/3) of p−1(ẇ0), that is,

exp
(

2n0 − 2 − 2m
9n0 − 1

πi

)

= p

((

0,
2
3

)

∩ Fix
(

˜f(n0,n1,n2),m
)

)

. (4.7)

By definition of fixed point class (see Proposition 2.1), those |n0| fixed points lie in different
fixed point classes of f(n0,n1,n2) on S1 − V . It is obvious that each of these |n0| fixed point classes
has index sgn(det(1 −Df∗)) = sgn(1 − 9n0) = −sgn(n0), and hence is essential.

Similarly, f(n0,n1,n2) has |n1| essential fixed point classes on ẇ1, and has |n2| essential fixed
point classes on ẇ2. So, we are done.

Next two lemmas will show that these f(n0,n1,n2)’s can be regarded as representations of
maps on the circle having periodic points with least period 3.

Lemma 4.2. Two maps f(n0,n1,n2) and f(n′
0,n

′
1,n

′
2) are in the same relative homotopy-conjugacy class if and

only if (n0, n1, n2) and (n′
0, n

′
1, n

′
2) are the same up to a permutation.

Proof. It is a straight verification.

Lemma 4.3. Let f be a self-map on S1. If f has a periodic orbit P with least period 3, then as a relative
map, f : (S1, P)→(S1, P) is relatively homotopy-conjugate to a map f(n0,n1,n2) : (S

1, V )→(S1, V ) for
some integers n0, n1, n2.

Proof. Let P = {x0, x1, x2}. Since P is a periodic orbit with least period 3, we may assume
that x1 = f(x0), x2 = f2(x0), and x0 = f3(x0). Note that the three points in P are distinct.
There is a homeomorphism h : S1→S1 such that h(xk) = vk, k = 0, 1, 2. The relative map
h ◦ f ◦ h−1 : (S1, V )→(S1, V ) is therefore relatively conjugate to f : (S1, P)→(S1, P).

Consider the universal covering p : R1→S1. By using the notation at the beginning of this
section, we have p(0) = v0 and p(1/3) = v1. Since h◦f ◦h−1(v0) = v1, there is a unique lifting ˜f ′

of h ◦ f ◦h−1 such that ˜f ′(0) = 1/3. As h ◦ f ◦h−1(v1) = v2, it follows that ˜f ′(1/3) ∈ p−1(v2), and
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hence ˜f ′(1/3) = 2/3 + n0 for some integer n0. Note that R1 is simply connected. ˜f ′|[0,1/3] and
λ(n0,n1,n2)|[0,1/3] are homotopic relative to {0, 1/3} and form any integers n1 and n2. Project this
homotopy down to S1, we will have a homotopy, keeping υ0 and υ1 fixed, from h◦f ◦h−1|w0 to
f(n0,n1,n2)|w0 for any integers n1 and n2. Repeat this argument at h ◦ f ◦ h−1|w1 and h ◦ f ◦ h−1|w2 ,
we will obtain an integer n1 satisfying ˜f ′(2/3) = n0 + n1 + 1, and an integer n2 satisfying
˜f ′(1) = n0 + n1 + n2 + 4/3. Thus, ˜f ′|[0,1] is homotopic, relative {0, 1/3, 2/3, 1}, to ˜f(n0,n1,n2),0|[0,1].
Project down to S1, it follows that h ◦ f ◦ h−1 is relatively homotopic to f(n0,n1,n2), and therefore
f : (S1, P)→(S1, P) is relatively homotopy-conjugate to f(n0,n1,n2) : (S

1, V )→(S1, V ).

We restate a result of L. Block as follows.

Lemma 4.4 (see [12, Theorem A]). Let f be a self map on S1. Suppose that f has a fixed point and a
periodic point with least period n (n > 1). Then one of the following holds:

(i) f has a periodic point with least periodm for everym > n,
(ii) f has a periodic point with least period m for every m satisfying n>sm, where >s is
Sharkovskii’s order of natural number set given by

3 >s5 >s7 >s · · ·>s2·3 >s2·5 >s2·7 >s · · · >s8 >s4 >s2 >s1. (4.8)

Our main result is the following theorem.

Theorem 4.5. Let f be a self map on S1 having a periodic orbit P with least period 3. Then f has
periodic points of each least period except for 2 if it is not relatively homotopy-conjugate to f(0,0,0) :
(S1, V )→(S1, V ), which is the standard 120 degree rotation.

Proof. By Lemma 4.3, f : (S1, P)→(S1, P) is relatively homotopy-conjugate to a relative map
f(n0,n1,n2) : (S

1, V )→(S1, V ). From Lemmas 3.2 and 4.1, we have that SN(f ;S1 − P) = |n0| + |n1| +
|n2|. Since (n0, n1, n2)/= (0, 0, 0), SN(f ;S1 − P) > 0. It follows that f has a fixed point on S1 − P .
By using Lemma 4.4 in the case n = 3, f has periodic points with each least period except for
least period 2.

According to relative homotopy-conjugacy classes, period 3 on the circle almost forces
all the other periods with only one exception. Roughly speaking, the statement that period 3
implies every period is almost true for maps on the circle. In some sense, our results cannot be
improved because the map f(−1,−1,−1) has no periodic points with least period 2.

Our statements here give more information about the coexistence of periodic points on
the circle, comparing with the results in [4, 5, 12], and so on. The relative homotopy-conjugacy
classes refine the homotopy classes, indicated by degree, on maps on the circle, because of the
following.

Proposition 4.6. The degree of f(n0,n1,n2) is n0 + n1 + n2 + 1.

In fact, our improvement lies in the cases that the degree of a given map is −1, 0, or 1. It
was already known from [4] that a map on the circle has a periodic point of any least period
if its degree is not −2, −1, 0, or 1 and has a periodic point of any least period except for 2 if its
degree is −2.
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5. Periodic orbits with larger periods

Finally, we illustrate some examples to show what will happen if the least period of a given
periodic orbit is larger than 5.

Example 5.1. Letm be an integer with m ≥ 5, map g ′
m : S1→S1 is defined by

g ′
m

(

eθi
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

exp
((

3θ +
4π
m

)

i

)

if 0 ≤ θ ≤ 2π
m

,

exp
((

− 2θ +
14π
m

)

i

)

if
2π
m

≤ θ ≤ 4π
m

,

exp
((

θ +
2π
m

)

i

)

if
4π
m

≤ θ ≤ 6π
m

,

exp
((

2θ − 4π
m

)

i

)

if
6π
m

≤ θ ≤ 8π
m

,

exp
((

θ +
4π
m

)

i

)

if
8π
m

≤ θ < 2π,

(5.1)

and map g ′′
m : S1→S1 is defined by

g ′′
m

(

eθi
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

exp
((

2θ +
4π
m

)

i

)

if 0 ≤ θ ≤ 2π
m

,

exp
((

− θ +
10π
m

)

i

)

if
2π
m

≤ θ ≤ 4π
m

,

exp
((

2θ − 2π
m

)

i

)

if
4π
m

≤ θ ≤ 6π
m

,

exp
((

θ +
4π
m

)

i

)

if
6π
m

≤ θ < 2π.

(5.2)

If m is odd and larger than 5, g ′
m has a periodic orbit with least period m:

V ′ =
{

e0i, e(4π/m)i, e(6π/m)i, e(8π/m)i, e(12π/m)i, . . . , e(2(m−1)π/m)i,

e(2π/m)i, e(10π/m)i, e(14π/m)i, . . . , e(2(m−2)π/m)i}.
(5.3)

It is evident that g ′
m : (S1, V ′)→(S1, V ′) is not relatively homotopy-conjugate to any standard

rotation, but has no fixed point.
If m is even and larger than 4, g ′′

m has a periodic orbit with least period m:

V ′′ =
{

e0i, e(4π/m)i, e(6π/m)i, e(10π/m)i, e(14π/m)i, . . . , e(2(m−1)π/m)i,

e(2π/m)i, e(8π/m)i, e(12π/m)i, . . . , e(2(m−2)π/m)i}.
(5.4)

It is evident that g ′′
m : (S1, V ′′)→(S1, V ′′) is not relatively homotopy-conjugate to any standard

rotation, but has no fixed point.
This example implies that except for nonrotation condition, more hypotheses are neces-

sary to force a fixed point on the circle when we are given a periodic orbit with a larger least
period.

Recall from the proof of Theorem 4.5 that the existence of a fixed point is the key point
to have periodic points of other least periods, that is, to apply Lemma 4.4. Thus, Example 5.1
shows that the proof of Theorem 4.5 does not work if the least period of given periodic orbit is
larger than 5.
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