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1. Introduction

Convergence analysis of iterations of nonexpansive mappings in Banach and metric spaces
is a central topic in nonlinear functional analysis. It began with the classical Banach theorem
[1] on the existence of a unique fixed point for a strict contraction. Banach’s celebrated result
also yields convergence of iterates to the unique fixed point. There are several generalizations
of Banach’s fixed point theorem which show that the convergence of iterates holds for
larger classes of nonexpansive mappings. For instance, Rakotch [2] introduced the class of
contractive mappings and showed that their iterates also converged to their unique fixed
point.

In view of these results and their numerous applications, it is natural to ask if
convergence of the iterates of nonexpansive mappings will be preserved in the presence
of computational errors. In [3], we provide affirmative answers to this question. Related
results can be found, for example, in [4, 5]. More precisely, in [3] we show that if all exact
iterates of a given nonexpansive mapping converge (to fixed points), then this convergence
continues to hold for inexact orbits with summable errors. In [6], we continued to study the
influence of computational errors on the convergence of iterates of nonexpansive mappings
in both Banach and metric spaces. We show there that if all the orbits of a nonexpansive
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self-mapping of a metric space X converge to some closed subset F of X, then all inexact
orbits with summable errors also converge to this attractor set F. On the other hand, we also
construct examples which show that inexact orbits may fail to converge if the errors are not
summable.

Our purpose in the present paper is to consider the case where different exact orbits
converge to possibly different compact subsets of X. In Section 2, we obtain a convergence
result (see Theorem 2.1 below) under the assumption that the computational errors are
summable. This result is an extension of [3, Theorem 4.2]. In Sections 3 and 4, we provide
examples which show that the summability of errors is necessary for convergence (see
Proposition 3.1 and Theorem 4.1).

2. Convergence to compact sets

Let (X, ρ) be a complete metric space. For each x ∈ X, and each nonempty and closed subset
A ⊂ X, put

ρ(x,A) = inf
{
ρ(x, y) : y ∈ A

}
. (2.1)

For each mapping T : X → X, set T0x = x for all x ∈ X.

Theorem 2.1. Let T : X → X satisfy

ρ(Tx, Ty) ≤ ρ(x, y) ∀x, y ∈ X. (2.2)

Suppose that for each x ∈ X, there exists a nonempty compact set E(x) ⊂ X, such that

lim
i→∞

ρ
(
Tix, E(x)

)
= 0. (2.3)

Assume that {γn}∞n=0 ⊂ (0,∞),
∑∞

n=0γn < ∞,

{
xn

}∞
n=0 ⊂ X, ρ

(
xn+1, Txn

) ≤ γn, n = 0, 1, . . . . (2.4)

Then, there exists a nonempty compact subset F of X such that

lim
n→∞

ρ
(
xn, F

)
= 0. (2.5)

Proof. In order to prove the theorem, it is sufficient to show that any subsequence of {xn}∞n=0
has a convergent subsequence.

To see this, it is sufficient to show that for any ε > 0, the following assertion holds:
(P1) any subsequence of {xn}∞n=0 has a subsequence which is contained in a ball of

radius ε.
Indeed, there is an integer k ≥ 1 such that

∞∑

i=k

γi <
ε

8
. (2.6)
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Define a sequence {yi}∞i=k by

yk = xk, (2.7)

yi+1 = Tyi for all integers i ≥ k. (2.8)

There exists a nonempty compact set E ⊂ X such that

lim
i→∞

ρ
(
yi, E

)
= 0. (2.9)

By (2.4), (2.7), and (2.8),

ρ
(
xk+1, yk+1

) ≤ γk. (2.10)

Assume that q ≥ k + 1 is an integer and that for i = k + 1, . . . , q,

ρ
(
xi, yi

) ≤
i−1∑

j=k

γj . (2.11)

(Note that in view of (2.10), inequality (2.11) is valid when q = k + 1.)
By (2.2) and (2.11),

ρ
(
Tyq, Txq

) ≤ ρ
(
yq, xq

) ≤
q−1∑

j=k

γj . (2.12)

When combined with (2.4), this implies that

ρ
(
xq+1, yq+1

) ≤ ρ
(
xq+1, Txq

)
+ ρ

(
Txq, Tyq

) ≤ γq +
q−1∑

j=k

γj =
q∑

j=k

γj , (2.13)

so that (2.11) also holds for i = q + 1. Thus, we have shown that for all integers q ≥ k + 1,

ρ
(
yq, xq

) ≤
q−1∑

j=k

γj <
∞∑

j=k

γj <
ε

8
(2.14)

by (2.6). In view of (2.9), we have for all large enough natural numbers q,

ρ
(
xq, E

)
<

ε

4
. (2.15)

By (2.15), there exist an integer q0 > k and a sequence {zi}∞i=q0 ⊂ E such that

ρ
(
xi, zi

)
<

ε

3
for all integers i ≥ q0. (2.16)
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Consider any subsequence {xqi}∞i=1 of {xn}∞n=0. Since the set E is compact, the sequence {zqi}∞i=1
has a convergent subsequence {zqij }

∞
j=1

.

We may assume without loss of generality that all elements of this convergent
subsequence belong to B(u, ε/16) for some u ∈ X.

In view of (2.16),

xqij
∈ B

(
u,

ε

2

)
for all sufficiently large natural numbers j. (2.17)

Thus, (P1) holds and this completes the proof of Theorem 2.1.

Note that Theorem 2.1 is an extension of the following result established in [3].

Theorem 2.2. Let (X, ρ) be a complete metric space and let T : X → X be such that

ρ(Tx, Ty) ≤ ρ(x, y) ∀x, y ∈ X, (2.18)

and for each x ∈ X, the sequence {Tnx}∞n=1 converges in (X, ρ).
Assume that {γn}∞n=0 ⊂ (0,∞) satisfies

∑∞
n=0γn < ∞, and that a sequence {xn}∞n=0 ⊂ X satisfies

ρ(xn+1, Txn) ≤ γn, n = 0, 1, . . . . Then, the sequence {xn}∞n=1 converges to a fixed point of T in (X, ρ).

3. First example of nonconvergence to compact sets

In this section, we show that both Theorems 2.1 and 2.2 cannot, in general, be improved (cf.
[6, Proposition 3.1]).

Proposition 3.1. For any normed space X, there exists an operator T : X → X such that ‖Tx −
Ty‖ ≤ ‖x − y‖ for all x, y ∈ X, the sequence {Tnx}∞n=1 converges for each x ∈ X and, for any
sequence of positive numbers {γn}∞n=0, there exists a sequence {xn}∞n=0 ⊂ X with ‖xn+1 − Txn‖ ≤ γn
for all nonnegative integers n, which converges to a compact set if and only if the sequence {γn}∞n=0 is
summable, that is,

∑∞
n=0γn < ∞.

Proof. This is a simple fact because we may take T to be the identity operator: Tx = x, ∀x.
Then, we may take x0 to be an arbitrary element of X with ‖x0‖ = 1 and define by induction

xn+1 = Txn + γnx0, n = 0, 1, 2, . . . . (3.1)

Evidently, ‖xn+1 − Txn‖ = γn and xn+1 = x0 (1 +
∑n

i=0γi) for all integers n ≥ 0, so that the
convergence of {xn}∞n=0 to a compact set is equivalent to the summability of the sequence
{γn}∞n=0. Proposition 3.1 is proved.

4. Second example of nonconvergence to compact sets

In Section 3, we have shown that Theorems 2.1 and 2.2 cannot, in general, be improved.
However, in Proposition 3.1 every point of the space is a fixed point of the operator T , and the
inexact orbits tend to infinity. In this section, we construct an operator T on a certain complete
metric space X (a bounded, closed, and convex subset of a Banach space) such that all of its
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orbits converge to its unique fixed point, and for any nonsummable sequence of errors and
any initial point, there exists an inexact orbit which does not converge to any compact set (cf.
[6, Theorem 4.1]).

Let X be the set of all sequences x = {xi}∞i=1 of nonnegative numbers such that∑∞
i=1 xi ≤ 1. For x = {xi}∞i=1 and y = {yi}∞i=1 in X, set

ρ
({

xi

}∞
i=1,

{
yi

}∞
i=1

)
=

∞∑

i=1

∣
∣xi − yi

∣
∣. (4.1)

Clearly, (X, ρ) is a complete metric space.
Define a mapping T : X → X as follows:

T
({

xi

}∞
i=1

)
=
(
x2, x3, . . . , xi, . . .

)
,

{
xi

}∞
i=1 ∈ X. (4.2)

In other words, for any {xi}∞i=1 ∈ X,

T
({
xi

}∞
i=1

)
=
{
yi

}∞
i=1, where yi = xi+1 for all integers i ≥ 1. (4.3)

Set T0x = x for all x ∈ X. Clearly,

ρ(Tx, Ty) ≤ ρ(x, y) ∀x, y ∈ X,

Tnx converges to (0, 0, . . . , . . .) as n −→ ∞
(4.4)

for all x ∈ X.

Theorem 4.1. Let {ri}∞i=0 ⊂ [0,∞),

∞∑

i=0

ri = ∞, (4.5)

and x = {xi}∞i=1 ∈ X. Then, there exists a sequence {y(i)}∞i=0 ⊂ X such that

y(0) = x, ρ
(
Ty(i), y(i+1)) ≤ ri, i = 0, 1, . . . , (4.6)

and the following property holds.
There is no nonempty compact set E ⊂ X such that

lim
i→∞

ρ
(
y(i), E

)
= 0. (4.7)

In the proof of this theorem, we may assume without loss of generality that

ri ≤ 16−1 for all integers i ≥ 0. (4.8)

We precede the proof of Theorem 4.1 with the following lemma.
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Lemma 4.2. Let z(0) = {z(0)i }∞i=1 ∈ X, let k ≥ 0 be an integer, and let j0 be a natural number. Then,
there exist an integer n ≥ 4 and a sequence {z(i)}ni=0 ⊂ X such that

ρ
(
z(i+1), Tz(i)

) ≤ rk+i, i = 0, . . . , n − 1,

z(n) =
(
z
(n)
1 , . . . , z

(n)
i , . . .

)
=
{
z
(n)
i

}∞
i=1

(4.9)

with z(n)j0+1
≥ 4−1.

Proof. There is a natural number m > 4 such that

m > j0 + 4, (4.10)
∞∑

i=m

z
(0)
i < 16−1. (4.11)

Set

z(i+1) = Tz(i), i = 0, . . . , m − 1. (4.12)

Then,

z(m) =
(
z
(0)
m+1, z

(0)
m+2, . . . , z

(0)
i , . . .

)
. (4.13)

By (4.5), there is a natural number n > m such that

k+n∑

j=k+m

rj ≥ 2−1. (4.14)

By (4.14) and (4.8),

n ≥ m + 7, (4.15)

and we may assume without loss of generality that

k+n−1∑

j=k+m

rj <
1
2
. (4.16)

In view of (4.14) and (4.8),

k+n−1∑

j=k+m

rj =
k+n∑

j=k+m

rj − rk+n ≥ 2−1 − 16−1. (4.17)
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For i = m + 1, . . . , n, define z(i) = {z(i)j }∞j=1 as follows:

z
(i)
j = z

(0)
j+i, j ∈ {1, 2, . . .} \ {n + 1 + j0 − i

}
, (4.18)

z
(i)
n+1+j0−i = z

(0)
n+1+j0

+
k+i−1∑

j=k+m

rj . (4.19)

Clearly, for i = m + 1, . . . , n, z(i) is well defined and by (4.18), (4.19), (4.10), and (4.16),

∞∑

j=1

z
(i)
j =

∞∑

j=i+1

z
(0)
j +

k+i−1∑

j=k+m

rj ≤
∞∑

j=m

z
(0)
j +

k+n−1∑

j=k+m

rj ≤ 16−1 + 2−1 < 1. (4.20)

Thus z(i) ∈ X, i = m + 1, . . . , n.
Let i ∈ {m, . . . , n − 1}. We now estimate ρ(z(i+1), Tz(i)). If i = m, then by (4.2), (4.3),

(4.13), and (4.18),

ρ
(
z(i+1), Tz(i)

) ≤ rk+i. (4.21)

Let i > m. We first set

{
z̃j
}∞
j=1 = Tz(i). (4.22)

In view of (4.14), (4.2), and (4.3), z̃j = z
(i)
j+1 for all integers j ≥ 1. When combined with (4.18),

this implies that

z̃j = z
(0)
j+1+i ∀j ∈ {1, 2, . . .} \ {n − i + j0

}
, (4.23)

z̃n+j0−i = z
(i)
n+1+j0−i = z

(0)
n+1+j0

+
k+i−1∑

j=k+m

rj . (4.24)

By (4.18) and (4.23),

z̃j = z
(i+1)
j (4.25)

for all j ∈ {1, 2, . . .} \ {n + j0 − i}. It now follows from (4.22), (4.25), (4.18), (4.19), and (4.23)
that

ρ
(
z(i+1), Tz(i)

)
= ρ

(
z(i+1),

{
z̃j
}∞
j=1

)
=
∣∣z(i+1)n+j0−i − z̃n+j0−i

∣∣

=

∣∣∣∣∣
z
(0)
n+1+j0

+
k+i∑

j=k+m

rj −
(

z
(0)
n+1+j0

+
k+i−1∑

j=k+m

rj

)∣∣∣∣∣
< rk+i.

(4.26)
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When combined with (4.12), this implies that

ρ
(
z(i+1), Tz(i)

) ≤ rk+i, i = 0, . . . , n − 1. (4.27)

By (4.17) and (4.18),

z
(n)
j0+1

= z
(n)
n+1+j0−n ≥

k+n−1∑

j=k+m

rj ≥ 4−1. (4.28)

This completes the proof of Lemma 4.2.

Proof of Theorem 4.1. In order to prove the theorem, we construct by induction, using
Lemma 4.2, a sequence of nonnegative integers {sk}∞k=0 and a sequence {y(i)}∞i=0 ⊂ X such
that

y(0) = x, (4.29)

ρ
(
y(i+1), Ty(i)) ≤ ri for all integers i ≥ 0, (4.30)

s0 = 0, sk < sk+1 for all integers k ≥ 0, (4.31)

and for all integers k ≥ 1,

y
(sk)
k+1 ≥ 1

4
. (4.32)

In the sequel, we use the notation y(i) = {y(i)
j }∞j=1, i = 0, 1, . . . .

Set

y(0) = x, s0 = 0. (4.33)

Assume that q ≥ 0 is an integer and that we have already defined a (finite) sequence of
nonnegative numbers {sk}qk=0 and a (finite) sequence of points {y(i)}sqi=0 ⊂ X such that (4.33)
is valid, (4.30) holds for all integers i satisfying 0 ≤ i < sq,

si < si+1 for all integers i satisfying 0 ≤ i < q, (4.34)

and that (4.32) holds for all integers k satisfying 0 < k ≤ q. (Note that for q = 0 this assumption
does hold.)

Now, we show that this assumption also holds for q + 1.
Indeed, applying Lemma 4.2 with

z(0) = y(sq), j0 = q + 1, k = sq, (4.35)
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we obtain that there exist an integer sq+1 ≥ 4 + sq and a sequence {y(i)}sq+1i=sq
⊂ X such that

ρ
(
y(i+1), Ty(i)) ≤ ri, i = sq, . . . , sq+1 − 1,

y
(sq+1)
q+2 ≥ 1

4
.

(4.36)

Thus, the assumption made for q also holds for q + 1. Therefore, we have constructed by
induction a sequence of points {y(i)}∞i=0 ⊂ X and a sequence of nonnegative integers {sk}∞k=0
which satisfy (4.30) and (4.31) for all integers i, k ≥ 0, respectively, and (4.32) for all integers
k ≥ 1.

Finally, we show that there is no nonempty compact set E ⊂ X such that

lim
i→∞

ρ
(
y(i), E

)
= 0. (4.37)

Assume the contrary. Then, there does exist a nonempty compact set E ⊂ X such that

lim
i→∞

ρ
(
yi), E

)
= 0. (4.38)

This implies that any subsequence of {y(k)}∞k=0 has a convergent subsequence.
Consider such a subsequence {y(sq)}∞q=1. This subsequence has a convergent subse-

quence {ysqp }∞p=1. There are therefore a point z = {zi}∞i=0 ∈ X such that

z = lim
p→∞

y(sqp ) (4.39)

and a natural number p0 such that

ρ
(
z, y(sqp )

) ≤ 16−1 for all integers p ≥ p0. (4.40)

Hence we have, for all integers p ≥ p0,

∣∣zqp+1 − y
(sqp )
qp+1

∣∣ ≤ ρ
(
z, y(sqp )

) ≤ 16−1,

zqp+1 ≥ y
(sqp )
qp+1

− 16−1> 8−1.
(4.41)

This, of course, contradicts the inequality
∑∞

i=1zi ≤ 1. The contradiction we have reached
completes the proof of Theorem 4.1.
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