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1. Introduction and preliminaries

The best approximation problem in a hyperconvex metric space consists of finding conditions
for given set-valued mappings F andG and a setX such that there is a point x0 ∈ X satisfying
d(G(x0), F(x0)) ≤ d(x, F(x0)) for x ∈ X. When G = I, the identity mapping, and when the set
X is compact, best approximation theorems for mappings in hyperconvex metric spaces are
given for the single-valued case in [1–4], for the set-valued case in [1, 3, 5–9]. Some results
for condensing set-valued maps were given in [2].

Given subsets A, B, set-valued mappings F : A � B, and G : A � A the best
proximity problem consists of finding conditions on F, G, A, and B implying that there is a
point x0 ∈ A such that d(G(x0), F(x0)) = d(A,B). Then (G(x0), F(x0)) is called a best proximity
pair, see [2, 10]. ForA, B nonempty subsets of a metric spaceM, we define the following sets

A0 =
{
x ∈ A : d(x, y) = d(A,B) for some y ∈ B

}
,

B0 =
{
y ∈ B : d(x, y) = d(A,B) for some x ∈ A

}
.

(1.1)
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Ametric space (M,d) is said to be a hyperconvex metric space [11] if for any collection of points
xα of M and any collection rα of nonnegative real numbers with d(xα, xβ) ≤ rα + rβ, we have

⋂

α

B
(
xα, rα

)
/=∅. (1.2)

The admissible subsets of a hyperconvex metric spaceM are sets of the form
⋂

αB(xα, rα), that
is, the family of all ball intersections in M. Every admissible subset of a hyperconvex metric
space is hyperconvex. For a subset A of M, Nε(A) denotes the closed ε-neighborhood of A,
that is,Nε(A) = {x ∈ M : d(x,A) ≤ ε}, where d(x,A) = infy∈Ad(x, y). IfA is admissible, then
Nε(A) is admissible [12].

A subset A of a metric space M is said to be externally hyperconvex if given any family
xα of points in M and the family rα of nonnegative real numbers satisfying

d
(
xα, xβ

) ≤ rα + rβ, d
(
xα,A

) ≤ rα, (1.3)

it follows that

⋂

α

B
(
xα, rα

) ∩A/=∅. (1.4)

Every externally hyperconvex subset of a metric space is hyperconvex [13, Theorem 3.10].
Let (M,d) be a metric space and X be a nonempty subset of M. X is said to be a proximal
nonexpansive retract of M if there exists a nonexpansive retraction r : M → X with the
property

d
(
x, r(x)

)
= d(x,X), for every x ∈ X. (1.5)

Every admissible set is externally hyperconvex and the externally hyperconvex sets are
proximinal nonexpansive retracts ofM [14].

For each A,B ⊆ M, let

d(A,B) = inf
{
d(a, b) : a ∈ A, b ∈ B

}
. (1.6)

It is well know that if A and B are compact subsets of M then there exist a0 ∈ A and b0 ∈ B
such that d(A,B) = d(a0, b0). Therefore, in this case

d(A,B) = 0 ⇐⇒ A ∩ B /=∅. (1.7)

Let X and Y be topological spaces withA ⊆ X and B ⊆ Y . Let F : X � Y be a set-valued map
with nonempty values. The image of A under F is the set F(A) =

⋃
x∈AF(x) and the inverse

image of B under F is F−(B) = {x ∈ X : F(x) ∩ B /=∅}. Now F is said to be

(i) lower semicontinuous if for each open set B ⊆ Y , F−(B) = {x ∈ X : F(x) ∩ B /=∅} is
open in X;
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(ii) upper semicontinuous if for each closed set B ⊆ Y , F−(B) = {x ∈ X : F(x) ∩ B /=∅}
is closed in X;

(iii) continuous if F is both lower semicontinuous and upper semicontinuous.

Let M be a metric space and let M denote the family of nonempty, closed bounded subsets
ofM. Let A,B ∈ M. The Hausdorff metric D on M is defined by

D(A,B) = inf
{
ε > 0 : A ⊆ Nε(B), B ⊆ Nε(A)

}
. (1.8)

LetX be a nonempty subset ofM. A set-valuedmap F : X � M is calledHausdorff continuous
if it is continuous with respect to Hausdorff metric.

A topological space is said to be acyclic if all of the reduced Čech homology groups
over rationals vanish. Every hyperconvex metric space is acyclic [15]. Let X be an admissible
subset of M. A set-valued map F : X � M is said to be quasiadmissible if the set F−(A) is
closed acyclic for each admissible set A of M.

Let B(M) denote the set of all bounded subsets of M. The Kuratowski measure of
noncompactness α : B(M) → [0,∞) is defined by

α(A) = inf

{

δ > 0 : A ⊆
n⋃

i=1

Ai, diam
(
Ai

)
< δ

}

. (1.9)

A mapping F : M → B(M) is said to be condensing provided that α(F(A)) < α(A), for
any A ∈ B(M) with α(A) > 0. If α(F(A)) ≤ α(A) for any A ∈ B(M), then F is called 1-set
contraction.

The following fixed point theorem, which will be used in the next section, is due to
Amini-Harandi et al. [6].

Theorem 1.1. Let M be a hyperconvex metric space. Suppose that F : M � M is an upper
semicontinuous condensing set-valued map with nonempty closed acyclic values. Then F has a fixed
point.

2. Coincidence point

Now we present a coincidence point theorem for condensing set-valued self-maps.

Theorem 2.1. Let M be a hyperconvex metric space and F : M � M be an upper semicontinuous
condensing set-valued map with nonempty closed acyclic values. Let G : M � M be an onto,
quasiadmissible set-valued map for which G(A) is closed for each closed set A ⊆ M. Assume that
G− : M � M is a 1-set contraction. Then there exists an x0 ∈ M with

F
(
x0
) ∩G

(
x0
)
/=∅. (2.1)

Proof. Since

F
(
x0
) ∩G

(
x0
)
/=∅ ⇐⇒ x0 ∈ G−(F

(
x0
))

=
{
x ∈ M : G(x) ∩ F

(
x0
)
/=∅

}
, (2.2)
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then the conclusion follows if we show that the set-valued map H(x) = G−(F(x)) : M �
M has a fixed point. Since G is onto, then H(x)/=∅. Since F(x) is admissible and G is
quasiadmissible, thenH(x) is closed acyclic. Now we show thatH is upper semicontinuous.
To show this, let A be a closed subset ofM. Then

H−(A) =
{
x ∈ M : H(x) ∩A/=∅

}

=
{
x ∈ M :

{
t ∈ M : G(t) ∩ F(x)/=∅

} ∩A/=∅

}

=
{
x ∈ M : ∃a ∈ A such that G(a) ∩ F(x)/=∅

}

=
{
x ∈ M : F(x) ∩G(A)/=∅

}

= F−(G(A)
)
.

(2.3)

Since F is upper semicontinuous andG(A) is closed, thenH−(A) = F−(G(A)) is closed. Hence
H is upper semicontinuous. Now we show that H is condensing. To show this, let A ⊆ M
with α(A) > 0. Since G− is 1-set contraction and F is condensing, then

α
(
H(A)

)
= α(G−(F(A)

) ≤ α
(
F(A)

)
< α(A). (2.4)

Therefore, H satisfies all conditions of Theorem 1.1 and so it has a fixed point.

Corollary 2.2. Let M be a hyperconvex metric space and f : M → M be a continuous condensing
map. Let G : M � M be an onto, quasiadmissible set-valued map for which G(A) is closed for each
closed set A ⊆ M. Assume that G− : M � M is a 1-set contraction. Then there exists an x0 ∈ M
with

f
(
x0
) ∈ G

(
x0
)
. (2.5)

3. Best approximation

In this section, we extend some well-known best approximation theorems by involving a
second set-valued map G.

Theorem 3.1. Let M be a hyperconvex metric space and X be a nonempty admissible subset of M.
Let F : X � M be a Hausdorff continuous condensing set-valued map with nonempty bounded
externally hyperconvex values and G : X � X be an onto, quasiadmissible set-valued map for which
G(A) is closed for each closed set A ⊆ X. Assume that G− : X � X is a 1-set contraction. Then there
exists an x0 ∈ X such that

d
(
G
(
x0
)
, F

(
x0
))

= inf
x∈X

d
(
x, F

(
x0
))
. (3.1)

Proof. Define a mapping H : X � M by

H(x) =
⋂

ε>ε(x)

(
Nε(X) ∩ F(x)

)
, (3.2)
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where ε(x) = inf{ε > 0 : Nε(X) ∩ F(x)/=∅}. The values of H are nonempty and externally
hyperconvex [13, page 408, Theorem 5.4]. From [8, Lemma 1],

D
(
Nε(x)(X) ∩ F(x),Nε(y)(X) ∩ F(y)

) ≤ D
(
F(x), F(y)

)
. (3.3)

HenceD(H(x),H(y)) ≤ D(F(x), F(y)). Since F is Hausdorff continuous, this implies thatH
is also continuous in the Hausdorff metric. By a selection result in [16, Theorem 1], there
is a mapping h : X → M such that h(x) ∈ H(x) for each x ∈ X and d(h(x), h(y)) ≤
D(H(x),H(y)) for each x, y ∈ X. Note h is continuous. Since h(x) ∈ H(x) ⊆ F(x), h is
also condensing. The admissible set X is a proximinal nonexpansive retract of M [14] and
we denote the retraction by PX : M → X. It follows that the mapping PX(h(·)) : X → X
is continuous and condensing, and therefore, by Corollary 2.2, there exists an x0 ∈ X such
that PX(h(x0)) ∈ G(x0). Fix x ∈ X. Now we show that ε(x) = d(X,F(x)). Let ε > ε(x) and
let yε ∈ Nε(X) ∩ F(x). Then d(X,F(x)) ≤ d(X, yε) ≤ ε. We can do this argument for each
ε > ε(x) so, therefore, d(X,F(x)) ≤ ε(x). Suppose now that d(X,F(x)) < ε(x). Then there
exists a y ∈ F(x) such that d(X,F(x)) ≤ d(X, y) ≡ ε < ε(x). Thus y ∈ Nε(X) ∩ F(x)/=∅. This
is a contradiction. Fix n ∈ {1, 2, . . .} and let εn = d(X,F(x0)) + 1/n; note εn > ε(x0). Then since
h(x0) ∈ H(x0), we have h(x0) ⊆ Nεn(X) so d(X, h(x0)) ≤ εn = d(X,F(x0)) + 1/n. We can do
this for each n so

d
(
X, h

(
x0
)) ≤ d

(
X,F

(
x0
))
. (3.4)

Since h(x0) ∈ F(x0)we get

d
(
X, h

(
x0
))

= d
(
X,F

(
x0
))
. (3.5)

Therefore, we have since PX(h(x0)) ∈ G(x0)) and h(x0) ∈ F(x0) that

d
(
G
(
x0
)
, F

(
x0
)) ≤ d

(
PX

(
h
(
x0
))
, F

(
x0
))

≤ d
(
PX

(
h
(
x0
))
, h
(
x0
))

= d
(
X, h

(
x0
))
,

(3.6)

since X is a proximity retract ofM. Thus

d
(
G
(
x0
)
, F

(
x0
)) ≤ d

(
X, h

(
x0
))

= d
(
X,F

(
x0
))
. (3.7)

Since G(x0) ⊆ X then

d
(
G
(
x0
)
, F

(
x0
))

= inf
x∈X

d
(
x, F

(
x0
))
. (3.8)

Remark 3.2. Let X be a nonempty compact admissible subset of a hyperconvex metric space
M and let G : X → X be an isometry. We show that G satisfies all the conditions of
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Theorem 3.1. Since X is compact and G : X → X is an isometry, then G is onto. Now we
show that G is quasiadmissible. Let A be an admissible subset of X. Since G is an isometry,
then G−(A) = G−1(A) is admissible and so is closed and acyclic. Let A ⊆ X be closed, then A
is compact. Since G is continuous, then G(A) is compact and so is closed. Since X is compact,
then G−1 : X � X is a 1-set contraction (note for each A ⊆ X, α(G−1(A)) = α(A) = 0).

If we take G = I, then Theorem 3.1 reduces to the following result of Markin and
Shahzad [2].

Corollary 3.3. Let M be a hyperconvex metric space and X be a nonempty admissible subset of M
and F : X � M be a Hausdorff continuous condensing set-valued map with nonempty bounded
externally hyperconvex values. Then there exists an x0 ∈ X such that

d
(
x0, F

(
x0
))

= inf
x∈X

d
(
x, F

(
x0
))
. (3.9)

Proof. It suffices to show that G = I satisfies the conditions of Theorem 3.1. The identity
mapping I : M → M is onto and I(A) = A is closed for each closed set A ⊆ M. Let A
be an admissible subset of M. Then I−(A) = A is admissible and so is acyclic [15, Lemma
5.2]. Thus I is a quasiadmissible map. Finally, since α(I−(A)) = α(A) for each subset A of M,
then I− : M → M is a 1-set contraction map.

The following is a coincidence point theorem for condensing nonself-set-valued maps.

Corollary 3.4. Let M be a hyperconvex metric space and X be a nonempty admissible subset of M.
Assume the mappings F, G are compact valued and satisfy the conditions of Theorem 3.1. Assume
that F(x) ∩X /=∅ for x ∈ X. Then there exists an x0 ∈ X such that

F
(
x0
) ∩G

(
x0
)
/=∅. (3.10)

Proof. By Theorem 3.1, there exists an x0 ∈ X with d(G(x0), F(x0)) = infx∈X d(x, F(x0)).
Since F(x0) ∩ X /=∅, then infx∈X d(x, F(x0)) = 0. Thus d(G(x0), F(x0)) = 0. Therefore,
F(x0) ∩G(x0)/=∅.

4. Best proximity pairs

In this section, we obtain a best proximity pair theorem for condensing set-valued maps in
hyperconvex metric spaces.

Theorem 4.1. Let M be a hyperconvex metric space, A be an admissible subset, and B be a bounded
externally hyperconvex subset of M. Let G : A0 � A0 an onto, quasiadmissible set-valued map for
which G(C) is closed for each closed set C ⊆ A0. Assume that G− : A0 � A0 is a 1-set contraction.
Assume the mapping F : A � B is condensing, Hausdorff continuous with nonempty admissible
values. Assume that F(x) ∩ B0 /=∅ for each x ∈ A0. Then there exists an x0 ∈ A0 such that

d
(
G
(
x0
)
, F

(
x0
))

= d(A,B). (4.1)

Proof. By [2, Lemma 5.1],A0 and B0 are externally hyperconvex and nonempty. Define amap-
ping H : A0 � B0 by H(x) = F(x) ∩ B0. Since A0 =

⋂∞
n=1Nd(A,B)+1/n(B) ∩A = A ∩Nd(A,B)(B)
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and B0 =
⋂∞

n=1Nd(A,B)+1/n(A) ∩ B = B ∩ Nd(A,B)(A) [2, Lemma 5.1], then by [9, Lemma 1],
we have D(F(x) ∩ B0, F(y) ∩ B0) ≤ D(F(x), F(y)). Since F is Hausdorff continuous, this
implies that H is continuous in the Hausdorff metric. Since H(x) is externally hyperconvex
for each x ∈ A0, by a selection result in [16], there is a continuous mapping h : A0 → B0

such that h(x) ∈ H(x) for each x ∈ A0. Since h(x) ∈ F(x), h is also condensing. The
admissible set A is a proximinal nonexpansive retract of M and we denote the retraction
by PA : M → A. Note PA(B0) ⊆ A0. To see this note, if y ∈ B0, then there is an x ∈ A
such that d(x, y) = d(A,B). Thus d(y, PA(y)) = d(y,A) ≤ d(y, x) = d(A,B) so we have
d(y, PA(y)) = d(A,B) and so PA(y) ∈ A0. Since externally hyperconvex subset of M is
hyperconvex [13, page 398, Theorem 3.10], then A0 is a hyperconvex metric space. Now the
mapping PA(h(·)) : A0 → A0 is continuous and condensing, and therefore, by Corollary 2.2,
there exists an x0 ∈ A such that PA(h(x0)) ∈ G(x0). Therefore, since PA(h(x0)) ∈ A0, we have
d(PA(h(x0)), h(x0)) ≤ d(x, h(x0)), for each x ∈ A0. Since h(x0) ∈ B0, there is an a0 ∈ A
such that d(a0, h(x0)) = d(A,B), and therefore, B(h(x0), d(A,B))/=∅. Furthermore, since
A0 = A ∩ Nd(A,B)(B), then it follows from the external hyperconvexity of Nd(A,B)(B) that
(B(h(x0), d(A,B))∩A)∩Nd(A,B)(B)/=∅ (note B(h(x0), d(A,B))∩A is admissible) [16, Lemma
2]. Let a1 ∈ B(h(x0), d(A,B)) ∩A ∩Nd(A,B)(B). Then a1 ∈ A and d(a1, h(x0)) = d(A,B). Since
h(x0) ∈ B0 ⊆ B, then we have a1 ∈ A0. Therefore, from the above, we have

d
(
PA

(
h
(
x0
))
, h
(
x0
)) ≤ d

(
a1, h

(
x0
))

= d(A,B). (4.2)

However, note also since G(x0) ⊆ A, F(x0) ⊆ B, PA(h(x0)) ∈ G(x0) and h(x0) ∈ F(x0) that

d(A,B) ≤ d
(
G
(
x0
)
, F

(
x0
))

≤ d
(
PA

(
h
(
x0
))
, h
(
x0
))

≤ d
(
a1, h

(
x0
))

= d(A,B).

(4.3)

Thus

d
(
G
(
x0
)
, F

(
x0
))

= d(A,B). (4.4)

As a special case of Theorem 4.1, we obtain the following result of Markin and
Shahzad [2].

Theorem 4.2. Let M be a hyperconvex metric space, A be an admissible subset, and B be a bounded
externally hyperconvex subset of M. Assume the mapping F : A � B is condensing, Hausdorff
continuous with nonempty admissible values. Assume that F(x)∩B0 /=∅ for each x ∈ A0. Then there
exists an x0 ∈ A0 such that

d
(
x0, F

(
x0
))

= d(A,B). (4.5)

References

[1] M. A. Khamsi, “KKM and Ky Fan theorems in hyperconvex metric spaces,” Journal of Mathematical
Analysis and Applications, vol. 204, no. 1, pp. 298–306, 1996.



8 Fixed Point Theory and Applications

[2] J. T. Markin and N. Shahzad, “Best approximation theorems for nonexpansive and condensing
mappings in hyperconvex metric spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70,
no. 6, pp. 2435–2441, 2009.
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[16] M. A. Khamsi, W. A. Kirk, and C. M. Yañez, “Fixed point and selection theorems in hyperconvex
spaces,” Proceedings of the American Mathematical Society, vol. 128, no. 11, pp. 3275–3283, 2000.


	1. Introduction and preliminaries
	2. Coincidence point
	3. Best approximation
	4. Best proximity pairs
	References

