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1. Introduction

We are concerned with the convex feasibility problem (CFP)

finding an x ∈
N⋂

i=1

Ci, (1.1)

where N � 1 is an integer, and C1, . . . , CN are intersecting closed convex subsets of a Banach
space E. This problem is a frequently appearing problem in diverse areas of mathematical
and physical sciences. There is a considerable investigation on (CFP) in the framework of
Hilbert spaces which captures applications in various disciplines such as image restoration
[1–4], computer tomography [5], and radiation theraphy treatment planning [6]. In computer
tomography with limited data, in which an unknown image has to be reconstructed from a
priori knowledge and from measured results, each piece of information gives a constraint
which in turn, gives rise to a convex set Ci to which the unknown image should belong
(see [7]). The advantage of a Hilbert space H is that the (nearest point) projection PK onto
a closed convex subset K of H is nonexpansive (i.e., ‖PKx − PKy‖ � ‖x − y‖, x, y ∈ H).
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So projection methods have dominated in the iterative approaches to (CFP) in Hilbert spaces;
see [6, 8–11] and the references therein. In 1993, Kitahara and Takahashi [12] deal with
the convex feasibility problem by convex combinations of sunny nonexpansive retractions
in uniformly convex Banach spaces (see also Takahashi and Tamura [13], O’Hara et al.
[14], and Chang et al. [15] for the previous results on this subject). It is known that if C
is a nonempty closed convex subset of a smooth, reflexive, and strictly convex Banach
space E, then the generalized projection ΠC (see, Alber [16] or Kamimura and Takahashi
[17]) from E onto C is relatively nonexpansive, whereas the metric projection PC from E
onto C is not generally nonexpansive. Our purpose in the present paper is to obtain an
analogous result for a finite family of relatively nonexpansive mappings in Banach spaces.
This notion was originally introduced by Butnariu et al. [18]. Recently, Matsushita and
Takahashi [19] reformulated the definition of the notion and obtained weak and strong
convergence theorems to approximate a fixed point of a single relatively nonexpansive
mapping. Motivated by Nakajo and Takahashi [20], Matsushita and Takahashi [21] studied
the strong convergence of the sequence {xn} generated by

x0 = x ∈ C,

yn = J−1
(
αnJxn +

(
1 − αn

)
JTxn

)
,

Hn =
{
z ∈ C : φ

(
z, yn

)
� φ

(
z, xn

)}
,

Wn =
{
z ∈ C :

〈
xn − z, Jx − Jxn

〉
� 0

}
,

xn+1 = ΠHn∩Wnx, n = 0, 1, 2, . . . ,

(1.2)

where J is the duality mapping on E, {αn} ⊂ [0, 1], T is a relatively nonexpansive mapping
from C into itself, and ΠF(T)(·) is the generalized projection from C onto F(T).

Very recently, Plubtieng and Ungchittrakool [22] studied the strong convergence to a
common fixed point of two relatively nonexpansivemappings of the sequence {xn} generated
by

x0 = x ∈ C,

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)
,

Hn =
{
z ∈ C : φ

(
z, yn

)
� φ

(
z, xn

)}
,

Wn =
{
z ∈ C :

〈
xn − z, Jx − Jxn

〉
� 0

}
,

xn+1 = PHn∩Wnx, n = 0, 1, 2, . . . ,

(1.3)

where J is the duality mapping on E, and PF(·) is the generalized projection from C onto
F := F(S) ∩ F(T).

We note that the block iterative method is a methodwhich often used bymany authors
to solve the convex feasibility problem (CFP) (see, [23, 24], etc.). In 2008, Plubtieng and
Ungchittrakool [25] established strong convergence theorems of block iterative methods for
a finite family of relatively nonexpansive mappings in a Banach space by using the hybrid
method in mathematical programming. In this paper, we introduce the following iterative
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process by using the shrinking method proposed, whose studied by Takahashi et al. [26],
which is different from the method in [25]. Let C be a closed convex subset of E and for
each i = 1, 2, . . . ,N, let Ti : C → C be a relatively nonexpansive mapping such that
F :=

⋂N
i=1F(Ti)/=∅. Define {xn} in the two following ways:

x0 ∈ E, C1 = C, x1 = ΠC1x0,

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(

β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JTixn

)

,

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

)
� φ

(
z, xn

)}
,

xn+1 = ΠCn+1x0, n = 0, 1, 2, . . . ,

(1.4)

and

x0 ∈ C,

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(

β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JTixn

)

,

Hn =
{
z ∈ C : φ

(
z, yn

)
� φ

(
z, xn

)}
,

Wn =
{
z ∈ C :

〈
xn − z, Jx0 − Jxn

〉
� 0

}
,

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(1.5)

where {αn}, {β(i)n } ⊂ [0, 1],
∑N+1

i=1 β
(i)
n = 1 satisfy some appropriate conditions.

We will prove that both iterations (1.4) and (1.5) converge strongly to a common fixed
point of

⋂N
i=1F(Ti). Using this results, we also discuss the convex feasibility problem in Banach

spaces. Moreover, we apply our results to the problem of finding a common zero of a finite
family of maximal monotone operators and equilibrium problems.

Throughout the paper, we will use the notations:

(i) → for strong convergence and ⇀ for weak convergence;

(ii) ωw(xn) = {x : ∃xnr ⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries

Let E be a real Banach space with norm ‖·‖ and let E∗ be the dual of E. Denote by 〈·, ·〉 the
duality product. The normalized duality mapping J from E to E∗ is defined by

Jx =
{
x∗ ∈ E∗ :

〈
x, x∗〉 = ‖x‖2 = ∥

∥x∗∥∥2} (2.1)

for x ∈ E.
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A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x /=y. It is also said to be uniformly convex if limn→∞‖xn − yn‖ = 0 for any
two sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn + yn)/2‖ = 1. Let
U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to be smooth
provided that

lim
t→ 0

‖x + ty‖ − ‖x‖
t

(2.2)

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ U. It is well known that �p and Lp (1 < p < ∞) are uniformly convex and
uniformly smooth; see Cioranescu [27] or Diestel [28]. We know that if E is smooth, then
the duality mapping J is single valued. It is also known that if E is uniformly smooth, then
J is uniformly norm-to-norm continuous on each bounded subset of E. Some properties of
the duality mapping have been given in [27, 29, 30]. A Banach space E is said to have the
Kadec-Klee property if a sequence {xn} of E satisfying that xn ⇀ x ∈ E and ‖xn‖ → ‖x‖,
then xn → x. It is known that if E is uniformly convex, then E has the Kadec-Klee property;
see [27, 30] for more details. Let E be a smooth Banach space. The function φ : E × E → R is
defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉 + ‖x‖2 (2.3)

for all x, y ∈ E. It is obvious from the definition of the function φ that

(1) (‖y‖ − ‖x‖)2 � φ(y, x) � (‖y‖ + ‖x‖)2,
(2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉,
(3) φ(x, y) = 〈x, Jx − Jy〉 + 〈y − x, Jy〉 � ‖x‖‖Jx − Jy‖ + ‖y − x‖‖y‖,

for all x, y, z ∈ E. Let E be a strictly convex, smooth, and reflexive Banach space, and let J be
the duality mapping from E into E∗. Then J−1 is also single-valued, one-to-one, and surjective,
and it is the duality mapping from E∗ into E. We make use of the following mapping V
studied in Alber [16]:

V
(
x, x∗) = ‖x‖2 − 2

〈
x, x∗〉 + ‖x∗‖2 (2.4)

for all x ∈ E and x∗ ∈ E∗. In other words, V (x, x∗) = φ(x, J−1(x∗)) for all x ∈ E and x∗ ∈ E∗.
For each x ∈ E, the mapping V (x, ·) : E∗ → R is a continuous and convex function from E∗

into R.
Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive

Banach space E, for any x ∈ E, there exists a point x0 ∈ C such that φ(x0, x) = miny∈Cφ(y, x).
The mapping ΠC : E → C defined byΠCx = x0 is called the generalized projection [16, 17, 31].
The following are well-known results. For example, see [16, 17, 31].

This section collects some definitions and lemmas which will be used in the proofs for
the main results in the next section. Some of them are known; others are not hard to derive.
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Lemma 2.1 (see [27, 30, 32]). If E is a strictly convex and smooth Banach space, then for x, y ∈ E,
φ(y, x) = 0 if and only if x = y.

Proof. It is sufficient to show that if φ(y, x) = 0 then x = y. From (1), we have ‖x‖ = ‖y‖.
This implies 〈y, Jx〉 = ‖y‖2 = ‖Jx‖2. From the definition of J , we have Jx = Jy. Since J is
one-to-one, we have x = y.

Lemma 2.2 (Kamimura and Takahashi [17]). Let E be a uniformly convex and smooth Banach
space and let {yn}, {zn} be two sequences of E. If φ(yn, zn) → 0 and either {yn} or {zn} is bounded,
then yn − zn → 0.

Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let T be a mapping fromC into itself, and let F(T) be the set of all fixed points
of T . Then a point p ∈ C is said to be an asymptotic fixed point of T (see Reich [33]) if there
exists a sequence {xn} in C converging weakly to p and limn→∞‖xn − Txn‖ = 0. We denote
the set of all asymptotic fixed points of T by F̂(T) and we say that T is a relatively nonexpansive
mapping if the following conditions are satisfied:

(R1) F(T) is nonempty;

(R2) φ(u, Tx) � φ(u, x) for all u ∈ F(T) and x ∈ C;

(R3) F̂(T) = F(T).

Lemma 2.3 (Alber [16], Alber and Reich [31], Kamimura and Takahashi [17]). Let C be a
nonempty closed convex subset of a smooth Banach space E, let x ∈ E, and let x0 ∈ C. Then, x0 = ΠCx
if and only if 〈x0 − y, Jx − Jx0〉 � 0 for all y ∈ C.

Lemma 2.4 (Alber [16], Alber and Reich [31], Kamimura and Takahashi [17]). Let E be a
reflexive, strictly convex and smooth Banach space, let C be a nonempty closed convex subset of E and
let x ∈ E. Then φ(y,ΠCx) + φ(ΠCx, x) � φ(y, x) for all y ∈ C.

Lemma 2.5. Let E be a uniformly convex Banach space and let Br(0) = {x ∈ E : ‖x‖ � r} be a closed
ball of E. Then there exists a continuous strictly increasing convex function g : [0,∞) → [0,∞)with
g(0) = 0 such that

∥
∥
∥
∥
∥

N∑

i=1

ω(i)xi

∥
∥
∥
∥
∥

2

�
N∑

i=1

ω(i)∥∥xi

∥
∥2 −ω(j)ω(k)g

(∥
∥xj − xk

∥
∥
)
, for any j, k ∈ {1, 2, . . . ,N}, (2.5)

where {xi}Ni=1 ⊂ Br(0) and {ω(i)}Ni=1 ⊂ [0, 1] with
∑N

i=1 ω
(i) = 1.

Proof. It sufficient to show that

∥
∥
∥
∥
∥

N∑

i=1

ω(i)xi

∥
∥
∥
∥
∥

2

�
N∑

i=1

ω(i)∥∥xi

∥
∥2 −ω(1)ω(2)g

(∥
∥x1 − x2

∥
∥
)
. (2.6)
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It is obvious that (2.6) holds for N = 1, 2 (see [34] for more details). Next, we assume that
(2.6) is true for N − 1. It remains to show that (2.6) holds for N. We observe that

∥
∥
∥
∥
∥

N∑

i=1

ω(i)xi

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
ω(N)xN +

(
1 −ω(N))

(
N−1∑

i=1

ω(i)

1 −ω(N)
xi

)∥
∥
∥
∥
∥

2

� ω(N)∥∥xN

∥
∥2 +

(
1 −ω(N))

∥
∥
∥
∥
∥

N−1∑

i=1

ω(i)

1 −ω(N)
xi

∥
∥
∥
∥
∥

2

� ω(N)∥∥xN

∥
∥2 +

(
1 −ω(N))

(
N−1∑

i=1

ω(i)

1 −ω(N)
‖xi‖2 − ω(1)ω(2)

(
1 −ω(N)

)2 g
(∥
∥x1 − x2

∥
∥
)
)

=
N∑

i=1

ω(i)∥∥xi

∥
∥2 − ω(1)ω(2)

(
1 −ω(N)

)g(
∥
∥x1 − x2

∥
∥)

�
N∑

i=1

ω(i)∥∥xi

∥
∥2 −ω(1)ω(2)g

(∥
∥x1 − x2

∥
∥
)
.

(2.7)

This completes the proof.

Lemma 2.6. Let C be a closed convex subset of a smooth Banach space E and let x, y ∈ E. Then the
set K := {v ∈ C : φ(v, y) � φ(v, x)} is closed and convex.

Proof. As a matter of fact, the defining inequality in K is equivalent to the inequality

〈
v, 2(Jx − Jy)

〉
� ‖x‖2 − ‖y‖2. (2.8)

This inequality is affine in v and hence the set K is closed and convex.

3. Main result

In this section, we prove strong convergence theorems for finding a common fixed point of
a finite family of relatively nonexpansive mappings in Banach spaces by using the hybrid
method in mathematical programming.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let {Ti}Ni=1 be a finite family of relatively nonexpansive mappings
from C into itself such that F :=

⋂N
i=1F(Ti) is nonempty and let x0 ∈ E. For C1 = C and x1 = ΠC1x0,

define a sequence {xn} of C as follows:

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(

β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JTixn

)

,

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

)
� φ

(
z, xn

)}
,

xn+1 = ΠCn+1x0, n = 0, 1, 2, . . . ,

(3.1)
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where {αn}, {β(i)n } ⊂ [0, 1] satisfy the following conditions:

(i) 0 � αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1,

(ii) 0 � β
(i)
n � 1 for all i = 1, 2, . . . ,N + 1,

∑N+1
i=1 β

(i)
n = 1 for all n ∈ N ∪ {0}. If either

(a) lim infn→∞β
(1)
n β

(i+1)
n > 0 for all i = 1, 2, . . . ,N or

(b) limn→∞β
(1)
n = 0 and lim infn→∞β

(k+1)
n β

(l+1)
n > 0 for all i /= j, k, l = 1, 2, . . . ,N.

Then the sequence {xn} converges strongly to ΠFx0, where ΠF is the generalized projection from E
onto F.

Proof. We first show by induction that F ⊂ Cn for all n ∈ N. F ⊂ C1 is obvious. Suppose that
F ⊂ Ck for some k ∈ N. Then, we have, for u ∈ F ⊂ Ck,

φ
(
u, yk

)
= φ

(
u, J−1

(
αkJxk +

(
1 − αk

)
Jzk

))
= V

(
u, αkJxk +

(
1 − αk

)
Jzk

)

� αkV
(
u, Jxk

)
+
(
1 − αk

)
V
(
u, Jzk

)
= αkφ

(
u, xk

)
+
(
1 − αk

)
φ
(
u, zk

)
,

φ
(
u, zk

)
= V

(

u, β
(1)
k
Jxk +

N∑

i=1

β
(i+1)
k

JTixk

)

� β
(1)
k
V
(
u, Jxk

)
+

N∑

i=1

β
(i+1)
k

V
(
u, JTixk

)

� φ
(
u, xk

)
.

(3.2)

It follow that

φ
(
u, yk

)
� φ

(
u, xk

)
(3.3)

and hence u ∈ Ck+1. This implies that F ⊂ Cn for all n ∈ N. Next, we show that Cn is closed
and convex for all n ∈ N. Obvious that C1 = C is closed and convex. Suppose that Ck is closed
and convex for some k ∈ N. For z ∈ Ck, we note by Lemma 2.6 that Ck+1 is closed and convex.
Then for any n ∈ N, Cn is closed and convex. This implies that {xn} is well-defined. From
xn = ΠCnx0, we have

φ
(
xn, x0

)
� φ

(
u, x0

) − φ
(
u, xn

)
� φ

(
u, x0

) ∀u ∈ Cn. (3.4)

In particular, let u ∈ F, we have

φ
(
xn, x0

)
� φ

(
u, x0

) ∀n ∈ N. (3.5)

Therefore φ(xn, x0) is bounded and hence {xn} is bounded by (1). From xn = ΠCnx0 and
xn+1 ∈ Cn+1 ⊂ Cn, we have

φ
(
xn, x0

)
= min

y∈Cn

φ
(
y, x0

)
� φ

(
xn+1, x0

) ∀n ∈ N. (3.6)
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Therefore {φ(xn, x0)} is nondecreasing. So there exists the limit of φ(xn, x0). By Lemma 2.4,
we have

φ
(
xn+1, xn

)
= φ

(
xn+1,ΠCnx0

)
� φ

(
xn+1, x0

) − φ
(
ΠCnx0, x0

)
= φ

(
xn+1, x0

) − φ
(
xn, x0

)
.
(3.7)

for each n ∈ N. This implies that limn→∞φ(xn+1, xn) = 0. Since xn+1 ∈ Cn+1 it follows from the
definition of Cn+1 that

φ
(
xn+1, yn

)
� φ

(
xn+1, xn

) ∀n ∈ N. (3.8)

Letting n → ∞, we have limn→∞φ(xn+1, yn) = 0. By Lemma 2.2, we obtain

lim
n→∞

∥
∥xn+1 − yn

∥
∥ = lim

n→∞
∥
∥xn+1 − xn

∥
∥ = 0. (3.9)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥
∥Jxn+1 − Jyn

∥
∥ = lim

n→∞
∥
∥Jxn+1 − Jxn

∥
∥ = 0. (3.10)

Since ‖Jxn+1 − Jyn‖ = ‖Jxn+1 − αnJxn − (1 − αn)Jzn‖ � (1 − αn)‖Jxn+1 − Jzn‖ − αn‖Jxn − Jxn+1‖
for each n ∈ N ∪ {0}, we get that

∥
∥Jxn+1 − Jzn

∥
∥ � 1

1 − αn

(∥
∥Jxn+1 − Jyn

∥
∥ + αn

∥
∥Jxn − Jxn+1

∥
∥
)

� 1
1 − αn

(∥
∥Jxn+1 − Jyn

∥
∥ +

∥
∥Jxn − Jxn+1

∥
∥
)
.

(3.11)

From (3.10) and lim supn→∞αn < 1, we have limn→∞‖Jxn+1 − Jzn‖ = 0. Since J−1 is also
uniformly norm-to-norm continuous on bounded sets, it follows that

lim
n→∞

∥
∥xn+1 − zn

∥
∥ = lim

n→∞
∥
∥J−1

(
Jxn+1

) − J−1
(
Jzn

)∥
∥ = 0. (3.12)

From ‖xn − zn‖ � ‖xn − xn+1‖ + ‖xn+1 − zn‖, we have limn→∞‖xn − zn‖ = 0.
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Next, we show that ‖xn − Tixn‖ → 0 for all i = 1, 2, . . . ,N. Since {xn} is bounded and
φ(p, Tixn) � φ(p, xn) for all i = 1, 2, . . . ,N, where p ∈ F. We also obtain that {Jxn} and {JTixn}
are bounded for all i = 1, 2, . . . ,N. Then there exists r > 0 such that {Jxn}, {JTixn} ⊂ Br(0) for
all i = 1, 2, . . . ,N. Therefore Lemma 2.5 is applicable. Assume that (a) holds, we observe that

φ
(
p, zn

)
= ‖p‖2 − 2

〈

p, β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JTixn

〉

+

∥
∥
∥
∥
∥
β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JTixn

∥
∥
∥
∥
∥

2

� ‖p‖2 − 2β(1)n

〈
p, Jxn

〉
+

N∑

i=1

β
(i+1)
n

〈
p, JTixn

〉
+ β

(1)
n

∥
∥xn

∥
∥2 +

N∑

i=1

β
(i+1)
n

∥
∥Tixn

∥
∥2

− β
(1)
n β

(i+1)
n g

(∥
∥Jxn − JTixn

∥
∥
)

= β
(1)
n

(‖p‖2 − 2
〈
p, Jxn

〉
+
∥
∥xn

∥
∥2) +

N∑

i=1

β
(i+1)
n

(‖p‖2 + 2
〈
p, JTixn

〉
+
∥
∥Tixn

∥
∥2)

− β
(1)
n β

(i+1)
n g

(∥
∥Jxn − JTixn

∥
∥
)

= β
(1)
n φ

(
p, xn

)
+

N∑

i=1

β
(i+1)
n φ

(
p, Tixn

) − β
(1)
n β

(i+1)
n g

(∥
∥Jxn − JTixn

∥
∥
)

� φ
(
p, xn

) − β
(1)
n β

(i+1)
n g

(∥
∥Jxn − JTixn

∥
∥
)

(3.13)

and hence

β
(1)
n β

(i+1)
n g

(∥
∥Jxn − JTixn

∥
∥
)

� φ
(
p, xn

) − φ
(
p, zn

)

= 2
〈
p, zn − xn

〉
+
(∥
∥xn

∥
∥ +

∥
∥zn

∥
∥
)(∥
∥xn

∥
∥ − ∥

∥zn
∥
∥
)

� 2‖p‖∥∥zn − xn

∥
∥ +

(∥
∥xn

∥
∥ +

∥
∥zn

∥
∥
)(∥
∥xn − zn

∥
∥
)

−→ 0,

(3.14)

where g : [0,∞) → [0,∞) is a continuous strictly increasing convex function with g(0) = 0 in
Lemma 2.5. By (a), we have limn→∞g(‖Jxn − JTixn‖) = 0 and then limn→∞‖Jxn − JTixn‖ = 0
for all i = 1, 2, . . . ,N. Since J−1 is also uniformly norm-to-norm continuous on bounded sets,
we obtain

lim
n→∞

∥
∥xn − Tixn

∥
∥ = lim

n→∞
∥
∥J−1

(
Jxn

) − J−1
(
JTixn

)∥
∥ = 0, (3.15)
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for all i = 1, 2, . . . ,N. If (b) holds, we get

φ
(
p, zn

)
= ‖p‖2 − 2

〈

p, β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JTixn

〉

+

∥
∥
∥
∥
∥
β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JTixn

∥
∥
∥
∥
∥

2

� ‖p‖2 − 2β(1)n

〈
p, Jxn

〉
+

N∑

i=1

β
(i+1)
n

〈
p, JTixn

〉
+ β

(1)
n

∥
∥xn

∥
∥2 +

N∑

i=1

β
(i+1)
n

∥
∥Tixn

∥
∥2

− β
(k+1)
n β

(l+1)
n g

(∥
∥JTkxn − JTlxn

∥
∥
)

= β
(1)
n

(‖p‖2 − 2
〈
p, Jxn

〉
+
∥
∥xn

∥
∥2) +

N∑

i=1

β
(i+1)
n

(‖p‖2 + 2
〈
p, JTixn

〉
+
∥
∥Tixn

∥
∥2)

− β
(k+1)
n β

(l+1)
n g

(∥
∥JTkxn − JTlxn

∥
∥
)

= β
(1)
n φ

(
p, xn

)
+

N∑

i=1

β
(i+1)
n φ

(
p, Tixn

) − β
(k+1)
n β

(l+1)
n g

(∥
∥JTkxn − JTlxn

∥
∥
)

� φ
(
p, xn

) − β
(k+1)
n β

(l+1)
n g

(∥
∥JTkxn − JTlxn

∥
∥
)

(3.16)

and hence

β
(k+1)
n β

(l+1)
n g

(∥
∥JTkxn − JTlxn

∥
∥
)

� φ
(
p, xn

) − φ
(
p, zn

)

= 2
〈
p, zn − xn

〉
+
(∥
∥xn

∥
∥ +

∥
∥zn

∥
∥
)(∥
∥xn

∥
∥ − ∥

∥zn
∥
∥
)

� 2‖p‖∥∥zn − xn

∥
∥ +

(∥
∥xn

∥
∥ +

∥
∥zn

∥
∥
)(∥
∥xn − zn

∥
∥
)

−→ 0.

(3.17)

Then by the same argument above, we have limn→∞‖Tkxn − Tlxn‖ = 0 for all k, l = 1, 2, . . . ,N.
Next, we observe that

φ(Tkxn, zn) = V

(

Tkxn, β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JTixn

)

� β
(1)
n V

(
Tkxn, Jxn

)
+

N∑

i=1

β
(i+1)
n V

(
Tkxn, JTixn

)

= β
(1)
n φ

(
Tkxn, xn

)
+

N∑

i=1

β
(i+1)
n φ

(
Tkxn, Tixn

)

−→ 0.

(3.18)
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(as β
(1)
n → 0). By Lemma 2.2, we have limn→∞‖Tkxn − zn‖ = 0 for all k = 1, 2, . . . ,N, and

hence

∥
∥Tixn − xn

∥
∥ �

∥
∥Tixn − zn

∥
∥ +

∥
∥zn − xn

∥
∥ −→ 0 as n −→ ∞, (3.19)

for all i = 1, 2, . . . ,N. Then ωw(xn) ⊂
⋂N

i=1F̂(Ti) =
⋂N

i=1F(Ti) = F.
Finally, we show that xn → ΠFx0. Let {xnk} be a subsequence of {xn} such that xnk ⇀

v ∈ ωw(xn) ⊂ F. Put w := ΠFx0 ∈ F ⊂ Cnk , we observe that

φ
(
xnk , x0

)
= φ

(
ΠCnk

x0, x0
)
= min

y∈Cnk

φ
(
y, x0

)
� φ

(
w,x0

)
= min

z∈F
φ
(
z, x0

)
� φ

(
v, x0

)
. (3.20)

Since φ(·, x0) is weakly lower semicontinuous, we obtain

φ
(
v, x0

)
� lim inf

k→∞
φ
(
xnk , x0

)
� lim sup

k→∞
φ
(
xnk , x0

)
� φ

(
w,x0

)
� φ

(
v, x0

)
. (3.21)

This implies that v = w and limk→∞‖xnk‖ = ‖w‖ and then the Kadec-Klee property of E
yields xnk → w. Since {xnk} is an arbitrary, xn → w. This completes the proof.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let {Ωi}Ni=1 be a finite family of nonempty closed convex subset of
C such that Ω :=

⋂N
i=1Ωi is nonempty and let x0 ∈ E. For C1 = C and x1 = ΠC1x0, define a sequence

{xn} of C as follows:

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(

β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JΠΩixn

)

,

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

)
� φ

(
z, xn

)}
,

xn+1= ΠCn+1x0, n = 0, 1, 2, . . . ,

(3.22)

where {αn}, {β(i)n } ⊂ [0, 1] satisfy the following conditions:

(i) 0 � αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1,

(ii) 0 � β
(i)
n � 1 for all i = 1, 2, . . . ,N + 1,

∑N+1
i=1 β

(i)
n = 1 for all n ∈ N ∪ {0}. If either

(a) lim infn→∞β
(1)
n β

(i+1)
n > 0 for all i = 1, 2, . . . ,N or

(b) limn→∞β
(1)
n = 0 and lim infn→∞β

(k+1)
n β

(l+1)
n > 0 for all i /= j, k, l = 1, 2, . . . ,N.

Then the sequence {xn} converges strongly to ΠΩx0, where ΠΩ is the generalized projection from E
onto Ω.
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Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let {Ti}Ni=1 be a finite family of relatively nonexpansive mappings
from C into itself such that F :=

⋂N
i=1F(Ti) is nonempty. Let a sequence {xn} defined by

x0 ∈ C,

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(

β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JTixn

)

,

Hn =
{
z ∈ C : φ

(
z, yn

)
� φ

(
z, xn

)}
,

Wn =
{
z ∈ C :

〈
xn − z, Jx0 − Jxn

〉
� 0

}
,

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(3.23)

where {αn}, {β(i)n } ⊂ [0, 1] satisfy the following conditions:

(i) 0 � αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1,

(ii) 0 � β
(i)
n � 1 for all i = 1, 2, . . . ,N + 1,

∑N+1
i=1 β

(i)
n = 1 for all n ∈ N ∪ {0}. If either

(a) lim infn→∞β
(1)
n β

(i+1)
n > 0 for all i = 1, 2, . . . ,N or

(b) limn→∞β
(1)
n = 0 and lim infn→∞β

(k+1)
n β

(l+1)
n > 0 for all i /= j, k, l = 1, 2, . . . ,N.

Then the sequence {xn} converges strongly to ΠFx0, where ΠF is the generalized projection from E
onto F.

Proof. From the definition of Hn and Wn, it is obvious Hn and Wn are closed and convex for
each n ∈ N ∪ {0}. Next, we show that F ⊂ Hn ∩ Wn for each n ∈ N ∪ {0}. Let u ∈ F and let
n ∈ N ∪ {0}. Then, as in the proof of Theorem 3.1, we have

φ
(
u, zn

)
� φ

(
u, xn

)
(3.24)

for all n ∈ N ∪ {0}, and then φ(u, yn) � φ(u, xn). Thus, we have u ∈ Hn. Therefore we obtain
F ⊂ Hn for each n ∈ N ∪ {0}. We note by [21, Proposion 2.4] that each F(Ti) is closed and
convex and so is F. Using the same argument presented in the proof of [21, Theorem 3.1;
page 261-262], we have F ⊂ Hn ∩Wn for each n ∈ N ∪ {0}, {xn} is well defined and bounded,
and

lim
n→∞

∥
∥xn+1 − yn

∥
∥ = lim

n→∞
∥
∥xn+1 − xn

∥
∥ = 0. (3.25)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥
∥Jxn+1 − Jyn

∥
∥ = lim

n→∞
∥
∥Jxn+1 − Jxn

∥
∥ = 0. (3.26)
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As in the proof of Theorem 3.1, we also have that

∥
∥Jxn+1 − Jzn

∥
∥ � 1

1 − αn

(∥
∥Jxn+1 − Jyn

∥
∥ + αn

∥
∥Jxn − Jxn+1

∥
∥
)

� 1
1 − αn

(∥
∥Jxn+1 − Jyn

∥
∥ +

∥
∥Jxn − Jxn+1

∥
∥
)
.

(3.27)

From (3.26) and lim supn→∞αn < 1, we have limn→∞‖Jxn+1 − Jzn‖ = 0. Since J−1 is also
uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞

∥
∥xn+1 − zn

∥
∥ = lim

n→∞
∥
∥J−1

(
Jxn+1

) − J−1
(
Jzn

)∥
∥ = 0. (3.28)

From ‖xn−zn‖ � ‖xn−xn+1‖+‖xn+1−zn‖we have limn→∞‖xn−zn‖ = 0. By the same argument
as in the proof of Theorem 3.1, we have {xn} converges strongly to ΠFx0.

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let {Ωi}Ni=1 be a finite family of nonempty closed convex subset
of C such that Ω :=

⋂N
i=1Ωi is nonempty. Let a sequence {xn} defined by

x0 ∈ C,

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(

β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JΠΩixn

)

,

Hn =
{
z ∈ C : φ

(
z, yn

)
� φ

(
z, xn

)}
,

Wn =
{
z ∈ C :

〈
xn − z, Jx0 − Jxn

〉
� 0

}
,

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(3.29)

where {αn}, {β(i)n } ⊂ [0, 1] satisfy the following conditions:

(i) 0 � αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1,

(ii) 0 � β
(i)
n � 1 for all i = 1, 2, . . . ,N + 1,

∑N+1
i=1 β

(i)
n = 1 for all n ∈ N ∪ {0}. If either

(a) lim infn→∞β
(1)
n β

(i+1)
n > 0 for all i = 1, 2, . . . ,N or

(b) limn→∞β
(1)
n = 0 and lim infn→∞β

(k+1)
n β

(l+1)
n > 0 for all i /= j, k, l = 1, 2, . . . ,N.

Then the sequence {xn} converges strongly to ΠΩx0, where ΠΩ is the generalized projection from E
onto Ω.

IfN = 2, T1 = T and T2 = S, then Theorem 3.3 reduces to the following corollary.

Corollary 3.5 (Plubtieng and Ungchittrakool [22, Theorem 3.1]). Let E be a uniformly convex
and uniformly smooth Banach space, and let C be a nonempty closed convex subset of E. Let S and T
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be two relatively nonexpansive mappings from C into itself with F := F(S) ∩ F(T) is nonempty. Let
a sequence {xn} be defined by

x0 = x ∈ C,

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)
,

Hn =
{
z ∈ C : φ

(
z, yn

)
� φ

(
z, xn

)}
,

Wn =
{
z ∈ C :

〈
xn − z, Jx − Jxn

〉
� 0

}
,

xn+1 = PHn∩Wnx, n = 0, 1, 2, . . . ,

(3.30)

with the following restrictions:

(i) 0 � αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1,

(ii) 0 � β
(1)
n , β

(2)
n , β

(3)
n � 1, β(1)n + β

(2)
n + β

(3)
n = 1 for all n ∈ N ∪ {0}, limn→∞β

(1)
n = 0 and

lim infn→∞β
(2)
n β

(3)
n > 0.

Then the sequence {xn} converges strongly to PFx, where PF is the generalized projection from C onto
F.

4. Applications

4.1. Maximal monotone operators

Let A be a multivalued operator from E to E∗ with domain D(A) = {z ∈ E : Az/=∅} and
range R(A) = ∪{Az : z ∈ D(A)}. An operatorA is said to be monotone if 〈x1−x2, y1−y2〉 � 0
for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2. A monotone operator A is said to be maximal if
its graph G(A) = {(x, y) : y ∈ Ax} is not properly contained in the graph of any other
monotone operator. We know that ifA is a maximal monotone operator, thenA−1(0) is closed
and convex. Let E be a reflexive, strictly convex and smooth Banach space, and let A be a
monotone operator from E to E∗, we known from Rockafellar [35] that A is maximal if and
only if R(J + rA) = E∗ for all r > 0. Let Jr : E → D(A) defined by Jr = (J + rA)−1J and such
a Jr is called the resolvent of A. We know that Jr is a relatively nonexpansive; see [21] and
A−1(0) = F(Jr) for all r > 0; see [30, 32] for more details.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space. Let Ai ⊂ E × E∗ be
a maximal monotone operator for each i = 1, 2, . . . ,N such that Λ :=

⋂N
i=1A

−1
i (0) is nonempty and let

x0 ∈ E. For C1 = E, define a sequence {xn} as follows:

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(

β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JJAi

ri xn

)

,

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

)
� φ

(
z, xn

)}
,

xn+1 = ΠCn+1x0, n = 0, 1, 2, . . . ,

(4.1)
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where JAi
ri is the resolvent of Ai with ri > 0 for each i = 1, 2, . . . ,N, and {αn}, {β(i)n } ⊂ [0, 1] satisfy

the following conditions:

(i) 0 � αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1,

(ii) 0 � β
(i)
n � 1 for all i = 1, 2, . . . ,N + 1,

∑N+1
i=1 β

(i)
n = 1 for all n ∈ N ∪ {0}. If either

(a) lim infn→∞β
(1)
n β

(i+1)
n > 0 for all i = 1, 2, . . . ,N or

(b) limn→∞β
(1)
n = 0 and lim infn→∞β

(k+1)
n β

(l+1)
n > 0 for all i /= j, k, l = 1, 2, . . . ,N.

Then the sequence {xn} converges strongly to ΠΛx0, where ΠΛ is the generalized projection from E
onto Λ.

Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach space. Let Ai ⊂ E × E∗ be
a maximal monotone operator for each i = 1, 2, . . . ,N such that Λ :=

⋂N
i=1A

−1
i (0) is nonempty. Let a

sequence {xn} defined by

x0 ∈ E,

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(

β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n JJAi

ri xn

)

,

Hn =
{
z ∈ E : φ

(
z, yn

)
� φ

(
z, xn

)}
,

Wn =
{
z ∈ E :

〈
xn − z, Jx0 − Jxn

〉
� 0

}
,

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(4.2)

where JAi
ri is the resolvent of Ai with ri > 0 for each i = 1, 2, . . . ,N, and {αn}, {β(i)n } ⊂ [0, 1] satisfy

the following conditions:

(i) 0 � αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1,

(ii) 0 � β
(i)
n � 1 for all i = 1, 2, . . . ,N + 1,

∑N+1
i=1 β

(i)
n = 1 for all n ∈ N ∪ {0}. If either

(a) lim infn→∞β
(1)
n β

(i+1)
n > 0 for all i = 1, 2, . . . ,N or

(b) limn→∞β
(1)
n = 0 and lim infn→∞β

(k+1)
n β

(l+1)
n > 0 for all i /= j, k, l = 1, 2, . . . ,N.

Then the sequence {xn} converges strongly to ΠΛx0, where ΠΛ is the generalized projection from E
onto Λ.

4.2. Equilibrium problems

For solving the equilibrium problem, let us assume that a bifunction f satisfies the following
conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) � 0 for all x, y ∈ C;
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(A3) f is upper-hemicontinuous, that is, for each x, y, z ∈ C,

lim sup
t↓0

f
(
tz + (1 − t)x, y

)
� f(x, y); (4.3)

(A4) f(x, ·) is convex and lower semicontinuous for each x ∈ C.

The following result is in Blum and Oettli [36].

Lemma 4.3 (Blum and Oettli [36]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E, let f be a bifunction of C × C into R satisfying (A1)–(A4). Let
r > 0 and x ∈ E. Then, there exists z ∈ C such that

f(z, y) +
1
r
〈y − z, Jz − Jx〉 � 0 ∀y ∈ C. (4.4)

The following result is in Takahashi and Zembayashi [37].

Lemma 4.4 (Takahashi and Zembayashi [37]). Let C be a closed convex subset of a uniformly
smooth, strictly convex, and reflexive Banach space E and let f : C ×C → R satisfies (A1)–(A4). For
r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Tr(x) =
{

z ∈ C : f(z, y) +
1
r
〈y − z, Jz − Jx〉 � 0, ∀y ∈ C

}

(4.5)

for all x ∈ E. Then, the following hold;

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive-type mapping [38], that is, for any x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉
�

〈
Trx − Try, Jx − Jy

〉
; (4.6)

(3) F(Tr) = EP(f);

(4) EP(f) is closed and convex.

Lemma 4.5 (Takahashi and Zembayashi [37]). LetC be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E. let f be a bifunction from C ×C to R satisfying (A1)–(A4), and
let r > 0. Then for x ∈ E and q ∈ F(Tr),

φ
(
q, Trx

)
+ φ

(
Trx, x

)
� φ(q, x). (4.7)

Theorem 4.6. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let f(i) be a bifunction from C × C into R satisfying (A1)–(A4)
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for each i = 1, 2, . . . ,N, and Θ :=
⋂N

i=1EP(f(i))/=∅, and let x0 ∈ E. For C1 = C and x1 = ΠC1x0,
define a sequence {xn} of C as follows:

u
(i)
n ∈ C such that f (i)

(
u
(i)
n , y

)

+
1
r(i)

〈
y − u

(i)
n , Ju

(i)
n − Jxn

〉
� 0 ∀y ∈ C, for each i = 1, 2, . . . ,N,

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(

β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n Ju

(i)
n

)

,

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

)
� φ

(
z, xn

)}
,

xn+1 = ΠCn+1x0, n = 0, 1, 2, . . . ,

(4.8)

where {αn}, {β(i)n } ⊂ [0, 1] satisfy the following conditions:

(i) 0 � αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1,

(ii) 0 � β
(i)
n � 1 for all i = 1, 2, . . . ,N + 1,

∑N+1
i=1 β

(i)
n = 1 for all n ∈ N ∪ {0}. If either

(a) lim infn→∞β
(1)
n β

(i+1)
n > 0 for all i = 1, 2, . . . ,N or

(b) limn→∞β
(1)
n = 0 and lim infn→∞β

(k+1)
n β

(l+1)
n > 0 for all i /= j, k, l = 1, 2, . . . ,N.

Then the sequence {xn} converges strongly to ΠΘx0, where ΠΘ is the generalized projection from E
onto Θ.

Theorem 4.7. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let f(i) be a bifunction from C × C into R satisfying (A1)–(A4)
for each i = 1, 2, . . . ,N, and Θ :=

⋂N
i=1EP(f(i))/=∅. Let a sequence {xn} defined by

x0 ∈ E,

u
(i)
n ∈ C such that f (i)

(
u
(i)
n , y

)

+
1
r(i)

〈
y − u

(i)
n , Ju

(i)
n − Jxn

〉
� 0 ∀y ∈ C, for each i = 1, 2, . . . ,N,

yn = J−1
(
αnJxn +

(
1 − αn

)
Jzn

)
,

zn = J−1
(

β
(1)
n Jxn +

N∑

i=1

β
(i+1)
n Ju

(i)
n

)

,

Hn =
{
z ∈ E : φ

(
z, yn

)
� φ

(
z, xn

)}
,

Wn =
{
z ∈ E :

〈
xn − z, Jx0 − Jxn

〉
� 0

}
,

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(4.9)
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where {αn}, {β(i)n } ⊂ [0, 1] and r(i) > 0 for all i = 1, 2, . . . ,N, satisfy the following conditions:

(i) 0 � αn < 1 for all n ∈ N ∪ {0} and lim supn→∞αn < 1,

(ii) 0 � β
(i)
n � 1 for all i = 1, 2, . . . ,N + 1,

∑N+1
i=1 β

(i)
n = 1 for all n ∈ N ∪ {0}. If either

(a) lim infn→∞β
(1)
n β

(i+1)
n > 0 for all i = 1, 2, . . . ,N or

(b) limn→∞β
(1)
n = 0 and lim infn→∞β

(k+1)
n β

(l+1)
n > 0 for all i /= j, k, l = 1, 2, . . . ,N.

Then the sequence {xn} converges strongly to ΠΘx0, where ΠΘ is the generalized projection from E
onto Θ.
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