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1. Introduction and preliminaries

Let (M,d) be a metric space and let A and B be nonempty subsets of M. Let d(A,B) =
inf{d(a, b) : a ∈ A, b ∈ B}, and Prox(A,B) = {(a, b) ∈ A × B : d(a, b) = d(A,B)}. A is said
to be approximately compact if for each y ∈ M and each sequence (xn) in A satisfying the
condition d(xn, y) → d(y,A) there is a subsequence of (xn) converging to an element of A.
Let

B0 :=
{
b ∈ B : d(a, b) = d(A,B) for some a ∈ A

}
,

A0 :=
{
a ∈ A : d(a, b) = d(A,B) for some b ∈ B

}
.

(1.1)

Let G : A � A and F : A � B be set-valued maps. (G(x0), F(x0)) is called a best
proximity pair for F with respect to G if d(G(x0), F(x0)) = d(A,B). Best proximity pair
theorems analyze the conditions under which the problem of minimizing the real-valued
function x → d(G(x), F(x)) has a solution. In the setting of normed linear spaces, the best
proximity pair problem has been studied by many authors; see [1–5]. In 2000, Sadiq Basha
and Veeramani [4] proved the following theorem.
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Theorem 1.1. Let E be a normed linear space. Let A be a nonempty, approximately compact and
convex subset of E and let B be a nonempty, closed and convex subset of E such that Prox(A,B) is
nonempty and A0 is compact. Suppose that

(a) F : A � B is a set-valued map such that for every x ∈ A0, F(x) ∩ B0 /=∅, and for every
y ∈ B0, the fiber F−1(y) is open;

(b) for every open setU in A, the set ∩{F(u) : u ∈ U} is convex;
(c) g : A → A is a continuous, proper, quasi-affine, and surjective single-valued map such

that g−1(A0) ⊆ A0.

Then there exists an element x0 ∈ A0 such that

d
(
g
(
x0
)
, F

(
x0
))

= d(A,B). (1.2)

In the rest of this section we recall some definitions and theorems which are used in
the next section. Let X and Y be topological spaces with A ⊆ X and B ⊆ Y . Let F : X � Y be
a set-valued map with nonempty values. The image ofA under F is the set F(A) =

⋃
x∈AF(x)

and the inverse image of B under F is F−(B) = {x ∈ X : F(x) ∩ B /=∅}. Now F is said to be

(a) closed if its graph, Gr(F) = {(x, y) ∈ X × Y : y ∈ F(x)}, is a closed set in product
space X × Y ;

(b) upper semicontinuous, if for each closed set B ⊆ Y , F−(B) is closed in X;

(c) lower semicontinuous, if for each open set B ⊆ Y , the set F−(B) is open;

(d) continuous if F is both lower semicontinuous and upper semicontinuous.

We say that F : X � Y is onto if F(X) = Y . If F : X � Y is onto then F− : Y � X, the lower
inverse of F, is defined by F−(y) = {x ∈ X : y ∈ F(x)}. f : X → Y is called a homeomorphism
if f is a bijective, continuous, and open map. We say that the set-valued mapping F : X � Y
has a continuous selection if there exists a continuous function f : X → Y such that f(x) ∈
F(x) for each x ∈ X. We let

S(X,Y ) = {F : X � Y : F has a continuous selection}. (1.3)

For a nonempty finite subset D of X, let 〈D〉 denote the set of all nonempty finite subsets of
D.

Definition 1.2. Let X be a nonempty subset of a topological vector space Y . A set-valued map
F : X � Y is said to be a generalized KKMmapping (GKKM) if for each nonempty finite set
{x1, . . . , xn} ⊆ X, there exist a set {y1, . . . , yn} of points of Y , not necessarily all different, such
that for each subset {yi1 , . . . , yik} of {y1, . . . , yn}, we have

conv
{
yi1 , . . . , yik

} ⊆
k⋃

j=1

F
(
xij

)
. (1.4)

The following extension of the classical KKM principle in topological vector spaces is
due to Chang and Zhang [6].
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Theorem 1.3. Let X be a nonempty subset of a topological vector space Y and let F : X � Y be
a GKKM mapping with closed values. Then, the family {F(x) : x ∈ X} has the finite intersection
property, that is,

⋂

x∈A
F(x)/=∅ for each A ∈ 〈X〉. (1.5)

Furthermore, if there exists an x0 ∈ X such that F(x0) is a compact set in Y , then

⋂

x∈X
F(x)/=∅. (1.6)

Let X be a nonempty subset of a topological vector space Y . Let F : X � Y and
G : Y � Y be set-valued mappings such that for each nonempty finite set {x1, . . . , xn} ⊆ X,
there exists a set {y1, . . . , yn} of points of Y , not necessarily all different, such that for each
subset {yi1 , . . . , yik} of {y1, . . . , yn}, we have

G
(
conv

{
yi1 , . . . , yik

}) ⊆
k⋃

j=1

F
(
xij

)
. (1.7)

Then F is called a generalized KKM mapping with respect to G. If the set-valued mapping
G : Y � Y satisfies the requirement that for any generalized KKM mapping F : X � Y with
respect to G the family {F(x) : x ∈ X} has the finite intersection property, then G is said to be
have the KKM property. We denote

KKM(Y ) = {G : Y � Y : G has the KKM property}. (1.8)

By Theorem 1.3, the identity map IY has the KKM property. It is well known, and easy to
see, that the continuous functions have the KKM property. Thus if a set-valued mapping G has a
continuous selection, then G has trivially the KKM property.

Let (M,d) be a metric space and let B(x, r) = {y ∈ M : d(x, y) ≤ r} denote the closed
ball with center x and radius r. Let

co(A) =
⋂

{B ⊆ M : B is a closed ball in M such that A ⊆ B}. (1.9)

If A = co(A), we say that A is an admissible subset of M. Note that co(A) is admissible
and the intersection of any family of admissible subsets of M is admissible. The following
definition of a hyperconvex metric space is due to Aronszajn and Panitchpakdi [7].

Definition 1.4. A metric space (M,d) is said to be a hyperconvex metric space if for any
collection of points xα of M and any collection rα of nonnegative real numbers with
d(xα, xβ) ≤ rα + rβ, we have

⋂

α

B
(
xα, rα

)
/=∅. (1.10)
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The simplest examples of hyperconvex spaces are finite dimensional real Banach
spaces and l∞ endowed with the maximum norm.

Now we introduce an important class of metric spaces.

Definition 1.5 (see [8]). A nonexpansive retract metric space (i.e., an NR-metric space)
(M,E, r) consists of a metric space (M,d), a convex subset (E, ρ) of a metrizable topological
vector space (V, ρ) in which every closed ball is convex such that (M,d) can be isometrically
embedded into (E, ρ) and r : E → M is a nonexpansive retraction.

Let A ⊆ M. We say that A is r-convex if, for each D ∈ 〈A〉, r(conv(D)) ⊆ A (note we
identify M with the isometric embedding image set in E).

Remark 1.6. Every closed ball in (E, ρ) is convex if and only if

ρ
(
αx1 + βx2, αy1 + βy2

) ≤ max
(
ρ
(
x1, y1

)
, ρ
(
x2, y2

))
, (1.11)

for each x1, x2, y1, y2 ∈ E, α + β = 1, α, β ≥ 0.

Examples 1.7. (a) Let (X, ‖·‖) be a normed linear space. Let E = X, ρ(x, y) = ‖x − y‖, and r = I
the identity mapping. Then (X, ‖·‖) is a nonexpansive retract metric space. In this caseA ⊆ X
is r-convex if and only if A is convex.

(b) Let (M,d) be a hyperconvex metric space. It is well known that there exists
an index set I and a natural isometric embedding from M into l∞(I). Also there exists a
nonexpansive retraction r : l∞(I) → M. Thus every hyperconvex metric space is an NR-
metric space. In hyperconvex metric spaces, every admissible set is r-convex . To see this, let
A ⊆ M be admissible andD ∈ 〈A〉. Then r(conv(D)) ⊆ co(D) [9]. SinceA is admissible, then
co(D) ⊆ co(A) = A. Thus r(conv(D)) ⊆ A, which implies that A is r-convex.

(c) Let (X, d) be a metrizable Hausdorff topological vector space in which every closed
ball is convex. Let E = X, ρ(x, y) = d(x, y), and r = I be the identity mapping. Then (X, d) is
anNR-metric space. In this case, A ⊆ X is r-convex if and only if A is convex.

2. Main theorems

This section is devoted to main results on best proximity pairs.

Theorem 2.1. Let (M,E, r) be an NR-metric space. Let A ⊆ M be nonempty, compact, r-convex,
and let B be a nonempty subset of M. Let G : A � A be a continuous, onto set-valued map with
compact values such that G− ∈ S(A,A). Let F : A � B be a continuous set-valued map with r-
convex, compact values. Assume that F(x) ∩ B0 /=∅, for each x ∈ A. Then there exists x0 ∈ A such
that

d
(
G
(
x0
)
, F

(
x0
))

= d(A,B). (2.1)

Proof. Define a set-valued map H : A � A by

H(y) =
{
x ∈ A : d

(
G(x), F(x)

) ≤ d
(
G(y), F(x)

)}
. (2.2)
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Since y ∈ H(y), then H(y)/=∅ for each y ∈ A. We show that for each y ∈ A, H(y) is
closed and therefore is a compact subset of A. Let xn ∈ H(y) and xn → x. Since F and G are
compact-valued, then there exist s ∈ G(y), t ∈ F(x), un ∈ G(xn), and vn ∈ F(xn) such that

d
(
G
(
xn

)
, F

(
xn

))
= d

(
un, vn

)
,

d
(
G(y), F(x)

)
= d(s, t).

(2.3)

Now F is lower semicontinuous so for each n ∈ N, there exists tn ∈ F(xn) such that tn → t.
Since F(A) and G(A) are compact and F and G are closed, without loss of generality, we may
assume that un → u, vn → v, u ∈ G(x) and v ∈ F(x). Therefore since xn ∈ H(y), we have

d
(
G(x), F(x)

) ≤ d(u, v)

= lim
n

d
(
un, vn

)

= lim
n

d
(
G
(
xn

)
, F

(
xn

))

≤ lim sup
n

d
(
G(y), F

(
xn

))

≤ lim
n

d
(
s, tn

)

= d(s, t) = d
(
G(y), F(x)

)
,

(2.4)

which shows that x ∈ H(y). Now, we prove that

H : A ⊆ E � E (2.5)

is a generalized KKM mapping with respect to G− ◦ r. To show this, suppose that x1, . . . , xn

are in A and take any y0 with y0 /∈
⋃n

i=1 H(xi). Then we have

d
(
G
(
y0
)
, F

(
y0
))

> d
(
G
(
xk

)
, F

(
y0
))
, ∀k = 1, . . . , n. (2.6)

Let

S
(
y0
)
:=

{
x ∈ A : ∃y ∈ G(x) such that d

(
G
(
y0
)
, F

(
y0
))

> d
(
y, F

(
y0
))}

. (2.7)

Clearly xk ∈ S(y0) for k = 1, . . . , n. Let g : A → A be a selection of G (not necessary
continuous). We take zk ∈ F(y0) such that

d
(
G
(
y0
)
, F

(
y0
))

> d
(
g
(
xk

)
, zk

)
, for 1 ≤ k ≤ n. (2.8)
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Let λi ≥ 0 and
∑n

i=1 λi = 1. Now r is nonexpansive and Remark 1.6 yields (note we identify
M with the isometric embedding image set in E)

d

(

r

(
n∑

i=1

λig
(
xi

)
)

, r

(
n∑

i=1

λizi

))

≤ ρ

(
n∑

i=1

λig
(
xi

)
,

n∑

i=1

λizi

)

≤ max
1≤i≤n

ρ
(
g
(
xi

)
, zi

)

= max
1≤i≤n

d
(
g
(
xi

)
, zi

)

< d
(
G
(
y0
)
, F

(
y0
))
.

(2.9)

Since F(y0) and A are r-convex, then

r

(
n∑

i=1

λizi

)

∈ F
(
y0
)
, r

(
n∑

i=1

λig
(
xi

)
)

∈ A. (2.10)

Thus

d

(

r

(
n∑

i=1

λig
(
xi

)
)

, F
(
y0)

)

< d
(
G
(
y0
)
, F

(
y0
))
. (2.11)

Hence, we deduce that (note that G is onto and see the definition of S(y0) with y =
r(
∑n

i=1λig(xi)))

G−(r
(
conv

{
g
(
x1
)
, . . . , g

(
xn

)})) ⊆ S
(
y0
)
. (2.12)

As y0 /∈S(y0), we have y0 /∈G−(r(conv{g(x1), . . . , g(xn)})). Consequently,

G− ◦ r(conv{g(x1
)
, . . . , g

(
xn)

}) ⊆
n⋃

i=1

H
(
xi

)
. (2.13)

Since x1, . . . , xn are arbitrary elements of A, then we deduce that for each subset {i1, . . . , ik} ⊆
{1, . . . , n} we have

G− ◦ r(conv{g(xi1

)
, . . . , g

(
xik

)}) ⊆
k⋃

j=1

H
(
xij

)
. (2.14)

Now since G− ∈ S(A,A) and r is continuous, then G− ◦ r ∈ S(E,A) and so G− ◦ r has the
KKM property. Hence the family {H(x) : x ∈ A} has the finite intersection property. Now
since H(x) is compact for any x ∈ A, we have immediately that

⋂
x∈AH(x)/=∅. Therefore,

there exists an x0 ∈ A such that

x0 ∈
⋂

x∈A
H(x). (2.15)
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Then, it is clear that

d
(
G
(
x0
)
, F

(
x0
)) ≤ d

(
G(x), F

(
x0
)) ∀x ∈ A. (2.16)

Since x0 ∈ A, then

d
(
G
(
x0
)
, F

(
x0
))

= inf
x∈A

d
(
G(x), F

(
x0
))
. (2.17)

Since G : A � A is onto, then for each y ∈ A there exists x ∈ A such that y ∈ G(x). Thus

d
(
A,F

(
x0
)) ≤ d

(
G(x), F

(
x0
)) ≤ d

(
y, F

(
x0
))
. (2.18)

Hence

inf
x∈A

d
(
G(x), F

(
x0
))

= d
(
A,F

(
x0
))
. (2.19)

Pick b ∈ F(x0) ∩ B0 /=∅. Then there exists a ∈ A such that d(a, b) = d(A,B). Thus

d
(
A,F

(
x0
)) ≤ d(A, b) ≤ d(a, b) = d(A,B). (2.20)

By (2.17), (2.19), and (2.20), we get

d
(
G
(
x0
)
, F

(
x0
)) ≤ d(A,B). (2.21)

On the other hand, trivially

d
(
G
(
x0
)
, F

(
x0
)) ≥ d(A,B). (2.22)

Thus by (2.21) and (2.22), we get

d
(
G
(
x0
)
, F

(
x0
))

= d(A,B). (2.23)

Remark 2.2. (a) Let G : A → A be a single-valued homeomorphism. Then G obviously
satisfies all conditions of Theorem 2.1.

(b) There are many conditions under which G− has a continuous selection [10–13].

The following corollary is immediate.

Corollary 2.3. Let X be a normed linear space. Let A ⊆ X be a nonempty compact convex and let B
be a nonempty subset ofX. Let G : A � A be a continuous, onto set-valued map with compact values
such that G− ∈ S(A,A). Let F : A � B be a continuous set-valued map with convex, compact
values. Assume that F(x) ∩ B0 /=∅, for each x ∈ A. Then there exists x0 ∈ A such that

d
(
G
(
x0
)
, F

(
x0
))

= d(A,B). (2.24)
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Remark 2.4. A similar result to that of Corollary 2.3 holds in every topological vector space in
which every closed ball is convex.

Since hyperconvex metric spaces are NR-metric spaces, then we have the following
corollary.

Corollary 2.5. Let (M,d) be a hyperconvex metric space. Let A ⊆ M be a nonempty compact
admissible and let B be a nonempty subset of M. Let G : A � A be a continuous, onto set-valued
map with compact values such that G− ∈ S(A,A). Let F : A � B be a continuous set-valued map
with admissible, compact values. Assume that F(x)∩B0 /=∅, for each x ∈ A. Then there exists x0 ∈ A
such that

d
(
G
(
x0
)
, F

(
x0
))

= d(A,B). (2.25)

Corollary 2.6. Let (M,d) be a hyperconvex metric space. Let A be a nonempty compact admissible
subset of M. Let G : A � A be a continuous, onto set-valued map with compact values such that
G− ∈ S(A,A). Let F : A � M be a continuous set-valued map with admissible, compact values.
Assume that F(x) ∩A/=∅, for each x ∈ A. Then there exists x0 ∈ A such that

G(x0) ∩ F(x0)/=∅. (2.26)

Proof. Let B = M and apply Corollary 2.5 (note B0 = A).

Remark 2.7. If we take G = IA, Corollary 2.6 reduces to Corollary 3.5 of Kirk and Shin [14].
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