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1. Introduction

Let E be a real Banach space and C a nonempty closed convex subset of E. We denote by J
the normalized duality map from E to 2E

∗
(E∗ is the dual spaces of E) defined by

J(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2, ∀x ∈ E

}
. (1.1)

A mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all
x, y ∈ C. We denote by Fix (T) = {x ∈ C : Tx = x} the set of fixed points of T . In the last
ten years, many papers have been written on the approximation of fixed point for nonlinear
mappings by using some iterative processes (see, e.g., [1–18]).

An explicit iterative process was initially introduced, in 1967, by Halpern [3] in the
framework of Hilbert spaces, that is, Halpern’s iteration. For any u, x0 ∈ C, the sequence {xn} is
defined by

xn+1 = αnu +
(
1 − αn

)
Txn, ∀n ≥ 0, (1.2)

where {αn} ⊂ [0, 1]. He proved that the sequence {xn} converges weakly to a fixed point of T ,
where αn = n−a, a ∈ (0, 1). In 1977, Lions [8] further proved that the sequence {xn} converges
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strongly to a fixed point of T in a Hilbert space, where {αn} satisfies the following conditions:

(C1) lim
n→∞

αn = 0,

(C2)
∞∑

n=0

αn = +∞,

(C3) lim
n→∞

∣
∣αn+1 − αn

∣
∣

α2
n+1

= 0.

(1.3)

But, in [3, 8], the real sequence {αn} excluded the canonical choice αn = 1/(n + 1). In 1992,
Wittmann [16] proved, still in Hilbert spaces, the strong convergence of the sequence (1.2) to
a fixed point of T , where {αn} satisfies the following conditions:

(C1) lim
n→∞

αn = 0,

(C2)
∞∑

n=0

αn = +∞,

(C4)
∞∑

n=1

∣∣αn+1 − αn

∣∣ < +∞.

(1.4)

The strong convergence of Halpern’s iteration to a fixed point of T has also been
proved in Banach spaces (see, e.g., [2, 6, 10–12, 14, 15, 17, 18]). Reich [10, 11] has showed the
strong convergence of the sequence (1.2), where {αn} satisfies the conditions (C1), (C2), and
(C5). {αn} is decreasing (noting that the condition (C5) is a special case of condition (C4)).
In 1997, Shioji and Takahashi [12] extended Wittmann’s result to Banach spaces. In 2002, Xu
[17] obtained a strong convergence theorem, where {αn} satisfies the following conditions:
(C1), (C2), and (C6). limn→∞ (|αn+1 − αn|/αn+1) = 0. In particular, the canonical choice of
αn = 1/(n + 1) satisfies the conditions (C1), (C2), and (C6).

However, is a real sequence {αn} satisfying the conditions (C1) and (C2) sufficient to
guarantee the strong convergence of the Halpern’s iteration (1.2) for nonexpansive mappings? It
remains an open question.

Some mathematician considered the open question. A partial answer to this question
was given independently by C. E. Chidume and C. O. Chidume [2] and Suzuki [14]. They
defined the sequence {xn} by

xn+1 = αnu +
(
1 − αn

)((
1 − δ)xn + δTxn

)
, (1.5)

where δ ∈ (0, 1), I is the identity, and obtained the strong convergence of the iteration (1.5),
where {αn} satisfies the conditions (C1) and (C2). Recently, Xu [18] gave another partial
answer to this question. He obtained the strong convergence of the iterative sequence

xn+1 = αn

(
(1 − δ)u + δxn

)
+
(
1 − αn

)
Txn, (1.6)

where δ ∈ (0, 1) and {αn} satisfies the conditions (C1) and (C2).
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Inspired and motivated by the above researches, we introduce a modified Halpern’s
iteration. For any u, x0 ∈ C, the sequence {xn} is defined by

xn+1 = αnu + βnxn + γnTxn, n ≥ 0, (I)

where {αn}, {βn}, and {γn} are three real sequences in (0, 1), satisfying αn + βn + γn = 1. Clearly,
the iterative sequence (I) is a natural generalization of the well-known iterations.

(i) If, for all n, we take βn ≡ 0 in (I), then the sequence (I) reduces to Halpern’s iteration
(1.2).

(ii) If, for all n, we take αn ≡ 0 in (I), then the sequence (I) reduces to Mann iteration.

The purpose of this paper is to present a significant answer to the above open
question. we will show that the sequence {αn} satisfying the conditions (C1) and (C2) is
sufficient to guarantee the strong convergence of the modified Halpern’s iterative sequence
for nonexpansive mappings. As we will see, our theorem extends the corresponding results
in three aspects. (1) The real sequence {αn} satisfies only the conditions (C1) and (C2). (2)
In contrast with the results [2, 14], we replace the sequence {(1 − αn)(1 − δ)} in (1.5) by an
arbitrary sequence {βn} in (0, 1). (3) In contrast with the result [18], we replace the sequence
{αnδ} in (1.6) by an arbitrary sequence {βn} in (0, 1).

2. Preliminaries

A Banach space E is said to have a Gâteaux differentiable norm if the limit

lim
t→ 0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for each x, y ∈ U, where U = {x ∈ E : ‖x‖ = 1}. E is called a uniformly Gâteaux dif-
ferentiable norm if for each y ∈ U, the limit is attained uniformly for x ∈ U. It is well known
that if the norm of E is uniformly Gâteaux differentiable norm, then the duality mapping is
single-valued and norm-to-weak∗ uniformly continuous on each bounded subset of E.

Lemma 2.1 (see [9, 10]). Let C be a nonempty closed convex subset of a Banach space E which has
uniformly Gâteaux differentiable norm and T : C → C a nonexpansive mapping with Fix (T)/=∅.
Assume that every nonempty closed convex bounded subset of C has the fixed points property for
nonexpansive mappings. Then there exists a continuous path: t → zt, t ∈ (0, 1) satisfying zt =
tu + (1 − t)Tzt, for any u ∈ C, which converges to a fixed point of T .

Lemma 2.2 (see [13]). Let {xn} and {yn} be two bounded sequences in a Banach space E such that

xn+1 = βnxn +
(
1 − βn

)
yn, n ≥ 0, (2.2)

where {βn} is a sequence in (0, 1) such that 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Assume

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ∥∥xn+1 − xn

∥∥) ≤ 0. (2.3)

Then limn→∞‖yn − xn‖ = 0.
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Lemma 2.3. Let E be a real Banach space. Then the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, j(x + y)

〉
, ∀x, y ∈ E, ∀j(x + y) ∈ J(x + y). (2.4)

Lemma 2.4 (see [17]). Let {an} be a sequence of nonnegative real numbers such that
an+1 ≤ (1 − δn)an + δnξn, ∀n ≥ 0, where {δn} is a sequence in [0, 1] and {ξn} is a sequence
in R satisfying the following conditions:

(i)
∑∞

n=1 δn = +∞;

(ii) lim supn→∞ ξn ≤ 0 or
∑∞

n=1 δn|ξn| < +∞;

Then limn→∞ an = 0.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Banach space E which has a
uniformly Gâteaux differentiable norm. Let T : C → C be a nonexpansive mapping with Fix (T)/=∅.
Assume that {zt} converges strongly to a fixed point z of T as t → 0, where zt is the unique element of
C which satisfies zt = tu + (1 − t)Tzt for any u ∈ C. Let {αn}, {βn}, and {γn} be three real sequences
in (0, 1) which satisfy the following conditions: (C1) limn→∞ αn = 0 and (C2)

∑∞
n=0 αn = +∞. For

any x0 ∈ C, the sequence {xn} is defined by the iteration in (I). Then the sequence {xn} converges
strongly to a fixed point of T .

Proof. Take any p ∈ Fix (T). From (I), it implies that

∥∥xn+1 − p
∥∥ =

∥∥αn(u − p) + βn
(
xn − p

)
+ γn

(
Txn − p

)∥∥

≤ αn‖u − p‖ + (
1 − αn

)∥∥xn − p
∥∥.

(3.1)

Adopting mathematical induction, we obtain, for all n ≥ 0,

∥∥xn − p
∥∥ ≤ max

{∥∥x0 − p
∥∥, ‖u − p‖}. (3.2)

Therefore, we conclude that the sequence {xn} is bounded. Next, we separate the proof into
two cases.

Case 1 (0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1). Rewrite the iterative process (I) as follows:

xn+1 = αnu + βnxn + γnTxn

= βnxn +
(
1 − βn

)αnu + γnTxn

1 − βn

= βnxn +
(
1 − βn

)
yn,

(3.3)

where

yn =
αn

1 − βn
u +

γn
1 − βn

Txn, ∀n ≥ 0. (3.4)
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Since T is a nonexpansive mapping and {xn} is bounded, we get that {yn} and {Txn} are
bounded. Manipulating (3.4) yields

yn+1 − yn =
(

αn+1

1 − βn+1
− αn

1 − βn

)
u +

(
1 − αn+1

1 − βn+1

)
(
Txn+1 − Txn

)

+
(

αn

1 − βn
− αn+1

1 − βn+1

)
Txn.

(3.5)

Consequently, we have

∥
∥yn+1 − yn

∥
∥ − ∥

∥xn+1 − xn

∥
∥ ≤

∣
∣
∣
∣

αn+1

1 − βn+1
− αn

1 − βn

∣
∣
∣
∣‖u‖ +

∣
∣
∣
∣1 −

αn+1

1 − βn+1

∣
∣
∣
∣
∥
∥xn+1 − xn

∥
∥

+
∣∣∣∣

αn

1 − βn
− αn+1

1 − βn+1

∣∣∣∣
∥∥Txn

∥∥ − ∥∥xn+1 − xn

∥∥.

(3.6)

From the fact that {xn} and {Txn} are bounded and limn→∞ αn = 0, it follows that

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ∥∥xn+1 − xn

∥∥) ≤ 0. (3.7)

Hence, by Lemma 2.2, we get

lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.8)

Using limn→∞ αn = 0 and (3.8), we obtain

∥∥∥∥xn+1 −
βnxn + γnTxn

1 − αn

∥∥∥∥ ≤ αn

∥∥∥∥u − βnxn + γnTxn

1 − αn

∥∥∥∥ −→ 0, n −→ ∞,

∥∥xn+1 − xn

∥∥ ≤ (
1 − βn

)∥∥yn − xn

∥∥ −→ 0, n −→ ∞.

(3.9)

Clearly,

xn −
βnxn + γnTxn

1 − αn
=

γn
1 − αn

(
xn − Txn

)
. (3.10)

Since limn→∞ αn = 0 and lim supn→∞ βn < 1, we get that lim infn→∞ γn > 0. Therefore, from
(3.9), and (3.10), we find

∥∥xn − Txn

∥∥ =
1 − αn

γn

∥∥∥∥xn −
βnxn + γnTxn

1 − αn

∥∥∥∥ −→ 0, n −→ ∞. (3.11)
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From limn→∞‖xn − Txn‖ = 0, it follows that there exists a positive number N such that tn =
max{

√
‖xn − Txn‖, 1/n}, n > N. Obviously, we find

lim
n→∞

∥
∥xn − Txn

∥
∥

tn
= 0. (3.12)

Since zt is a unique solution of the equation zt = tu + (1 − t)Tzt, we can write

ztn − xn =
(
1 − tn

)(
Tztn − xn

)
+ tn

(
u − xn

)
. (3.13)

Using Lemma 2.3, we get

∥
∥ztn − xn

∥
∥2 ≤ (

1 − tn
)2∥∥Tztn − xn

∥
∥2 + 2tn

〈
u − xn, j

(
ztn − xn

)〉

≤ (
1 − tn

)2(∥∥Tztn − Txn

∥∥ +
∥∥Txn − xn

∥∥)2 + 2tn
〈
u − xn, j

(
ztn − xn

)〉

≤ (
1 + t2n

)∥∥ztn − xn

∥∥2 +
(
1 − 2tn + t2n

)∥∥xn − Txn

∥∥(2
∥∥ztn − xn

∥∥ +
∥∥xn − Txn

∥∥)

+ 2tn
〈
u − ztn , j

(
ztn − xn

)〉
.

(3.14)

Thus,

〈
u − ztn , j

(
xn − ztn

)〉 ≤ tn
2
∥∥ztn − xn

∥∥2 +

(
1 + t2n

)∥∥xn − Txn

∥∥

2tn

(
2
∥∥ztn − xn

∥∥ +
∥∥xn − Txn

∥∥).

(3.15)

From the fact that {xn}, {ztn}, and {Txn} are bounded and (3.12), it implies that

lim sup
n→∞

〈
u − ztn , j

(
xn − ztn

)〉 ≤ 0. (3.16)

We know that

〈
u − z, j

(
xn − z

)〉
=
〈
u − z, j

(
xn − z

) − j
(
xn − ztn

)〉
+
〈
u − ztn , j

(
xn − ztn

)〉

+
〈
ztn − z, j

(
xn − ztn

)〉
.

(3.17)

Noting the hypothesis that ztn → z ∈ Fix (T), n → ∞, and the fact that {xn} is bounded and
the duality mapping j is norm-to-weak∗ uniformly continuous on bounded subset of E, we
have

〈
z − ztn , j

(
xn − ztn

)〉 −→ 0, n −→ ∞,

〈
u − z, j

(
xn − ztn

) − j
(
xn − z

)〉 −→ 0, n −→ ∞.
(3.18)
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Consequently, from (3.16), (3.17), and the two results mentioned above, we obtain

lim sup
n→∞

〈
u − z, j

(
xn − z

)〉 ≤ 0. (3.19)

Estimating (I) yields

∥
∥xn+1 − z

∥
∥2 ≤ ∥

∥βn
(
xn − z

)
+ γn

(
Txn − z

)∥∥2 + 2αn

〈
u − z, j

(
xn+1 − z

)〉

≤ (
1 − αn

)∥∥xn − z
∥
∥2 + 2αn

〈
u − z, j

(
xn+1 − z

)〉
.

(3.20)

Therefore, combining Lemma 2.4 with (3.19) and (3.20), we get that limn→∞ ‖xn − z‖ = 0.

Case 2 (limn→∞ βn = 1). Assume that Tnx = βn/(1 − αn)x + γn/(1 − αn)Tx, for all n ≥ 0, then it
is easy to see that for each n ∈ N, Tnx = x if and only if Tx = x, that is, Tn has the same set of
fixed points of T . Rewrite the iterative process (I) as follows:

xn+1 = αnu +
(
1 − αn

)
Tnxn. (3.21)

Since limn→∞ αn = 0 and limn→∞ βn = 1, and {Tnxn} is bounded, we have

∥∥xn+1 − xn

∥∥ ≤ αn‖u‖ + γn
∥∥Tnxn

∥∥ −→ 0, n −→ ∞. (3.22)

Consequently, we get that

∥∥∥∥xn+1 −
βnxn + γnTxn

1 − αn

∥∥∥∥ ≤ αn

∥∥∥∥u − βnxn + γnTxn

1 − αn

∥∥∥∥ −→ 0, n −→ ∞. (3.23)

Combining (3.22) and (3.23) yields

∥∥xn − Tnxn

∥∥ ≤ ∥∥xn − xn+1
∥∥ +

∥∥xn+1 − Tnxn

∥∥ −→ 0, n −→ ∞. (3.24)

Adopting the same proof as Case 1, we can easily conclude that limn→∞ ‖xn − z‖ = 0.

If lim supn→∞ βn = 1, then we take arbitrarily the two subsequences {βni} and {βnj} in
{βn} such that limi→∞ βni

= 1 and lim supj→∞ βnj < 1, and we obtain the strong convergence
of the sequence {xn} by employing the above-mentioned proof method.

Remark 3.2. If limn→∞ βn = 0 and lim infn→∞ βn = 0, then, from Xu’s results [18] and proof of
Theorem 3.1, we obtain the strong convergence theorem.

As direct consequences of Theorem 3.1, we obtain the two following corollaries.

Corollary 3.3 (see [2, Theorem 3.1]). Let E, C, and T be as Theorem 3.1. For a fixed δ ∈ (0, 1),
define S : C → C by Sx := (1 − δ)x + δTx, ∀x ∈ C. Assume that {zt} converges strongly to a fixed
point z of T as t → 0, where zt is the unique element of C which satisfies zt = tu+ (1− t)Tzt, for any
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u ∈ C. Let {αn} be a real sequence in (0, 1) satisfying the conditions (C1) and (C2). For any x0 ∈ C,
the sequence {xn} is defined by

xn+1 = αnu +
(
1 − αn

)
Sxn. (3.25)

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. If, in proof of Theorem 3.1, we take βn = (1 − αn)(1 − δ), limn→∞ βn = 1 − δ, then we get
the desired conclusion.

Corollary 3.4 (see [18, Theorem 3.1]). Let E be a uniformly smooth Banach space,C a closed convex
subset of E, and T : C → C a nonexpansive mapping such that Fix (T)/=∅. For any sequence {αn}
in (0, 1) satisfying the conditions (C1) and (C2), number δ ∈ (0, 1), and vectors u, x0 ∈ C, define a
sequence {xn} by the iterative algorithm

xn+1 = αn

(
δu + (1 − δ)xn

)
+
(
1 − αn

)
Txn, n ≥ 0. (3.26)

Then the sequence {xn} converges strongly to a fixed point of T .

Remark 3.5. For any real sequence {βn} ⊂ (0, 1), the real sequence {αn} satisfying the two
conditions (C1) and (C2) is sufficient for the strong convergence of the iterative sequence (II)
for nonexpansive mappings. Therefore, our results give a significant partial answer to the
open question.
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