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1. Introduction

The study of fixed points of functions satisfying certain contractive conditions has been at
the center of vigorous research activity, for example see [1–5] and it has a wide range of
applications in different areas such as nonlinear and adaptive control systems, parameterize
estimation problems, fractal image decoding, computing magnetostatic fields in a nonlinear
medium, and convergence of recurrent networks, see [6–10]. Recently, Huang and Zhang
generalized the concept of a metric space, replacing the set of real numbers by an ordered
Banach space and obtained some fixed point theorems for mapping satisfying different
contractive conditions [11]. The study of fixed point theorems in such spaces is followed
by some other mathematicians, see [12–15]. The aim of this paper is to generalize some
definitions such as c-nonexpansive and (c, λ)-uniformly locally contractive functions in these
spaces and by using these definitions, certain fixed point theorems will be proved.

Let E be a real Banach space. A subset P of E is called a cone if and only if the following
hold:

(i) P is closed, nonempty, and P /= {0},
(ii) a, b ∈ R, a, b � 0, and x, y ∈ P imply that ax + by ∈ P ,

(iii) x ∈ P and −x ∈ P imply that x = 0.
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Given a cone P ⊂ E, we define a partial ordering � with respect to P by x � y if and
only if y − x ∈ P . We will write x < y to indicate that x � y but x /=y, while x � y will stand
for y − x ∈ intP , where intP denotes the interior of P .

The cone P is called normal if there is a number K > 0 such that 0 � x � y implies
||x|| � K||y||, for every x, y ∈ E. The least positive number satisfying above is called the
normal constant of P .

There are non-normal cones.

Example 1.1. Let E = C2
R
([0, 1]) with the norm ||f || = ||f ||∞ + ||f ′||∞, and consider the cone

P = {f ∈ E : f � 0}. For each K � 1, put f(x) = x and g(x) = x2K. Then, 0 � g � f, ||f || = 2,
and ||g|| = 2K + 1. Since K||f || < ||g||, K is not normal constant of P [16].

In the following, we always suppose E is a real Banach space, P is a cone in E with
intP /=∅, and � is partial ordering with respect to P .

Let X be a nonempty set. As it has been defined in [11], a function d : X × X → E is
called a cone metric on X if it satisfies the following conditions:

(i) d(x, y) � 0, for every x, y ∈ X, and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x), for every x, y ∈ X,

(iii) d(x, y) � d(x, z) + d(y, z), for every x, y, z ∈ X.

Then (X, d) is called a cone metric space.

Example 1.2. Let E = l1, P = {{xn}n�1 ∈ E : xn � 0, for all n}, (X, ρ) a metric space, and
d : X × X → E defined by d(x, y) = {ρ(x, y)/2n}n�1. Then (X, d) is a cone metric space and
the normal constant of P is equal to 1 [16].

The sequence {xn} inX is called to be convergent to x ∈ X if for every c ∈ Ewith 0 � c,
there is n0 ∈ N such that d(xn, x) � c, for every n � n0, and is called a Cauchy sequence if
for every c ∈ E with 0 � c, there is n0 ∈ N such that d(xm, xn) � c, for every m,n � n0. A
cone metric space (X, d) is said to be a complete cone metric space if every Cauchy sequence
in X is convergent to a point of X. A self-mapT on X is said to be continuous if limn→∞xn = x
implies that limn→∞T(xn) = T(x), for every sequence {xn} in X. The following lemmas are
useful for us to prove our main results.

Lemma 1.3 (see [11, Lemma 1]). Let (X, d) be a cone metric space, P be a normal cone with normal
constantK. Let {xn} be a sequence inX. Then, {xn} converges to x if and only if limn→∞d(xn, x) = 0.

Lemma 1.4 (see [11, Lemma 3]). Let (X, d) be a cone metric space, {xn} be a sequence inX. If {xn}
is convergent, then it is a Cauchy sequence, too.

Lemma 1.5 (see [11, Lemma 4]). Let (X, d) be a cone metric space, P be a normal cone with
normal constant K. Let {xn} be a sequence in X. Then, {xn} is a Cauchy sequence if and only if
limm,n→∞d(xm, xn) = 0.

The following example is a cone metric space, see [11].

Example 1.6. Let E = R
2, P = {(x, y) ∈ E | x, y � 0}, X = R, and d : X × X → E such that

d(x, y) = (|x − y|, α|x − y|), where α � 0 is a constant. Then (X, d) is a cone metric space.
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2. Certain nonexpansive mappings

Definition 2.1. Let (X, d) be a conemetric space, where P is a cone and f : X → X is a function.
Then f is said to be c-nonexpansive, for 0 � c, if

d
(
f(x), f(y)

)
� d(x, y), (2.1)

for every x, y ∈ X with d(x, y) � c. If we have

d
(
f(x), f(y)

)
< d(x, y), (2.2)

for every x, y ∈ X with x /=y and d(x, y) � c, then f is called c-contractive.

Definition 2.2. Let (X, d) be a cone metric space, where P is a cone. A point y ∈ Y ⊆ X is said
to belong to the f-closure of Y and is denoted by y ∈ Yf , if f(Y ) ⊆ Y and there are a point
x ∈ Y and an increasing sequence {ni} ⊆ N such that limi→∞fni(x) = y.

Definition 2.3. Let (X, d) be a cone metric space, where P is a cone. A sequence {xi} ⊆ X is
said to be a c-isometric sequence if

d
(
xm, xn

)
= d

(
xm+k, xn+k

)
, (2.3)

for all k,m ∈ N with d(xm, xn) < c. A point x ∈ X is said to generate a c-isometric sequence
under the function f : X → X, if {fn(x)} is a c-isometric sequence.

Theorem 2.4. Let (X, d) be a cone metric space, where P is a normal cone with normal constant K.
If f : X → X is c-nonexpansive, for some 0 � c, and x ∈ Xf , then there is an increasing sequence
{mj} ⊆ N such that limj→∞fmj (x) = x.

Proof. Since x ∈ Xf , there are y ∈ X and a sequence {ni} such that limi→∞fni(y) = x. If
fm(y) = x, for some m ∈ N. Put mj = nj −m(nj > m), is a sequence as desired, then {mj} is
a sequence with desired property. Otherwise, for ε > 0, fix δ, 0 < δ < ε. Choose c ∈ E with
0 � c and K||c|| < δ. Then there is i = i(c) such that

d
(
x, fni+j(y)

) � c

4
, (2.4)

for every j ∈ N ∪ {0}. So by c-nonexpansivity of f and putting j = 0, we have

d
(
fni+k−ni(x), fni+k(y)

)
<

c

4
, (2.5)

for every k ∈ N. Therefore,

d
(
fni(y), fni+k(y)

)
� d

(
x, fni(y)

)
+ d

(
x, fni+k(y)

) � c

2
, (2.6)

for every k ∈ N. Hence,

d
(
x, fni+1−ni(x)

)
� d

(
x, fni(y)

)
+ d

(
fni(y), fni+1(y)

)
+ d

(
fni+1(y), fni+1−ni(x)

)
<

c

4
+
c

2
+
c

4
= c,

(2.7)
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which implies
∥
∥d

(
x, fni+1−ni(x)

)∥∥ � K‖c‖ < δ. (2.8)

Putm1 = ni+1 − ni and suppose that m1 < m2 < · · · < mj−1 chosen such that
∥
∥d

(
x, fmi(y)

)∥∥ � 1
2

min
m=1,...,mi−1

∥
∥d

(
x, fm(y)

)∥∥, (2.9)

for i = 2, 3, . . . , j−1. We putmj = nl+1−nl, where l is chosen so as to satisfy d(x, fl+j(y)) � c/4,
with δ replaced by

min
{
δ,

1
2

min
m=1,...,mi−1

∥
∥d

(
x, fm(y)

)∥∥
}
. (2.10)

It is easily seen that the sequence {mj} that is defined in the above satisfies the requirements
of the theorem. The proof is complete.

Theorem 2.5. Let (X, d) be a cone metric space, where P is a normal cone with normal constant K.
If f : X → X is a c-nonexpansive function, then every x ∈ Xf generates a c-isometric sequence.

Proof. By contradiction, suppose that there are k,m, n ∈ N such that d(fm(x), fn(x)) < c and
p = d(fm(x), fn(x)) − d(fm+k(x), fn+k(x))/= 0. By the assumption, p ∈ P and

0 < p � d
(
fm(x), fn(x)

) − d
(
fm+l(x), fn+l(x)

)
, (2.11)

for l � k, l ∈ N. It means that

‖p‖ � K
∥∥d

(
fm(x), fn(x)

) − d
(
fm+k(x), fn+k(x)

)∥∥, (2.12)

for l � k, l ∈ N. Also by the assumption and Theorem 2.4,

lim
j→∞

fnj
(
fl(x)

)
= lim

j→∞
fnj+l(x) = fl(x). (2.13)

Put δ = ‖p‖ and choose c ∈ E such that 0 � c and ‖c‖ < (1/K2)δ. By Lemma 1.4, there is
i ∈ N such that

d
(
fm+nj (x), fm(x)

) � c

2
, d

(
fn+nj (x), fn(x)

) � c

2
, (2.14)

for every j � i. However,

d
(
fm(x), fn(x)

)
� d

(
fm(x), fm+nj (x)

)
+ d

(
fm+nj (x), fn+nj (x)

)

+ d
(
fn+nj (x), fn(x)

) � c + d
(
fm+nj (x), fn+nj (x)

)
+
c

2
.

(2.15)

So

d
(
fm(x), fn(x)

) − d
(
fm+nj (x), fn+nj (x)

) � c. (2.16)

It means that
∥∥d

(
fm(x), fn(x)

) − d
(
fm+nj (x), fn+nj (x)

)∥∥ � K‖c‖ <
1
K
δ, (2.17)

that is a contradiction by (2.12), for nj � max{ni, k}. Therefore, p = 0 and the proof is
complete.

The following corollary implies immediately.

Corollary 2.6. Let (X, d) be a cone metric space, where P is a normal cone with normal constant K.
If f : X → X is a nonexpansive function and x ∈ Xf generates an isometric sequence.
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3. Extended contraction principle

We have the following generalized form of Banach’s contraction for cone metric spaces.

Theorem 3.1 (see [11, Theorem 1]). Let (X, d) be a complete cone metric space, P be a normal cone
with normal constant K. Suppose the mapping T : X → X satisfies the contractive condition

d
(
T(x), T(y)

)
� βd(x, y), (3.1)

for every x, y ∈ X, where β ∈ [0, 1) is a constant. Then T has a unique fixed point in X, and for any
x ∈ X, the sequence {Tn(x)} converges to the fixed point.

It is natural to ask whether the mentioned theorem could be modified if (3.1) holds for
just sufficiently close points. To be more specific, we introduce the following definitions.

Definition 3.2. Let (X, d) be a cone metric space. A function f : X → X is said to be locally
contractive, if for every x ∈ X there is c ∈ X with 0 � c and 0 � λ < 1 such that

d
(
f(p), f(q)

)
� λd(p, q), (3.2)

for every p, q ∈ {y ∈ X : d(x, y) � c}. A function f : X → X is said to be (c, λ)-uniformly
locally contractive if it is locally contractive and both c and λ do not depend on x.

It is easy to find cone metric spaces which admit locally contractive which are not
globally contractive.

Example 3.3. Let E = R
2,

X =
{
(x, y) | x = cos t, y = sin t; 0 � t � 3π

2

}
⊆ R

2, (3.3)

and P = {(x, y) ∈ E | x, y � 0}, and d : X × X → E such that d(x, y) = (|x − y|, α|x − y|),
where α � 0 is a constant. It is easily checked that (X, d) is a cone metric space. Suppose that
f((cos t, sin t)) = (cos(t/2), sin(t/2)). It is not hard to see that f is locally contractive but not
globally contractive.

Note that every locally contractive function is c-nonexpansive for some c � 0.

Definition 3.4. A cone metric space (X, d) is called c-chainable, for 0 � c, if for every a, b ∈ X,
there is a finite set of points a = x0, x1, . . . , xn = b, n depends on both a and b, such that
d(xi−1, xi) < c, for i, 1 � i � n.

Example 3.5. It is easily seen that the cone metric space that is defined in Example 1.6 is c-
chainable.

Theorem 3.6. Let (X, d) be a complete c-chainable cone metric space, P be a normal cone with normal
constant K. If f : X → X is (c, β)-uniformly locally contractive, then there is a unique point z ∈ X
such that f(z) = z.

Proof. Let x ∈ X be arbitrary. Consider the c-chain x = x0, x1, . . . , xn = f(x). We have

d
(
x, f(x)

)
�

n∑

i=1

d
(
xi−1, xi

)
< nc. (3.4)
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We have

d
(
f
(
xi−1

)
, f

(
xi

))
� βd

(
xi−1, xi

)
< βc, (3.5)

for every 1 � i � n, and by induction

d
(
fm(xi−1

)
, fm(xi

))
< βd

(
fm−1(xi−1

)
, fm−1(xi

))
< · · · < βmc, (3.1)

for every m ∈ N. Hence

d
(
fm(x), fm+1(x)

)
�

n∑

i=1

d
(
fm(xi−1

)
, fm(xi

))
< βmnc, (3.2)

for every m ∈ N. Now, form, p ∈ N withm < p, we have

d
(
fm(x), fp(x)

)
�

p−1∑

i=m

d
(
fi(x), f i+1(x)

)
< nc

(
βm + · · · + βp−1

)
< nc

βm

1 − β
. (3.3)

It means that

∥∥d
(
fm(x), fp(x)

)∥∥ � n‖c‖ βm

1 − β
, (3.4)

for m, p ∈ N with m < p. Since k ∈ [0, 1), then limm,p→∞‖d(fm(x), fp(x))‖ = 0. So
limm,p→∞d(fm(x), fp(x)) = 0, and by Lemma 1.5, {fm(x)} is a Cauchy sequence. Since X
is complete, then limm→∞fm(x) = z, for some z ∈ X. From the continuity of f it follows that
f(z) = z. To complete the proof it is enough to show that z is the unique point with this
property. To do this, suppose that there is z′ ∈ X such that f(z′) = z′. Let z′ = x0, x1, . . . , xt = z
be a c-chain. By (3.1), we obtain

d
(
f(z), f

(
z′
))

= d
(
fl(z), f l(z′

))
�

t∑

i=1

d
(
fl(xi−1

)
, f l(xi

))
< βltc. (3.5)

It means that

∥∥d
(
z, z′

)∥∥ =
∥∥d

(
f(z), f

(
z′
))∥∥ � βlt‖c‖. (3.6)

Since β ∈ [0, 1), then ‖d(z, z′)‖ = 0 and z = z′. This completes the proof.

Corollary 3.7. Let (X, d) be a complete c-chainable cone metric space, P be a normal cone with normal
constantK. If f is a one to one, (c, λ)-uniformly locally expansive function of Y ontoX, where Y ⊆ X,
then f has a unique fixed point.

Proof. It is an immediate consequence of the fact that for the inverse function all assumptions
of the Theorem 3.6 are satisfied.

In the following theorem we investigate a kind of functions which are not necessarily
contractions but have a unique fixed point. First, we will prove the following lemma which
will be used later.
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Lemma 3.8. Let (X, d) be a complete cone metric space, P be a normal cone with normal constantK,
f : X → Xbe a continuous function, and β ∈ [0, 1) such that for every x ∈ X, there is an n(x) ∈ N

such that

d
(
fn(x)(x), fn(x)(y)

)
� βd(x, y), (3.7)

for every y ∈ X. Then for every x ∈ X, r(x) = supn‖d(fn(x)(x), x)‖ is finite.

Proof. Let x ∈ X and l(x) = max{‖d(fj(x), x)‖ : j = 1, 2, . . . , n(x)}. If n ∈ N and n > n(x), then
there is s ∈ N ∪ {0} such that sn(x) < n � (s + 1)n(x) and we have

d
(
fn(x), x

)
� d

(
fn(x)(fn−n(x)(x)

)
, fn(x)(x)

)
+ d

(
fn(x)(x), x

)

� βd
(
fn−n(x)(x), x

)
+ d

(
fn(x)(x), x

)

� d
(
fn(x)(x), x

)
+ β

(
d
(
fn−n(x)(x), fn(x)(x)

)
+ d

(
fn(x)(x), x

))

� d
(
fn(x)(x), x

)
+ β

(
βd

(
fn−2n(x)(x), x

)
+ d

(
fn(x)(x), x

))

� · · · � d
(
fn(x)(x), x

)(
1 + β + β2 + · · · + βs

)
.

(3.8)

It means that

∥∥d
(
fn(x), x

)∥∥ � K
1

1 − β

∥∥d
(
fn(x)(x), x

)∥∥ � K
1

1 − β
l(x). (3.9)

Hence r(x) is finite and the proof is complete.

Theorem 3.9. Let (X, d) be a complete cone metric space, P be a normal cone with normal constant
K, β ∈ [0, 1), and f : X → X be a continuous function such that for every x ∈ X, there is an
n(x) ∈ N such that

d
(
fn(x)(x), fn(x)(y)

)
� βd(x, y), (3.10)

for every y ∈ X. Then f has a unique fixed point u ∈ X and limn→∞fn(x0) = u, for every x0 ∈ X.

Proof. Let x0 ∈ X be arbitrary, and m0 = n(x0). Define the sequence x1 = fm0(x0), xi+1 =
fmi(xi), where mi = n(xi). We show that {xn} is a Cauchy sequence. We have

d
(
xn+1, xn

)
= d

(
fmn−1

(
fmn

(
xn−1

)
, fmn−1

(
xn−1

))

� βd
(
fmn

(
xn−1

)
, xn−1

)

� · · · � βnd
(
fmn

(
x0
)
, x0

)
,

(3.11)

for every n ∈ N. So by Lemma 3.8, ‖d(xn+1, xn)‖ � Kβnr(x0), for every n ∈ N. Now, suppose
that m,n ∈ N withm < n, we have

∥∥d
(
xn, xm

)∥∥ � K
n−1∑

i=m

∥∥d
(
xi+1, xi

)∥∥ � K
βn

1 − β
r
(
x0
)
. (3.12)

Since limn→∞(βn/(1 − β)) = 0, then limm,n→∞‖d(xn, xm)‖ = 0, and by Lemma 1.5, {xn} is a
Cauchy sequence. Completeness of X implies that limn→∞xn = u, for some u ∈ X. Now, we
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show that f(u) = u. By contradiction, suppose that f(u)/=u. We claim that there are c, d ∈ E
such that 0 � c, 0 � d and Bc(u) and Bd(f(u))have no intersection, where Be(x) = {y ∈ X :
d(x, y) � e}, for every x ∈ X and 0 � e. If not, then suppose that ε > 0, and choose c ∈ E
with 0 � c and K‖c‖ < ε. Then clearly, 0 � c/2 and for z ∈ Bc/2(u) ∩ Bc/2(f(u)), we have

d
(
u, f(u)

)
� d(u, z) + d

(
z, f(u)

) � c. (3.13)

It means that ‖d(u, f(u))‖ ≤ K‖c‖ < ε. Since ε > 0 is arbitrary, then ‖d(u, f(u))‖ = 0 and so
f(u) = u, a contradiction. Therefore, assume that c, d ∈ E with 0 � c, 0 � d are such that
Bc(u) ∩ Bd(f(u)) = ∅. Since f is continuous, then there is n0 ∈ N such that xn ∈ Bc(u) and
f(xn) ∈ Bd(f(u)), for every n ∈ N and n � n0. Then

d
(
f
(
xn

)
, xn

)
= d

(
fmn−1

(
f
(
xn−1

)
, fmn−1

(
xn−1

)) ≤ βd
(
f
(
xn−1

)
, xn−1

)
� · · · � βnd

(
f
(
x0
)
, x0

)
,

(3.14)

for every n ∈ N. It means that ‖d(f(xn), xn)‖ � Kβn‖d(f(x0), x0)‖, for every n ∈ N. So
limn→∞d(f(xn), xn) = 0, a contradiction. Thus f(u) = u. The uniqueness of the fixed point
follows immediately from the hypothesis.

Now, suppose that x0 ∈ X is arbitrary. To show that limn→∞fn(x0) = u, set

r0 = max
{∥∥d

(
fm(x0

)
, u

)∥∥ : m = 0, 1, . . . , n(u) − 1
}
. (3.15)

If n is sufficiently large, then n = rn(u) + q, for r > 0 and 0 � q < n(u), and we have

d
(
fn(x0

)
, u

)
= d

(
frn(u)+q(x0

)
, fn(u)(u)

)
� βd

(
f (r−1)n(u)+q(x0

)
, u

)) ≤ · · · � βrd
(
fq(x0

)
, u

)
.

(3.16)

It means that
∥∥d

(
fn(x0

)
, u

)∥∥ � Kβr
∥∥d

(
fq(x0

)
, u

)∥∥ � Kβrr0. (3.17)

Therefore, limn→∞‖d(fn(x0), u)‖ = 0 and hence limn→∞fn(x0) = u. This completes the proof.

Definition 3.10. Let X be an ordered space. A function ϕ : X → X is said to be a comparison
function if for every x, y ∈ X, x � y, implies that ϕ(x) � ϕ(y), ϕ(x) � x, and
limn→∞||ϕn(x)|| = 0, for every x ∈ X.

Example 3.11. Let E = R
2, P = {(x, y) ∈ E | x, y � 0}. It is easy to check that ϕ : E → E,

with ϕ(x, y) = (ax, ay), for some a ∈ (0, 1) is a comparison function. Also if ϕ1, ϕ2 are two
comparison functions over R, then ϕ(x, y) = (ϕ1(x), ϕ2(y)) is also a comparison function
over E.

Recall that for a cone metric space (X, d), where P is a cone with normal constant K,
since for every x ∈ X, x � x, and therefore ‖x‖ � K‖x‖, then K � 1.

Theorem 3.12. Let (X, d) be a complete cone metric space, where P is a normal cone with normal
constant K. Let f : X → X be a function such that there exists a comparison function ϕ : P → P
such that

d
(
f(x), f(y)

)
� ϕ

(
d(x, y)

)
, (3.18)

for every x, y ∈ X. Then f has a unique fixed point.
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Proof. Let x0 ∈ X be arbitrary. We have

d
(
fn(x0

)
, fn+1(x0

))
� ϕ

(
d
(
fn−1(x0

)
, fn(x0

)))

� ϕ2(d(fn−2(x0
)
, fn−1(x0

)))

� · · · � ϕn(d
(
x0, f

(
x0
))
,

(3.19)

for every n ∈ N. Since limn→∞‖ϕn(d(x0, f(x0)))‖ = 0, for an arbitrary ε > 0, we can choose
n ∈ N such that

∥
∥d

(
fn(x0

)
, fn+1(x0

))∥∥ <

(
ε −K

∥
∥ϕ(c)

∥
∥)

K
, (3.20)

for every n ≥ n0 and c ∈ P with

‖c‖ <
ε

K2
,

1
K

∥
∥ϕ(c)

∥
∥ �

∥
∥ϕ

(
d
(
fn(x0

)
, fn+1(x0

)))∥∥. (3.21)

For n ≥ n0, we have

d
(
fn(x0

)
, fn+2(x0

))
� d

(
fn(x0

)
, fn+1(x0

))
+ d

(
fn+1(x0

)
, fn+2(x0

))
. (3.22)

So
∥∥d

(
fn(x0

)
, fn+2(x0

))∥∥ � K
∥∥d

(
fn(x0

)
, fn+1(x0

))∥∥ +K
∥∥d

(
fn+1(x0

)
, fn+2(x0

))∥∥

< K

(
ε −K

∥∥ϕ(c)
∥∥

K

)
+K2∥∥ϕ

(
d
(
fn(x0

)
, fn+1(x0

)))∥∥

� ε.

(3.23)

Now, for every n � n0, we have

d
(
fn(x0

)
, fn+3(x0

))
� d

(
fn(x0

)
, fn+1(x0

))
+ d

(
fn+1(x0

)
, fn+3(x0

))
. (3.24)

Since K ≥ 1, then we have
∥∥d

(
fn(x0

)
, fn+3(x0

))∥∥ � K
∥∥d

(
fn(x0

)
, fn+1(x0

))∥∥ +K
∥∥d

(
fn+1(x0

)
, fn+3(x0

))∥∥

< K

(
ε −K

∥∥ϕ(c)
∥∥

K

)
+K2∥∥ϕ

(
d
(
fn(x0

)
, fn+2(x0

)))∥∥

� ε.

(3.25)

By induction, we have ‖d(fn(x0), fn+r(x0))‖ < ε, for every r ∈ N and n � n0. Hence by
Lemma 1.5, we have {fn(x0)} is a Cauchy sequence in (X, d). So limn→∞fn(x0) = x∗, for some
x∗ ∈ X. Now, we will prove f(x∗) = x∗. Since limn→∞fn(x0) = x∗, for every c � 0, there exists
nc ∈ N such that for every n � nc, we have d(fn(x0), x∗) < c. Therefore,

d
(
x∗, f

(
x∗)) � d

(
x∗, fn+1(x0

))
+ d

(
f
(
fn(x0

))
, f

(
x∗))

� d
(
x∗, fn+1(x0

))
+ ϕ

(
d
(
fn(x0

)
, x∗))

< d
(
x∗, fn+1(x0

))
+ d

(
fn(x0

)
, x∗) < 2c,

(3.26)

for every c � 0. So f(x∗) = x∗. For the uniqueness of the fixed point, suppose that there exists
y∗ ∈ X such that f(y∗) = y∗. Hence

d
(
x∗, y∗) = d

(
fn(x∗), fn(y∗)) � ϕn(d

(
y∗, x∗)). (3.27)

So
∥∥d

(
x∗, y∗)∥∥ � K

∥∥ϕn(d
(
y∗, x∗))∥∥. (3.28)

Since limn→∞‖ϕn(d(y∗, x∗))‖ = 0, then x∗ = y∗ and the proof is complete.
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4. Applications

Theorem 4.1. Consider the integral equation

x(t) =
∫b

a

k
(
t, s, x(s)

)
ds + g(t), t ∈ [a, b]. (i)

Suppose that

(i) k : [a, b] × [a, b] × R
n → R

n and g : [a, b] → R
n;

(ii) k(t, s, ·) : R
n → R

n is increasing for every t, s ∈ [a, b];

(iii) there exists a continuous function p : [a, b] × [a, b] → R
+ and a comparison function

ϕ : R
2 → R

2 such that

(∣∣k(t, s, u) − k(t, s, v)
∣∣, α

∣∣k(t, s, u) − k(t, s, v)
∣∣) �

(
p(t, s), αp(t, s)

)
ϕ
(
d(u, v)

)
, (4.1)

for every t, s ∈ [a, b], u, v ∈ R
n;

(iv) supt∈[a,b]
∫b
a(p(t, s), αp(t, s))ds = 1.

Then the integral equation (i) has a unique solution x∗ in C([a, b],Rn).

Proof. LetX = C([a, b],Rn), P = {(x, y) : x, y � 0} ⊆ R
2, and define d(f, g) = (‖f −g‖∞, α‖f −

g‖∞), for every f, g ∈ X. Then it is easily seen that (X, d) is a cone metric space. Define
A : C([a, b],Rn) → C([a, b],Rn), by

Ax(t) :=
∫b

a

k
(
t, s, x(s)

)
ds + g(t), t ∈ [a, b]. (4.2)

For every x, y ∈ X, we have

(∣∣Ax(t) −Ay(t)
∣∣, α

∣∣Ax(t) −Ay(t)
∣∣)

=
(∣∣∣∣

∫b

a

[
k
(
t, s, x(s)

) − k
(
t, s, y(s)

)]
ds

∣∣∣∣, α
∣∣∣∣

∫b

a

[
k
(
t, s, x(s)

) − k
(
t, s, y(s)

)]
ds

∣∣∣∣

)

�
(∫b

a

∣∣k
(
t, s, x(s)

) − k
(
t, s, y(s)

)∣∣ds,
∫b

a

α
∣∣k(t, s, x(s)) − k

(
t, s, y(s)

)∣∣ds
)

�
∫b

a

(
p(t, s), αp(t, s)

)
ϕ
(∣∣x(s) − y(s)

∣∣, α
∣∣x(s) − y(s)

∣∣)ds

� ϕ
(‖x − y‖∞, α‖x − y‖∞

)
∫b

a

(
p(t, s), αp(t, s)

)
ds

= ϕ
(‖x − y‖∞, α‖x − y‖∞

)
.

(4.3)

Hence d(Ax,Ay) � ϕ(d(x, y)), for every x, y ∈ X. The conclusion follows now from
Theorem 3.12.



P. Raja and S. M. Vaezpour 11

References

[1] M. Edelstein, “An extension of Banach’s contraction principle,” Proceedings of the American
Mathematical Society, vol. 12, no. 1, pp. 7–10, 1961.

[2] M. Edelstein, “On nonexpansive mappings,” Proceedings of the American Mathematical Society, vol. 15,
no. 5, pp. 689–695, 1964.

[3] T. Gnana Bhaskar and V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces
and applications,” Nonlinear Analysis: Theory, Methods & Applications, vol. 65, no. 7, pp. 1379–1393,
2006.

[4] B. E. Rhoades, “A comparison of various definitions of contractive mappings,” Transactions of the
American Mathematical Society, vol. 226, pp. 257–290, 1977.

[5] V. M. Sehgal, “A fixed point theorem for mappings with a contractive iterate,” Proceedings of the
American Mathematical Society, vol. 23, no. 3, pp. 631–634, 1969.

[6] K. Leibovic, “The principle of contraction mapping in nonlinear and adaptive control systems,” IEEE
Transactions on Automatic Control, vol. 9, no. 4, pp. 393–398, 1964.

[7] G. A. Medrano-Cerda, “A fixed point formulation to parameter estimation problems,” in Proceedings
of the 26th IEEE Conference on Decision and Control (CDC ’87), vol. 26, pp. 1914–1915, Los Angeles, Calif,
USA, December 1987.

[8] Y.-M. He and H.-J. Wang, “Fractal image decoding based on extended fixed-point theorem,” in
Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC ’06), pp. 4160–
4163, Dalian, China, August 2006.

[9] W. Rakowski, “The fixed point theorem in computing magnetostatic fields in a nonlinear medium,”
IEEE Transactions on Magnetics, vol. 18, no. 2, pp. 391–392, 1982.

[10] J. E. Steck, “Convergence of recurrent networks as contraction mappings,” in Proceedings of the
International Joint Conference on Neural Networks (IJCNN ’92), vol. 3, pp. 462–467, Baltimore, Md, USA,
June 1992.

[11] L.-G. Huang and X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappings,”
Journal of Mathematical Analysis and Applications, vol. 332, no. 2, pp. 1468–1476, 2007.

[12] M. Abbas and G. Jungck, “Common fixed point results for noncommuting mappings without
continuity in cone metric spaces,” Journal of Mathematical Analysis and Applications, vol. 341, no. 1,
pp. 416–420, 2008.
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